FCM, Cytotaxonomie, karyologie, cytogenetika

S využitím prezentací Honzy Sudy

Přehled

- počet chromozomů
- > morfologie chromozomů
- velikost chromozómů (velikost genomu)
- barvitelnost chromozomů
- "chování" chromozomů
- > molekulární cytogenetika

Počet chromozomů

- > 1882: Strassburger Lilium 2n = 24
- > dodnes ca 25% krytosemenných
- nerovnoměrné pokrytí
- > chromozomové atlasy (W³TROPICOS, Taxon,
- **CCDB database)**
- > požadavky:
 - přírodní materiál
 - herbářová položka
 - opakování (buňky, jedinci)
 - ! somatické polyploidie, mozaiky

Superlativy

2n = 4

Haplopappus gracilis

Brachyscome dichrosomatica

Viola modesta

Ornithogalum tenuifolium

Zingeria biebersteiniana

Colpodium versicolor

Superlativy

Sedum suaveolens 2n = 80x = 640

Ophioglossum reticulatum 2n = 96x = 1440

Voanioala gerardii 2n = 50x = ca. 600

Gymnodinium 2n = c. 1028

Základní chromozomové číslo

≻ x

- relativní (potíže stanovení)
- stabilní x variabilní

≻ změny:

- ztráta chromozómů (Crepis, Vicia), fúze

chromozómů (*Cardamine*)

- Senecio 2n = 40 (2x or 4x?)
- (hypo)aneuploidie (Artemisia)
- dibasická polyploidie (Brassica,

Maloideae)

Základní chromozomové číslo

> Poaceae - vymezení podčeledí

- Bambusoideae, x = 12
- Arundinoideae, x = 9, 12
- Chloridoideae, x = 9, 10
- *Panicoideae*, x = 5, 9, 10
- *Pooideae*, x = 7

podpora evolučních linií

Caryophyllidae, x = 9 (ostatní x = 7)

Počet chromozómů

- vymezení druhů / poddruhů
- ➢ kryptická speciace
- zdroje problémů (polyploidní komplexy)
- hybridizace
- predikce (reprodukční způsob)

Velikost genomu

mezidruhová variabilita

> vnitrodruhová variabilita

Angiosperms	— 6.3 (0.06 – 127.4)
Gymnosperms —-	17.0 (2.3 – 32.2)
Monilophytes	13.6 (0.8 – 72.7)
Lycophytes -	3.8 (0.2 - 12.0)
Bryophytes 🔶	0.5 (0.09 - 6.4)
Chlorophyta	1.8 (0.1 – 19.6)
Phaeophyta •	0.4 (0.1 – 0.9)
Rhodophyta •	0.4 (0.1 – 1.4)
0 25 50 75 100 125 150 1C DNA amount (pg)	

Paris japonica 1C = 152,2 pg

Morfologie chromozómů

- centromera, sekundární konstrikce, satelit
- difúzní centromera
- ≻ změny:

Karyotyp

symetrický x asymetrický

➢ bimodální

> evoluční vztahy (*Ranunculaceae* s.l.)
 > hledání rodičů (*Fallopia, Triticum*)

Barvitelnost chromozómů

- euchromatin x heterochromatin
- pohlavní chromozomy
- tradiční barviva (karmin, orcein, fuchsin)
- "proužkování"
 - Q-banding (quinacrin)
 - C/G-banding (Giemsa)
 - AT/GC selektivní barviva

CCP – comparative chromosome painting

Barvitelnost chromozómů

In situ hybridization, FISH, GISH
 FISH – lokalizace značené DNA na
 chromozomech
 GISH – determinuje mezidruhovou
 distribuci opakujících se sekvencí na
 chromozomech

- hledání rodičů
- původ polyploidů
- hybridizace a introgrese

Chování chromozómů

- párování v meióze
- homologní x homoeologní chromozomy
- bivalenty x polyvalenty
- typ polyploidů (auto x allo)
- > evoluční příbuznost
- > hybridizace a introgrese

What is flow cytometry?

- > optical characteristics of isolated particles (fluorescence intensity, light scatter)
- > quantification of (any) chemical compound
- most common: amount of nuclear DNA (genome size) absolute / relative units

Instrumentation

- light source (laser, UV lamp, diode)
- Flow chamber + fluidic system
- > optical assembly (filters, mirrors)
- > signal processing part (PMT, convertors)
- computer part

Challenges with plant material

PLANT CELLS

- embedded in 3D tissues
- rigid and impermeable cell wall
- various secondary metabolites

MODIFICATION OF FCM PROTOCOLS

- tissue desintegration
- cell wall removal
- nuclei isolation

animal cell

plant cell

What can be analyzed?

> intact cells (pollen, sperm cells)

(but: large size, irregular shape, low permeability of the cell wall, autofluorescent pigments)

> protoplasts

(but: laborious, not universal)

protoplast-derived nuclei

nuclei from intact tissues

Galbraith et al. (1983)

Methodology

tissue chopping

bead-beating method

ultrasonic disruption

DNA content distribution

Accuracy: coefficient of variation (CV) Resolution threshold (%): 2 x CV

www.ueb.cas.cz/Olomouc1

Advantages / Limitations

- high speed
- statistically representative
- convenient sample preparation
- non-destructiveness
- range of tissue types
- mitotically inactive cells
- mixed samples detection
- reasonable price

- Iack of visual control
- > secondary metabolites
- detection of aneuploidy
- price of instruments
- > (use of non-fresh material)

Contributions of FCM

- increased number of characters
 - (ploidy, genome size, AT/GC content)
- > increased number of individuals (population level)

- improved detection and delineation of taxa
- Iarger spatial and temporal scales
- > more robust inference of phylogenetic relationships

Overview of applications

Cytotype distribution pattern at various spatial scales Dynamics of mixed-ploidy populations

Detection of aneuploid individuals Detection of sex in dioecious plants Detection of endopolyploidy Detection of agmatoploidy

Breeding mode detection

Genome composition in allopolyploid taxa Base composition (AT / GC ratio)

C- and Cx-values determination

Heteroploid groups

taxonomic marker (grasses, geophytes, parasites)

> species determination and delineation

Anthoxanthum 2x: A. alpinum 4x: A. odoratum

Vaccinium

2x: *V. microcarpus* 4x-6x: *V. oxycoccos*

Trávníček et al. (in prep.)

Suda & Lysák (2001)

Rare cytotypes

detection of cryptic diversity

> evolutionary role of minority ploidies

Campanula patula - 8x

Lythrum - 3x

Vaccinium - 3x

Rare cytotypes

> use in plant conservation

Ploidy variation

knowledge of overall ploidy variation

Rauchová et al.

Cape Oxalis

> 80 species: 33 multiple ploidy levels (2x - 20x)
> up to 7 different cytotypes within a species

Invasion biology

determinants of invasiveness

> cytotype composition in primary vs. secondary areas

Lythrum salicaria

- Europe + Asia (native): 2x, 3x, 4x, 6x
- > North America (invasive): 4x

Kubátová et al. (2008)

Invasion biology

evolution in secondary areas

ploidy-specific behaviour

Reynoutria

Mandák et al. (2003

Invasion biology

Oxalis pes-caprae

- > South Africa (native): 4x > 2x > 5x
- Europe (invasive): 5x > 4x

Heteroploid hybridization

reliable detection of interspecific hybrids

Rosenbaumová et al. (2004)

Lamium - 3x

Vaccinium - 5x

Suda & Lysák (2001)

Ploidy dynamics

Experimental hybridization:

- 6x (facultative apomict)
- x 4x (obligate apomict)

Hieracium subg. Pilosella

Offspring ploidy:

- 6x (apomixis)
- 3x (haploid parthenogenesis)
- 5x (reduced gametes)
- 7x (reduced + unreduced gametes)
- 8x (unreduced + reduced gametes)

Krahulcová et al

Ploidy dynamics

Hieracium subg. Pilosella

Polyploidization

Haploid parthenogenesis

Homoploid groups

> discrimination between species with the same number of chromosomes

> determination of plant fragments, roots, juvenile plants, etc.

Suda et al. (2007)

Homoploid hybridization

discrimination between homoploid hybrids and parental species (threshold ~ 4%, parental difference ~ 7%)

Elytrigia repens x E. intermedia

Dryopteris carthusiana x D. dilatata

Ekrt et al. (2010)

800

1000

Mahelka et al. (2005)

Homoploid hybridization

C. alsinifolium x C. arvense (2n =72)

Vít et al. (2014)

Cryptic diversity

Picris hieracioides

small GS

○ small GS

Cryptic diversity

Ellis et al. (in prep.)

Gorteria diffusa

Origin of polyploids

> putative parents in allopolyploids

 A. puberula
 A. adfinis

 2C = 1.18 pg
 2C = 1.15

Androsace brigantiaca

2C = 2.33 pg

Evolutionary relationships

Basic species

Intermediate (hybridogenous) species

Hieracium subg. Pilosella

Suda et al. (2007)

Evolutionary relationships

- ➤ 6 different ploidy levels
- > 3 genome size (Cx-values) groups
 (correlation with geography)

Leong-Škorničková et al. (2007)

Links to other techniques

Multivariate morphometrics

- insights into phenotypic variation
- > species- and cytotype-specific characters
- determination of cryptic taxa

Molecular methods

genome size evolution

> ploidy dynamics

Resolving phylogeny

Juncus biglumis

Schönswetter et al. (2007

Cytotype distribution

variation at large spatial scales

Empetrum

Suda (2002)

Vaccinium uliginosum

Cytotype distribution

> variation at fine spatial scales

Empetrum

Sympatric occurrence

2x **4x**

Kolář et al. (2009)

Sympatric occurrence

<u>O b j e c t i v e s</u>

> life history dynamics and demographic parameters

mechanisms of reproductive isolation

> inter- and intra- cytotype interactions

> interactions with other trophic levels

> ecological and functional aspects of polyploidy

Sympatric occurrence

Campanula patula 2x + 4x

Pimpinella saxifraga Anthoxanthum 2x + 4x 2x + 4x

Vicia cracca 2x + 4x

Common phenomenon of high evolutionary significance

Galeobdolon 2x + 3x + 4x

Hieracium echioides 2x + 3x + 4x + 5x

 Oxycoccus
 Gymnadenia

 2x + 4x + 5x + 6x
 4x + 6x + 8x + 10x + 12x

Trophic interactions

Hymenoptera

Andrena buckelli

A. nigrocaerulea

B. centralis queens

B. centralis workers

Dolichogenidea spp.

Lasioglossum spp.

Nomada spp.

Greya politella

Bombyllius major

Lepidoptera

Diptera

Bombus bifarious nearticus

Bombus spp.

- ploidy-specific infestation
- different pollinator suites

0.90

0.60

0.40

0.25

0.44

1.20

1.50

1.68

1.39

0.25

0.27

Tetraploid mean

0.80

0.40

0.80

1.254

1.384

0.10

1.50

 0.71^{a} 0.62

1.25

1.73ª

Greya politella

Greya piperella

Eupithecia misturata

Heuchera grossulariifolia

Reproductive pathways

> mature seeds ploidy ratio embryo / endosperm

sexual vs. apomictic individuals

reduced vs. unreduced gametes

Reproductive pathways

Taraxacum

Hypericum

Base composition

> variation 52.8 - 69.9 % AT

> useful marker at higher taxonomic ranks (families)

> usually similarities among species

Sex determination

Arecaceae Cannabaceae Caryophyllaceae Cucurbitaceae Loranthaceae Polygonaceae

www.ueb.cas.cz/Olomouc1

Silene latifolia 2n = 24F - XX, M - XY

Agmatoploidy

Chromosome fragmentation

- different chromosome number
- the same DNA content

Juncus

How to store the samples?

<u>SHORT-TERM</u>

bagging plant tissue in moistened paper

Other directions

- Ploidy estimation in gametic tissues (pollen)
- polyploid adaptive evolution
- study of different evolutionary lineages
- > dynamics of mixed-ploidy populations
- volutionary ecology of interactions
- > methodology (long-term tissue preservation)

Courtesy of P. Kron

Cardamine flexuosa and related taxa

Šlenker et al., 2018, Botanical Journal of the Linnean Society, 187: 456–482.

Locations of sampled populations of *Cardamine flexuosa, C. kokaiensis, C. occulta* and *C. scutata* in East Asia and Europe (nested picture). The scale bar indicate 500 km.

Slenker et al., 2018, Botanical Journal of the Linnean Society, 187: 456–482.

Flow cytometry and chromosome number counts

Box-and-whisker plots of (A) relative genome size, and (B) relative monoploid genome size of *Cardamine flexuosa* (4*x*), *C. kokaiensis* (4*x*), *C. occulta* (8*x*) and *C. scutata* (4*x*); in total **585 plants**, **95 populations**. Whiskers are extended to the 5th and 95th percentiles. The fluorescence intensity of *Lycopersicon esculentum* (2C = 1.96 pg) was set to a unit value. Chromosomes of (A) Cardamine flexuosa (2n = 32), (B) C. kokaiensis (2n = 32), (C) C. occulta (2n = 64) and (D) C. scutata (2n = 32) counterstained by DAPI. Scale bars indicate 10 µm.

Slenker et al., 2018, Botanical Journal of the Linnean Society, 187: 456–482.

Comparative chromosome painting

BAC contigs

multicolor fluorescence *in situ*hybridization on meiotic(pachytene) chromosomes

Examples of CCP in Cardamine amara

Comparative chromosome painting

A tribal-specific reciprocal translocation in the Cardamineae

Mandáková & Lysak, in prep.

Origin of European Cardamine flexuosa

Genomic in situ hybridization (GISH) to mitotic chromosomes in the allotetraploid Cardamine flexuosa (2n = 32). GISH with total genomic DNA of Cardamine amara (red fluorescence; two overlapping chromosomes are indicated by a star symbol) and Cardamine *hirsuta* (green fluorescence) revealed two subgenomes contributed by ancestors of the two diploid species. Two pairs of translocation chromosomes (arrowheads) were identified by subsequent comparative chromosome painting (CCP) analysis.

Origin of European Cardamine flexuosa

Both rearranged homeologues have undergone an identical pericentric inversion followed by a reciprocal translocation with breakpoints within both genomic blocks I, exchanging unequal proportions of the upper arms of progenitor chromosomes CA4 and CH4. Both chromosomes shared altered collinearity of blocks I and J, and differed by the length of their upper arms

Mandáková, Marhold & Lysák, 2014, New Phytologist 201: 982–992.

Parental-specific chromosome signatures uncovered the origin of *Cardamine scutata* (2n = 4x = 32)

Cardamine kokaiensis (2n = 4x = 32)

Cardamine occulta (2n = 8x = 64)

Cardamine occulta (2n = 8x = 64)

Fine-scale rearrangements investigated on pachytene

C. kokaiensis (PP')

ΡΡΑΡ΄

C. scutata (PA)

Auto- and allopolyploid origin of Asian Cardamine

A: C. amara, P: C. parviflora, S: C. scutata,
K: C. kokaiensis, D: C. dentipetala, O: C. occulta