Delft University of Technology

**T**UDelft



# A bis(phosphonate) mono-amide analogue of DOTA: a potential agent for bone-targeting



Delft University of Technology



### Bis(phosphonates)

 $O_{2}^{PO_{3}H_{2}}$  $PO_{3}H_{2}$ Pyrophosphate

 $R^1 PO_3H_2$  $R^2 PO_3H_2$ 

Geminal bis(phosphonate)

| Commercial name | R <sup>1</sup> | R <sup>2</sup>                                      |
|-----------------|----------------|-----------------------------------------------------|
| Aledronate      | —он            | $-(CH_3)_{\overline{3}}-NH_2$                       |
| Clodronate      | -Cl            | -Cl                                                 |
| Etidronate      | —он            | -CH <sub>3</sub>                                    |
| Ibadronate      | —он            | $-(CH_3)_{\overline{2}}-N(CH_3)_{\overline{2}}CH_3$ |
| Pamidronate     | —он            | $-(CH_3)_{\overline{2}}-NH_2$                       |
| Risedronate     | —он            |                                                     |
| Tiludronate     | —Н             | -s-{-Cl                                             |

Delft University of Technology



#### Ligand BPAMD



Bis(phosphonic acid) group – bone targeting group

DOTA monoamide – chelating group for lanthanide(III) ions

Delft University of Technology

**″**UDelft



#### Synthesis



Delft University of Technology

**″**UDelft



#### Complexation of Ln(III) ions

- 3 step process:
- pH 2–4: only phosphonates are coordinated
- pH 7–9: "out of cage" complex (A)
- After heating: DOTA-like complex (B)



Delft University of Technology

**T**UDelft



### Ln-BPAMD complexes

- All pendants coordinated
- One molecule of water in the inner coordination sphere
- Bis(phosphonic acid) group is not coordinated
- Phosphorus atoms are nonequivalent



**T**UDelft



### Relaxometry of Gb-BPAMD

- Slow water exchange
- High value of relaxivity
- Expected second hydration sphere

| Ligand                                               | $\Delta^2$ [s <sup>-2</sup> /10 <sup>19</sup> ] | τ <sub>v</sub><br>[ps] | τ <sub>r</sub><br>[ps] | τ <sub>M</sub><br>[μs] | $r_1$ (20 MHz)<br>[s <sup>-1</sup> mM <sup>-1</sup> ] |
|------------------------------------------------------|-------------------------------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------|
| BPAMD                                                | $3.7 \pm 0.2$                                   | 17 ± 1                 | 88 ± 3                 | $1.18\pm0.6$           | 5.3                                                   |
| DOTA <sup>a</sup>                                    | 1.6                                             | 11                     | 77                     | 0.244                  | 4.8                                                   |
| DOTA-bis(methylphosphonic)<br>monoamide <sup>b</sup> | 1.8                                             | 21                     | 97                     | 1.6                    | 6.2                                                   |

<sup>a</sup> Powell, D. H.; Dhubhghaill, O. M. N.; Pubanz, D.; Helm, L.; Lebedev, Y. S.; Schlaepfer, W.; Merbach, A. E. *J. Am. Chem. Soc.* **1996**, *118*, 9333–9346 <sup>b</sup> Aime, S.; Botta, M.; Garino, E.; Geninatti Crich, S.; Giovenzana, G.; Pagliarin, R.; Palmisano, G.; Sisti, M. *Chem. Eur. J.* **2000**, *6*, 2609–2617

Delft University of Technology

**T**UDelft



#### Relaxometry of Gb-BPAMD

pH dependence of relaxivity

- Two steps in relaxivity: pH = 2-3 and 6-8
- protonation of bis(phosphonic) acid group



Delft University of Technology





#### Interaction of Gd-BPAMD with Ca(II) ions



- 1:1 complex formation  $-\log b = 2.2$
- 2 times shorter <sup>17</sup>O  $T_{1ir}$   $\implies$  increase of rotation correlation time
- Formation of 2+2 complexes 8 member ring typical for phosphonate complexes

**T**UDelft



### Interaction of Gd-BPAMD with Ca(II) ions

- Increase of relaxivity upon interaction with Ca(II) ions
- Unusually flat <sup>17</sup>O temperature relaxation profiles
- Different complexing mode at higher temperature





**Ú**Delft



### Sorption of Tb-BPAMD complex on the hydroxyapatite (HA)

• Fast and fully reversible sorption

• Maximum adsorption capacity  $X_{\rm m} = 4.0 \times 10^{-5} \text{ mol g}^{-1}$  (specific surface of HA 53 m<sup>2</sup>g<sup>-1</sup>) indicates monomolecular layer formation

• Affinity constant  $K = 2.1 \times 10^5 \text{ dm}^3 \text{mol}^{-1}$ 



c – equilibrium concentration; X – specific adsorbed amount;  $X_m$  – maximum adsorption capacity; K – affinity constant

Delft University of Technology

**T**UDelft



### Sorption of Tb-BPAMD complex on the hydroxyapatite (HA)

- Very strong interaction of Tb-BPAMD complex with HA surface
- Identical sorption abilities of free ligand BPAMD and its Tb(III) complex
- $\alpha$ -amido-bis(phosphonic acid) group responsible for exceptional properties

| bis(phosphonate)    | affinity constant<br><i>K</i> ×10 <sup>3</sup> [mol <sup>-1</sup> dm <sup>-3</sup> ] |
|---------------------|--------------------------------------------------------------------------------------|
| HEDP <sup>a,b</sup> | 3.3                                                                                  |
| MDP <sup>a,b</sup>  | 0.7                                                                                  |
| Tb-BPAMD            | 210                                                                                  |

<sup>*a*</sup> HEDP - 1-hydroxy-ethane-1,1-bis(phosphonic acid) MDP – methanebis(phosphonic acid)

<sup>b</sup> Claessens, R. A. M. J.; Kolar, I. Z. Langmuir 2000, 16, 1360–1367



**T**UDelft



## Relaxometry of the hydroxyapatite slurry

- Gd-BPAMD complex is fully adsorbed in the slurry
- Value of the relaxivity of adsorbed Gd-BPAMD comparable with that obtained for the slurry containing Gd-DTPA complex
- Same concentration of Gd-DTPA in the solution and in the slurry X different relaxivities due to physicochemical conditions



Delft University of Technology

**T**UDelft



### Relaxometry of the hydroxyapatite slurry



• Superposition of a paramagnetic contribution from the complex and a diamagnetic contribution coming from HA

• Paramagnetic contribution shows a maximum at 10 - 20 MHz typical for Gd(III) complexes with slow rotation of the molecule

• 3-5 times higher milimolar relaxivity than the Gd-BPAMD complex in the solution as result of the hindered rotation

**∦ T**⊔Delft



- new bis(phosphonate) containing DOTA monoamide
- three step lanthanide complexation
- DOTA-like Ln(III) complexes
- interaction with Ca(II) ions
- fast and strong adsorption of Ln(III)complexes on hydroxyapatite

• increase of rotation corelation time and relaxivity upon binding on hydroxyapatite



Delft University of Technology

**T**UDelft

#### Acknowledgement

| Prague         | Delft                 | Mons             |
|----------------|-----------------------|------------------|
| Ivan Lukeš     | Joop A. Peters        | Robert N. Muller |
| Petr Hermann   | Hubert Th. Wolterbeek | Luce Vander Elst |
| Jakub Rudovský | Zvonimir I. Kolar     | Sophie Laurent   |
| Jan Kotek      | Kristina Djanashili   |                  |

#### Financial support

- Marie Curie training site host fellowship (QLK5-CT-2000-60062)
- Grant Agency of the Czech Republic (No. 203/03/0168)
- COST D18 Action
- EU Network of Excellence (NoE) "European Molecular Imaging Laboratory" (EMIL).