Phylogenetic tree building methods

method of building trees	type of data distances	DNA sequences or other characters		
clustering algorithm	UPGMA			
neighbor-joining tree			\quad	minimum evolution tree
:---				
optimality criterion				
parsimony				
maximum likelihood				

Bayesian analysis

> Bayes, T. 1763. An essay towards solving a problem in the doctrine of chances. Phil. Trans. Roy. Soc. London 53: 370-418.

[370]

quodque folum, certa nitri figna prabere, fed plura concurrere debere, ut de vero nitro producto dubium non relinquatur.
LII. An Effay towards folving a Problem in the Doctrine of Chances. By the late Rev. $M r$. Bayes, F. R.S. communicated by Mr. Price, in a Letter to John Canton, A. M. F.R.S.

Dear Sir,
Read Dee. 23. T Now fend you an eflay which I have 1763. found among the papers of our deceafed friend Mr. Bayes, and which, in my opinion, has great merit, and well deferves to be preferved. Experimental philofophy, you will find, is nearly interefted in the fubject of it $;$ and on this account there feems to be particular reafon for thinking that a communication of it to the Royal Society cannot be improper.

He had, you know, the honour of being a member of that illuftrious Society, and was much efteemed by many in it as a very able mathematician. In an introduction which he has writ to this Eflay, he fays, that his defign at firf in thinking on the fubject of it was, to find out a method by which we might judge concerning the probability that an event has to happen, in given circumftances, upon fuppofition that we know nothing concerning it but that, under the fame circum-

Joint probability

Paul O. Lewis, Woods Hole Molecular Evolution Workshop, 2006

Conditional probability

$$
\operatorname{Pr}(B \mid D)=2 / 5=0,4
$$

Probability of B given

 that D is true (i.e. excluding all F)
Bayes rule (theorem)

Marginal (prior) probability - probabilities of observing D and F , respectively without any given conditions

Bayes rule (theorem)

$$
\begin{array}{ll}
\operatorname{Pr}(\text { tree } \mid \text { data })= & \frac{\operatorname{Pr}(\text { data } \mid \text { tree }) \times \operatorname{Pr}(\text { tree })}{\operatorname{Pr}(\text { data })} \\
\operatorname{Pr}(\text { hypothesis } \mid \text { data })= & \frac{\operatorname{Pr}(\text { data } \mid \text { hypothesis }) \times \operatorname{Pr}(\text { hypothesis })}{\operatorname{Pr}(\text { data })} \\
\operatorname{Pr}(\text { tree } \mid \text { data }) & =\text { posterior probability } \\
& =\text { probability that the tree is correct } \\
\operatorname{Pr}(\text { data } \mid \text { tree }) & =\text { likelihood of the tree } \\
\operatorname{Pr}(\text { tree }) & =\text { prior probability of the tree } \\
\operatorname{Pr}(\text { data }) \quad & \begin{array}{l}
\text { probability of data (a normalizing constant, }, \\
\\
\\
\\
\\
\\
\\
\\
\\
\text { phich ensures that the sum of the }
\end{array} \\
\end{array}
$$

Provides the possibility of calculating probabilities of various hypotheses given existing data.

Example: black and white marbles in urns

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{D}, \mathrm{H})=\operatorname{Pr}(\mathrm{D}) \operatorname{Pr}(\mathrm{H} \mid \mathrm{D}) \\
&=\operatorname{Pr}(\mathrm{H}) \operatorname{Pr}(\mathrm{D} \mid \mathrm{H}) \\
& \operatorname{Pr}(\mathrm{H} \mid \mathrm{D})=\operatorname{Pr}(\mathrm{H}) \operatorname{Pr}(\mathrm{D} \mid \mathrm{H}) / \operatorname{Pr}(\mathrm{D}) \\
& \text { Data - we selected black marble } \\
& \text { Hypotheses - from which urn it was } \\
& \quad \text { taken? }
\end{aligned}
$$

$\operatorname{Pr}(\mathrm{H} \mid \mathrm{D})=$ posterior probability, i.e. probability of the hypothesis given the data $\operatorname{Pr}(\mathrm{D} \mid \mathrm{H})=$ likelihood of hypothesis, i.e. probability of the data given the hypothesis
$\operatorname{Pr}(\mathrm{H})=$ prior probability of hypothesis - unconditional probability of the hypothesis, specified without reference to the data
$\operatorname{Pr}(\mathrm{D})=$ unconditional probability of the data, which can be obtained, using the law of total probability, by calculating the sum of the product $\operatorname{Pr}(\mathrm{H}) \operatorname{Pr}(\mathrm{D} \mid \mathrm{H})$ for all possible values of H

Lewis, P. O. 2001. Phylogenetic systematics turns over a new leaf. Trends Ecol. Evol. 16: 30-37.

Likelihood
is simply the probability that a single marble is black, given a particular urn hypothesis

The likelihood for urn A is $\mathbf{0 . 4}$
The likelihood for urn B is $\mathbf{0 . 8}$
The prior probability of each urn is 0.5
Pr (black marble was drawn)
$=(\mathbf{0 . 5})(\mathbf{0 . 4})+\mathbf{(0 . 5) (0 . 8)}=\mathbf{0 . 6}$ - the sum of the product $\operatorname{Pr}(\mathrm{H}) \operatorname{Pr}(\mathrm{D} \mid \mathrm{H})$ for all values of H (urn A and urn B)
Posterior probability
Pr (urn A / black marble was drawn)
$=(0.5)(0.4) / 0.6=1 / 3$
Pr (urn B / black marble was drawn)
$=(0.5)(0.8) / 0.6=2 / 3$
Thus, the probability that the black marble came from urn B, given the datum, is $2 / 3$, In this case, the posterior distribution $(0.33,0.67)$ represents an updated version of the prior distribution $(0.5,0.5)$

The previous example dealt with hypotheses with discrete values, in Bayesian analysis we mostly use continuous parameters. In such cases probabilities of discrete hypotheses are replaced by functions of probability densities.

Likelihood of hypothesis θ
Prior probability of

Posterior probability of
Marginal probability of data hypothesis θ

Prior probability density

Posterior probability
Marginal probability of data density

Huelsenbeck, J. P., F. Ronquist, R. Nielsen \& J. P. Bollneck. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 23102314.

The prior probability - probability of the tree before observationas are taken, mostly all trees are considered equally probable (but some trees may have higher probability, e.g., based on taxonomic knowledge).

The likelihood - proportional to the probability of observations (e.g., DNA alignment) conditional on the tree topology; it is calculated using models of character evolution (requires making specific assumptions about the processes generating the observations.

The posterior probability of a tree - is the probability of the tree conditional on the observatioins; it is obtained by combining the prior and likelihood for each tree using the Bayes' Formula.

When calculating posterior probabilities using Bayes’ rule we face the problem that we need to summarise information on all trees, for all trees all branch length parameters and also for all parameters of substitution models.

Therefore we use Markov chain, which moves in the space defined by the model parameters.

Each step in Markov chain involves random modification of the tree topology, branch length or parameter in substitution model. If the posterior probability for such modified tree is higher this step is accepted.

If the posterior probability for such modified tree is lower, then we use the function that is based on the ratio of new and old posterior probability. Decission whether the given step is accepted or not depends on the value of this ratio.

Substitution models

MCMC - Markov chain Monte Carlo method

MCMC robot's rules

Lewis, P. O. 2001. Phylogenetic systematics turns over a new leaf. Trends Ecol. Evol. 16: 30-37.
Paul O. Lewis, Woods Hole Molecular Evolution Workshop, 2006

MCMC - Markov chain Monte Carlo method

MCMCMC -

Metropolis coupled Markov chain Monte Carlo method

Cold landscape, high hills and deep valleys

Heated landscape, low hills and shallow valleys

MCMCMC -

Metropolis coupled Markov chain Monte Carlo method
The heated chain serves to the cold chain aa a scout

MCMCMC -

Metropolis coupled Markov chain Monte Carlo method
In each generation there is a certain probability that the heated and cold chain exchange their positions and thus the cold chain can reach the higher hill

MCMCMC -

Metropolis coupled Markov chain Monte Carlo method In each generation there is a certain probability that the heated and cold chain exchange their positions and thus the cold chain can reach the higher hill

MCMC - Markov chain Monte Carlo method

Robot makes only random steps

Inner circle - 50\%
Outer circle - 95\%

Random direction of steps, length of steps have gamma distribution

There are two hills in the landscape and the robot after several steps (burn-in period) reaches the top of of the hills ...

MCMC - Markov chain Monte Carlo method

... where he stays, although there is also higher hill in the landscape

МСМСМС -

Metropolis coupled Markov chain Monte Carlo method

Heated chain (steps of the robot that serves as a scout), gives the cold chain (another robot) the reach higher hill ...

MCMC - Markov chain Monte Carlo metóda

Landscape - evolution trees with certain length of branches and other parameters

Height of the hill - posterior probability density that is a product of:
likelihood - probability of data given certain tree and its parameters (lengths of branches, substitution parameters, speed of changes on certain positions)
prior probability density

MCMC - Markov chain Monte Carlo method

Steps:
We start with the randomly chosen tree and arbitrarily chosen length of branches and substitution model parameters
Each generation is represented by one randomly chosen possibility of the following two ones:
Another tree is chosen and it is accepted or not
Another model parameter is chosen and it is accepted or not

Each k generations (usually 100) the tree is recorded with its branch lengths and all model parameters

After \boldsymbol{n} generations the Markov chain reaches stable equilibrium when certain topologies appear in stable frequency. This frequency is a convenient approximation of their posterior probabilities.

In the equilibrium stage the likelihood values are more-less stable.

From the acquired trees in the equilibrium stage we can make consensus tree.

The number of times the respective clade appears on the trees in this tree selection is essentially equivalent to the bootstrap value in the ML analysis.

The posterior probabilities of individual "clades" are highly correlated between two independent chains - Metropolis coupled MCMC

Huelsenbeck, J. P., F. Ronquist, R. Nielsen \& J. P. Bollneck. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310-2314.

Salemi, M. \& Vandamme, A-M., eds. 2003. The Phylogenetic handbook. Cambridge University Press, Cambridge.

Hall, B. G. 2004. Phylogenetic trees made easy. Ed. 2. Sinauer Associates, Sunderland.

Felsenstein, J. 2004. Inferring phylogenies. Sinauer Associates, Sunderland.

Lewis, P. O. 2001. Phylogenetic systematics turns over a new leaf. Trends Ecol. Evol. 16: 30-37.

Huelsenbeck, J. P., F. Ronquist, R. Nielsen \& J. P. Bollneck. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310-2314.

Software

Applets that I use in teaching

Developing these applets helped me understand concepts, and I hope they are useful to you as well.

Phylogenetics

- Pagel's lambda, delta, and kappa
- Ornstein-Uhlenbeck vs. Brownian Motion
- Dirichlet base frequency distribution

Statistics

- Density Rain
- MCMC
- Dirichlet Process Prior

Natural Selection

- Natural selection ball-drop game
- Biston betularia (1848-1898)
- Biston betularia (1959-2003)

Population Genetics

https://plewis.github.io/software/

program MrBayes
 http://nbisweden.github.io/MrBayes/

» Home «
Download Manual Bug Report Authors Links

MrBayes: Bayesian Inference of Phylogeny

MrBayes is a program for Bayesian inference and model choice across a wide range of phylogenetic and evolutionary models. MrBayes uses Markov chain Monte Carlo (MCMC) methods to estimate the posterior distribution of model parameters.

Program features include:

- A common command-line interface across Macintosh, Windows, and UNIX operating systems;
- Extensive help available from the command line;
- Analysis of nucleotide, amino acid, restriction site, and morphological data;
- Mixing of data types, such as molecular and morphological characters, in a single analysis;
- Easy linking and unlinking of parameters across data partitions;
- An abundance of evolutionary models, including 4×4, doublet, and codon models for nucleotide data and many of the standard rate matrices for amino acid data;
- Estimation of positively selected sites in a fully hierarchical Bayesian framework;
- Full integration of the BEST algorithms for the multi-species coalescent;
- Estimation of time calibrated (clock) trees using a variety of (strict and) relaxed-clock models;
- Support for complex combinations of positive, negative, and backbone constraints on topologies;
- Model jumping across the GTR model space and across fixed rate matrices for amino acid data;
- Monitoring of convergence during the analysis, and access to a wide range of convergence diagnostics tools after the analysis has finished;
- Rich summaries of posterior samples of branch and node parameters printed to majority rule consensus trees in FigTree format;
- Implementation of the stepping-stone method for accurate estimation of model likelihoods for Bayesian model choice using Bayes factors;
- The ability to spread jobs over a cluster of computers using MPI (for Macintosh (OS X) and UNIX environments only);
- Support for the BEAGLE library, resulting in dramatic speedups for codon and amino acid models on compatible hardware (NVIDIA graphics cards);
- Check pointing across all models, allowing the user to seamlessly extend a previous analysis or recover from a system crash;

Home
» Download « Manual
Bug Report Authors
Links

MrBayes: Bayesian Inference of Phylogeny

Download MrBayes

MrBayes may be downloaded as a pre-compiled executable or in source form (recommended).

Current release

The most recent release version of MrBayes is 3.2.7a, released March 6, 2019
The 3.2.7a source code is available for compilation on Unix machines.
Pre-compiled (provisional) executables are available for Windows (MrBayes-3.2.7-WIN.zip). These are, however, serial versions compiled without the Beagle library. The serial version works well for smaller analyses but if you plan to run large analyses using many parallel chains, you should use the MPI version instead. Refer to the User Manual, and the INSTALL document on GitHub for help with installation of the program.

MrBayes may also be installed through the Homebrew package manager on macOS, Linux, and Windows Subsystem for Linux (WSL). Please see the INSTALL document for instructions.

Older releases

You can get access to older releases (from release 3.2.0 onwards), by browsing the releases directory on github.

Developer version

You may also download cutting edge developer version of MrBayes from the Git repository hosted at GitHub. Note that you have to compile the code yourself. Read instructions in the INSTALL file in the source code repository for further instructions.

Huelsenbeck JP and Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP. 2001. Bayesian inferemce of phylogeny and its impact on evolutionary biology. Science 294: 2310-2314.
Archibald JK, Mort ME, Crawford DJ. 2003. Bayesian inference of phylogeny: a non-technical primer. Taxon 52: 187-191.
Ronquist F. and Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
Ronquist F. 2004. Bayesian inference of character evolution. Trends in ecology and Evolution 19: 475-481.

Other References in the Manual (MrBayes version 3.2 Manual), which is downloadable as part of the installation package.

http://mrbayes.sourceforge.net/Help/help.html

Help

The online help was generated by Jeff Bates, Smithsonian Institution. jbates@lab.si.edu.
Commands that are available from the command line or from a MrBayes block include:
About -- Describes the program
Acknowledgments -- Shows program acknowledgments
Charset -- Assigns a group of sites to a set
Charstat -- Shows status of characters
Citations -- Appropriate citation of program
Comparetree -- Compares the trees from two tree files
Constraint -- Defines a constraint on tree topology
Ctype -- Assigns ordering for the characters
Databreaks -- Defines nucleotide pairs (doublets) for stem models
Delete -- Deletes taxa from the analysis
Deroot -- Deroots user tree
Disclaimer -- Describes program disclaimer
Exclude -- Excludes sites from the analysis
Execute -- Executes a file
Help -- Provides detailed description of commands
Include -- Includes sites
Link -- Links parameters across character partitions
Log -- Logs screen output to a file
Lset -- Sets the parameters of the likelihood model
Manual -- Prints a command reference to a text file
Mcmc -- Starts Markov chain Monte Carlo analysis
Mcmep -- Sets the parameters of a chain (without starting analysis)
Outgroup -- Changes outgroup taxon
Pairs -- Defines nucleotide pairs (doublets) for stem models
Partition -- Assigns a character partition
Plot -- Plots parameters from MCMC analysis
Prset -- Sets the priors for the parameters
Props -- Set proposal probabilities
Quit -- Quits the program
Reassemble -- Reassembles MPI output files
Report -- Controls how certain model parameters are reported
Restore -- Restores taxa
Root -- Roots user tree
Set -- Sets run conditions and defines active data partition

http://mrbayes.sourceforge.net/Help/help.html

© $\downarrow \quad$ |||| (1) O (x) $>$

Sump

During a MCMC analysis, MrBayes prints the sampled parameter values to a tab-delimited text file. This file has the extension ". p ". The command 'sump' summarizes the information in the parameter file. By default, the name of the parameter file is assumed to be the name of the last matrix-containing nexus file, but with a '.p' extension. You can set 'sump' to summarize the information in any other parameter file by setting the 'filename' option to the appropriate file name. The 'Sump' command does not require a matrix to be read in first. When you invoke the 'Sump' command, three items are output: (1) a generation plot of the likelihood values; (2) estimates of the marginal likelihood of the model; and (3) a table with the mean, variance, and 95 percent credible interval for the sampled parameters. Each of these items can be switched on or off using the options 'Plot', 'Marglike', and 'Table'. By default, all three items are output but only to the screen. If output to a file is also desired, set 'Printtofile' to 'Yes'. The name of the output file is specified by setting the 'outputname' option. When a new matrix is read in or when the 'Mcmc' output filename or 'Sump' input filename is changed, the 'Sump' outputname is changed as well. If you want to output to another file than the default, make sure you specify the outputname every time you invoke 'Sump'. If the specified outputfile already exists, you will be prompted about whether you like to overwrite it or append to it. This behavior can be altered using 'Set nowarn=yes'; see the help for the 'Set' command. When running 'Sump' you typically want to discard a specified number of samples from the beginning of the chain as the burnin. Note that the 'Burnin' value of the 'Sump' command is set separately from the 'Burnin' values of the 'Surnt' and 'Mcme' commands. That is, if you issue

```
sump burnin = 4000
sumt burnin = 2000
sump
```

the burnin of the last 'Sump' command is 4000 and not 2000. The burnin values are reset to 0 every time a new matrix is read in. Similarly, 'Plot', 'Marglike' and 'Table' are all set to 'Yes' and 'Printtofile' to 'No' (the default values) when a new matrix is processed. If you have run several independent MCMC analyses, you may want to summarize and compare the samples from each of these runs. To do this, set 'Nruns' to the number of runs you want to compare and make sure that the '. p ' files are named using the MrBayes convention (<filename>.run1.p, <filename>.run 2 .p, etc). When you run several independent analyses simultaneously in MrBayes, the 'Nruns' and 'Filename' options are automatically set such that 'Sump' will summarize all the resulting output files.

Options:
Burnin -- Determines the number of samples that will be discarded from the input file before calculating summary statistics. If there are several input files, the same number of samples will be discarded from each. Note that the burnin is set separately for the 'sump', 'sumt', and 'memc' commands.

Nruns -- Determines how many '. p ' files from independent analyses that will be summarized. If Nruns >1 then the names of the files are derived from 'Filename' by adding '. run1. p^{\prime}, '. run2 $\cdot \mathrm{p}^{\prime}$ ', etc. If Nruns=1, then the single filename is obtained by adding '. p ' to the 'Filename'.

Filename -- The name of the file to be summarized. This is the base of the file name to which endings are added according to the current setting of the 'Nruns' parameter. If 'Nruns' is 1 , then only '. p ' is added to the file name. Otherwise, the endings will be '. run1 $\cdot p^{\prime}$ ' ' . run $2 \cdot p$ ', etc.

Printtofile -- Determines whether results will be printed to file.
Outputname -- Name of the file to which 'sump' results will be printed if 'Printtofile' is set to YES.
Plot -- Determines whether a likelihood plot should be output

http://mrbayes.sourceforge.net/commref_mb3.2.pdf

Command Reference for MrBayes ver. 3.2.5
(c) John P. Huelsenbeck, Fredrik Ronquist and Maxim Teslenko

```
**********k******************************************************************************
*
* 1. Command summary
```

Commands that are available from the command
line or from a MrBayes block include:
About

- Describes the program
Acknowledgments -- Shows program acknowledgments
Calibrate -- Assigns dates to terminals or interior nodes
Charset
Charstat -- Shows status of characters
Citations
Comparetree
Constraint
Ctype
Databreaks
Delete
Disclaimer -- Describes program disclaimer
Exclude -- Excludes sites from the analysis
Execute
Help
Include
Inc lu
Link
Link
Log
Manual
Mcmc
Mcmcp
Outgroup
Outgroup
Pairs
Partition
-- Assigns dates to terminals or int
Calibrat
-- Shows status of characters
-- Citation of program, models, and methods
-- Compares the trees from two tree files
- Defines a constraint on tree topology
-- Assigns ordering for the characters
-- Defines data breaks for autodiscrete gamma model
-- Defines data breaks for autodis
-- Excludes sites from the analysis
-- Executes a file
-- Provides detailed description of commands
-- Includes sites
-- Includes sites
-- Links parameters across character partitions
-- Logs screen output to a file
-- Sets the parameters of the likelihood model
-- Prints a command reference to a text file
- Starts Markov chain Monte Carlo analysis
-- Sets parameters of a chain (without starting analysis)
-- Changes outgroup taxon
Partition -- Assigns a character partition

Manual is included in the installation package MrBayes-3.2.7-WIN

MrBayes version 3.2 Manual: Tutorials and Model
Summaries

Fredrik Ronquist, John Huelsenbeck, Maxim Teslenko and Johan Nylander

Draft version, February 2019

MrBayes analysis - stepwise tpsubmission of commands

- commands are included in the nexus file

```
                    MrBayes 3.2.7a x86_64
                            (Bayesian Analysis of Phylogeny)
Distributed under the GNU General Public License
Type "help" or "help <command>" for information
    on the commands that are available.
    Type "about" for authorship and general
        information about the program.
```

MrBayes > -

Note: examples of commands and outputs are from the previous version of the program, current version will be used in practicals

HrPayes $>$ execute asarifolia_ITS.nex

1. reading nexus file

MrBayes > execute asarifolia_ITS.nex
Executing file "asarifolia_ITS.nex"
Macintosh line termination
Longest line length $=665$
Parsing file
Expecting NEXUS formatted fil
Reading data block
Allocated matrix
Matrix has 131 taxa and 628
Data is Dna Gissing coded as
Setting default partition <does not
Taxon
amaraBDa $\begin{array}{ll}\text { Taxon } & 1 \\ \text { Taxon } & 2 \rightarrow \text { amaraBDA } \\ \text { amaraROZ }\end{array}$
$\begin{array}{ll}\text { Taxon } & 2 \\ \text { Taxon } & 3\end{array}$
$\begin{array}{lll}\text { Iaxon } & 3-> & \text { anchig } \\ \text { Taxon } & 4-> & \text { amGIAs8 } \\ \text { Taxon } & 5-> & \text { and }\end{array}$
$\begin{array}{lll}\text { Taxon } & 5 & -> \\ \text { TamGRRGG } \\ \text { Taxon } & 6-> & \text { amCAS4 }\end{array}$
$\begin{array}{lll}\text { Taxon } & 6-> & \text { amCAS4 } \\ \text { Taxon } & 7-> & \text { amLaI } \\ \text { Taxon } & 8 & \text { anHil }\end{array}$

Taxon	8
Taxon	9

$\begin{array}{llll}\text { Taxon } & 11 & -> & \text { amCOLO } \\ \text { Taxon } & 12 & -> & \text { amCL0310 }\end{array}$
$\begin{array}{lll}\text { Taxon } 13 & -> & \text { ambler1cB10 } \\ \text { Taxon } & 14-> & \text { fer1cB53 }\end{array}$
$\begin{array}{lll}\text { Taxon } & 14 & -> \\ \text { fer1cB53 } \\ \text { Taxon } & 15 & -> \\ \text { fer1cB54 } \\ \text { Taxon } & 16 & -> \\ \text { fer3cB83 }\end{array}$
$\begin{array}{lll}\text { Taxon } & 16-> & \text { fer3cB83 } \\ \text { Taxon } & 17 & \rightarrow \\ \text { fer4cB61 }\end{array}$
$\begin{array}{lll}\text { Taxon } & 18 & -> \\ \text { faxer4cB64 } \\ \text { Taxon } & 19 & -> \\ \text { fer 4cB162 }\end{array}$
$\begin{array}{lll}\text { Taxon } & 20-> & \text { fer4cB162 } \\ \text { Taxon } & 21-> & \text { ferscB70 }\end{array}$

$\begin{array}{lll}\text { Taxon } & 23 & \text { fer4cB103 } \\ \text { Taxon } & 24 & \text { ferrcBib4 } \\ \text { Taxon } & 25 & \text { fer fer3cB81 }\end{array}$

$\begin{array}{ccc}\text { Taxon } & 26-> & \text { fer3cbe2 } \\ \text { Taxon } & 27-> & \text { fer3cB85 } \\ \text { Taxon } & 28-> & \text { fer2cB5 }\end{array}$
$\begin{array}{ccc}\text { Taxon } & 28 & -> \\ \text { Taxon } 29 & 29 & -> \\ \text { fer } 2 \text { cB5 }\end{array}$
$\begin{array}{llll}\text { Taxon } & 39 & -> & \text { fer2cB58 } \\ \text { Taxon } & 31 & -> & \text { fer1cB52 } \\ \text { Taxich5 }\end{array}$
$\begin{array}{lll}\text { Iaxon } & 31 & -> \\ \text { fer1cB55 } \\ \text { Taxon } & 32 & -> \\ \text { Tascolot }\end{array}$
$\begin{array}{llll}\text { Taxon } & 33 & -> & \text { ascolot } \\ \text { Taxon } & 34 & -> & \text { ascoLO4 }\end{array}$
$\begin{array}{ll}\text { Taxon } 35-> & \text { ascolor } \\ \text { Taxon } 36-> & \text { asclo310 }\end{array}$
$\begin{array}{lll}\text { Taxon } & 37 & -> \\ \text { TasMCOL8 } \\ \text { Taxon } & 38-> & \text { asMCOL10 }\end{array}$
$\begin{array}{lll}\text { Taxon } & 39-> & \text { asMCOLI } \\ \text { Taxon } & 40 & -> \\ \text { ascH8 }\end{array}$

$\begin{array}{lll}\text { Taxon } & 42 & -> \\ \text { TascH1 } \\ \text { Taxon } & 43 & \text { aschIM3 } \\ \text { TasLIM3 }\end{array}$
$\begin{array}{lll}\text { Taxon } & 43 & -> \\ \text { TasLIM3 } \\ \text { Taxon } & 45 & -> \\ \text { asLIM4 } \\ \text { Taxon } & 46 & ->\end{array}$
$\begin{array}{ll}\text { Taxon } & 46 \\ \text { Th asLIM8 } \\ \text { Taxon } & 48 \\ \text { TaxuIU } & \text { asUIU1 } \\ & 49-7\end{array}$
$\begin{array}{ll}\text { Taxon } 48 \text {-> asUIU16 } \\ \text { Taxon } & 49 \\ \text { Taxon } & \text { asulU6 } \\ \text { as }\end{array}$
$\begin{array}{lll}\text { Taxon } & 50-> & \text { asUIU8 } \\ \text { Taxon } & 51-> & \text { as } 3 U 102\end{array}$
$\begin{array}{lll}\text { Taxon } & 52 & -> \\ \text { as } 3 \text { asion } \\ \text { Taxon } & 53 & -> \\ \text { as3UIO4 }\end{array}$
$\begin{array}{llll}\text { Taxon } & 53 & -> & \text { as } 30104 \\ \text { Taxon } & 54 & \text { as } \\ \text { Taxion }\end{array}$
$\begin{array}{lll}\text { Taxon } & 55-> & \text { acrisUN } \\ \text { Taxon } & 56-> & \text { acris2KPN } \\ \text { Taxon } & 57-> & \text { acris } 724\end{array}$
$\begin{array}{lll}\text { Iaxon } & 57-> & \text { acris } 724 \\ \text { Taxon } & 58 & -> \\ \text { acrisTM3 }\end{array}$
$\begin{array}{lll}\text { Taxon } 59-> & \text { acrisisu } \\ \text { Taxon } & 60-> & \text { teneraks }\end{array}$
$\begin{array}{lll}\text { Taxon } 60-> & \text { teneraKS } \\ \text { Taxon } & 61-> & \text { teneraGK }\end{array}$
Taxon 62 -> teneraTAL
ai c: \backslash Documents and Settings \Judita\My Documents\HEIDELBERG_old
Bayes\MrBayes3_0

Type "help" or "help <command>" for information

```
on the commands that are auailable.
```

MrBayes $>$ execute asarifolia_ITS.nex

```
Executing file "asarifolia_ITS.nex"
Macintosh line termination
Longest line length = 665
Parsing file
Expecting NEXUS formatted file
Reading data block
    Allocated matrix
    Matrix has }131\mathrm{ taxa and }628\mathrm{ characters
    Data is Dna
    Missing data coded as N
    Gaps coded as -
    Setting default partition (does not divide up characters).
    Taxon 1 -> amaraBDA
    Taxon 2
    Taxon 127 -> hirHEI
    Taxon 128 -> hir4BRG4
    Taxon 129 -> paruif1STR
    Taxon 130 -> RoriPalustrisX98639
    Taxon 131 -> RorippaheterophyllaX98638
    Setting output file names to "asarifolia_ITS.nex.<p/t>"
    Successfully read matrix
Exiting data block
```

2. Selection of outgroup for rooting the tree
```
    Taxon 126 -> pectBJ4
Taxon 127 -> hirHEI
Taxon 128 -> hir4BRG4
Taxon 129 -> parvif 1STR
Taxon 130 -> RoriPalustrisX98639
Taxon 131 -> RorippaheterophyllaX98638
Setting output file names to "asarifolia_ITS.nex.<p/t>"
Successfully read matrix
    Exiting data block
MrBayes > outgroup 130
```

MrBayes > outgroup 130
Setting outgroup to taxon "RoriPalustrisX98639"
MrBayes >
3. Saving the output into the \log file

MrBayes $>\log$ start filename=test. $\log _{r}$

MrBayes $>\log$ start filename=test.log
Logging screen output to file "test.log"
MrBayes

4. Setting the model parameters

help lset...display of possible parameters

Parameter	Options	Current Setting
Nucmode 1	4by4/Doublet/Godon	4hy 4
Nst	1/2/6	1
Gode	Universal/Uertmt/Mycoplasma/	
	Yeast/Giliates/Metmt	Universal
Rates	Equal/Gamma/Propinu/Inugamma/Adgamma	Equal
Ngammacat	<number>	4
Nhetacat	<number>	5
Omegauar	Equal/Ny98/M3	Equal
Gouarion	$\mathrm{No} / \mathrm{Yes}$	No
Goding	All/Uariable/Noabsencesites/	
	Nopresencesites	All
Parsmodel	No/Yes	No

4. Setting the model parameters

1 = F81 model, 6 = GTR model


```
MrBayes > log start filename=test.log
    Logging screen output to file "test.log"
MrBayes > lset nst=6 rates=gamma
```

Mr-Bayes $>$ lset nst=6 rates=gamma
Setting Nst to 6
Setting Rates to Gamma
Successfully set likelihood model parameters
HrBayes >
5. setting the "prior settings" - setting of parameters based on prior specifications help prset...display of parameters and possible settings

6. Setting the analysis parameters

help mcmc...display of possible settings

6. Setting the analysis parameters - number of generations, temperature

```
HuBayes > mcmcp ngen=10GGGIGO Temp=0.03 savebrlens=yes
```

HrBayes $>$ memcp ngen=1GGGGGIG Temp=0. 03 savehrlens=yes
Setting number of generations to 1GDGDGD
Setting heating parameter to $0.0300 D 0$
Setting program to save branch length information Successfully set chain parameters

HuHaums $>$

7. Start of the analysis

MrBayes $>$ memcp ngen=1GGGIGIG Temp=0.03 savebrlens=yes
Setting number of generations to 10GGGGJ
Setting heating parameter to 0.030GOD
Setting program to save hranch length information
Successfully set chain parameters
HrPaues
DICDIE

Analysis is going on

```
MrBayes > mcmc
    Running Markov chain
    MCMC stamp = 9889988200
    Model settings:
        Datatype
        Nst
        = 4hy4
        = 6
        Substitution rates, expressed as proportions
                of the rate sum. follow a Dirichlet
                (1.00,1.00,1.00,1.00,1.00,1.00)
Gouarion
States
Rates
= No
State frequencies have a Dirichlet prior
                            = Gamma
                                    Gamma shape parameter is uniformly dist-
                                    Gamma shape parameter is uniformly di
                                    ributed on the interval (0.05,50.0. using
```

```
ctive parameters:
Parameters
Reumat
Statefreq
Shape
Topology
Briens
```

1 -- Pawameter
2 -- Prior
2 -- Paramete
-- Prior
-- Parameter
4 -- Prior
Parameter
Prior
Parameter
Prior
$=$ Reumat
$=$ Dirichlet $\langle 1.00,1$.00, 1.00, 1.00, $1.00,1$.00)
$=$ Statefreq
Dirichlet
$=$ Shape
Uniform〈0.05,50.00〉
$=$ Topology
= All topologies equally probable a priori
$=$ Brlens
$=$ Branch
Branch lengths are Unconstrained:Exponential(10. 0)

```
Number of taxa \(=131\)
Number of characters \(=628\)
Compressing data matrix for division 1
Division 1 has 243 unique site patterns
The chain will use the following moves:
With prob. Chain will change
\(3.70 \%\) param. 1 <reumat) with multiplier
\(3.70 \%\) param. 2 (state frequencies) with Dirichlet proposal
\(5.70 \%\) param. 3 (gamma shape) with multiplier
\(55.56 \%\) param. 4 (topology and branch lengths) with LOCAL
\(11.11 \%\) param. 4 (topology and branch lengths) with extending TBR
\(11.11 \%\) param. 5 (branch lengths) with multiplier
11
Greating parsimony
nitializing conditional likelihoods for chains
Initial log likelihoods:
Chain 1 -- -10168.043333
Ghain 2 -- -16168.643333
Chain 3 -- -10361.807983
Chain 4 -- -10319.898048
```


Chain results:

```
\(1-\) [-10168 .043] (-10389.667) (-10361.846) (-10318.655) \(100--[-9726.668](-10074.274)(-10088.676)(-9946.870)--27: 46: 39\) \(200-\) [-9534.361] (-9882.615) (-9864.944) (-9716.929) -- 27:46:38
```

```
99995昭 -- [-2194-5411] (-2194.904) (-2193.4.479) (-2236.019%)
(-2193.479) (-2236.009)---0:4n:02
9999600 -- (-2190.720) [-2189.221] (-2190.515) (-2239.931) -- 0:00:01
9999700 -- (-2190.148) (-2191.883) [-2185.789] (-2247.159) -- 0:00:01
9999800 -- [-2187.896] (-2189.191) (-2200.145) (-2250.243) -- 0:00:00
9999900 -- (-2181.179) (-2189.149) [-2190.183] (-2242.580) -- 0:00:00
10000000 -- [-2178.479] (-2190.152) (-2193.497) (-2241.901) -- 0:00:00
```

Gontinue with chain? (yes/no): no

```
Continue with chain? (yes/no): no
Chain completed in 43058 seconds
Chain used 75644.82 seconds of GPU time
ukelihood of best state for "cold" chain was -2153.07
Acceptance wates for the moves in the cold" chain:
    With prob. Chain accepted changes to
        70.57% param. 1 <reumat> with multiplier
        94.52% param. 2 <revmat) with multiplier
        78.02% param. 3 <revmat> with multiplier
        39.25% param- 4 <revmat, 4 <state frequencies) with Dirichlet proposal
        54.67% param. 4 <state frequencies) with Dirichlet proposal
        47.41% param. 6 <state frequencies) with Dirichlet proposal
        90.66% param. 6 (state frequencies) with piram. ? (gamma shape) with multiplier
        90.66% param. ( (gamma shape) with multiplier 
        25.68% param. 8 (gamma shape) with multiplier
        93.15% param. 9(gamma shape) with multiplier pram. 10 (prop. invariants) with beta proposal
        93.15% param. 10 (prop. invariants) with beta proposal
        61.30% param. 11 (prop. invariants) with beta proposal
        90.48% param. 12 (prop. invariants) with beta proposal
        57.53% param. 14 (topology and branch lengths) with LOCAL
        52.58% param. 14 (topology and branch lengths) with LocAL
        pawam-15 (bwanch 1engths) with multipliev
            param. 15 (branch lengths) with nodeslider
```

State exchange information:

1		0.76	0.49	0.14
2	1668138		0.69	0.24
3	1667028	1667799		0.46
4	1666621	1665020	1665394	

Upper diagonal: Proportion of successful exchanges Lower diagonal: Number of attempted exchanges

Chain information:

ID --	Heat	
1 --	1.00	(cold chain)
2 --	0.97	
3 --	0.94	
4 --	0.92	

Heat $=1 /\langle 1+T *\langle I D-1\rangle\rangle$
(where $T=0.03$ is the temperature and ID is the chain number)
MrBayes >

Acceptance rates for the moves in the cold chain - thumb rule, according to which the values should be between 10-70\%

State exchange information - in lower line of upper diagonale
Acceptance rates for the swaps between chains separated by only one heating step - thumb rule, according to which the values should be between 0.1-0.7
These parameters can be changed by changing temperature

```
Acceptance rates for the moves in the "cold" chain:
    With prob. Ghain accepted changes to
        57.98% param. 1 <reumat> with multiplier
        15.49% param. 2 (state frequencies) with Dirichlet proposal
        17.89% param. 3 <gamma shape) with multiplier
        55.62% param. 4 <prop. inuariants) with beta proposal
        38.94% param. 5 <topology and branch lengths> with LOCAL
        45.06 % param. 5 (topology and branch lengths) with extending TBR
        71.63% param. 6 (branch lengths) with multiplier
        49.50% param. 6 <branch lengths) with nodeslider
State exchange information:
\begin{tabular}{|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 \\
\hline 1 & & 0.06 & 0.00 & 0.00 \\
\hline 2 & 1697 & & 0.06 & 0.00 \\
\hline 3 & 1710 & 1647 & & 0.07 \\
\hline 4 & 1658 & 1631 & 1657 & \\
\hline
\end{tabular}
Upper diagonal: Proportion of successful exchanges
Lower diagonal: Number of attempted exchanges
```


8. Summary of the output - likelihood scores of individual trees

sump

```
Mr-Bayes > sump
Summarizing parameters in file asarifolia_ITS.nex.p
DOS line termination
Longest line length = 59
Found 501 parameter lines in file "asarifolia_ITS.nex.p"
All 501 lines will be summarized (starting at line 3)
<Only the last set of lines will be read, in case multiple
parameter blocks are present in the same file.)
501 rows and 7 columns in each row
Successfully read 501 lines from last parameter block
```

Below is a rough plot of the generation (x-axis) versus the log probability of obseruing the data (y-axis). You can use this graph to determine what the burn-in for your analysis should be. When the log probability starts to plateau you may be at stationarity. Sample trees and parameters after the log probability plateaus. Of course, this is not a guarantee that you are at stationarity. When possible, run multiple chains starting from random trees; if the inferences you make for independent chains are the same, this is reasonable evidence that the chains have converged. Remember that the burn in is the number of samples to discard. There are a total of ngen / samplefreq samples taken during a MCMC analysis.

8. Summary of the output - deleting of ca. 10\% (initial) trees, checking by likelihood scores

MrBayes > sump burnin=1000
Setting sump burnin to 1000
Summarizing parameters in file maritITSBay.nex.p DOS line termination
Longest line length = 412
C:- c: \qquad
during a MGMC analysis.

[^0]8. Summary of the output - deletion of ca. 10% initial trees, calculation of the consensus tree sumt

```
MrBayes > sumt burnin=1000
    Setting sumt burnin to 1000
    Summarizing trees in file maritITSBay.nex.t
    DOS line termination
    Longest line length = 1432
    Found one tree block in file "maritITSBay.nex.t" with 100001 trees in last bl
ock
    Tree reading status:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
0 \\
100
\end{array}
\] & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline
\end{tabular}
```


Output of analyses - files:
*.p - recorded model parameters for particular generations
*.t - recorded topology of the tree and branch lengths
*. con - recorded consensus tree with posterior probabilities for individual branches (-> program TreeView)

```
[ID:-2458661562] II
Gen>LnL>>TL> pi (A) >pi (C) >pi (G) >pi (T)>>|
1»-22210.442 » 25.878»0.250000»0.250000»0.250000»0.250000» #|
100»-21578.668»25.086» 0.250000 > 0.250000» 0.250000 » 0.250000» % I
200»-21038.146»24.438>0.250000>>0.250000>0.250000>>0.250000> \I
300»-20346.150>23.501>>0.250000>>0.250000>0.250000>>0.250000> 9|
400»-19905.772>22.928»0.250000>0.250000>0.250000>0.250000» |ा
500»-19399.796>22.128>0.250000>>0.250000>0.250000>>0.250000> 9I
600»-18826.467>21.337>0.250000>>0.250000> 0.250000>>0.250000> \ा
700»-18378.499>20.720>0.250000>0.250000>0.250000 >0.250000 » {I
800»-18083.160»20.163>0.250000>0.250000>0.250000>0.250000> \ा
900»-17667.410> 19.454>0.252511>0.240379>0.246962>0.260148 > I|
1000»-17396.425»19.073>0.252511»0.240379>>0.246962 > 0.260148» |
1100»-17111.373»18.622»0.252511»0.240379>>0.246962 > 0.260148» |
1200»-16736.481»18.146»0.252511»0.240379>0.246962 »0.260148» |
1300»-16397.315»17.720>0.252511>0.240379>0.246962>0.260148» \pi
1400»-16051.652»17.225»0.252511»0.240379»0.246962 »0.260148» |
1500»-15755.588»16.773»0.252511»0.240379»0.246962»0.260148» |
1600»-15510.693»16.306»0.252511»0.240379>0.246962 »0.260148» I
1700»-15183.653»15.714»0.252511»0.240379»0.246962»0.260148» |
1800»-14880.723>15.206»0.252511»0.240379>0.246962 »0.260148» \
1900»-14510.636»14.691> 0.252511> 0.240379> 0.246962 > 0.260148» II
2000»-14300.939»14.321»0.247201»0.243404>0.246420»0.262975 » |
2100»-14015.828»13.945»0.247201»0.243404>0.246420»0.262975 » I
2200»-13873.806»13.738»0.244453>0.248604»0.240938»0.266006» |
2300»-13727.609»13.492»0.244453»0.248604»0.240938 »0.266006» |
2400»-13460.856»13.159>>0.244453>0.248604>>0.240938»0.266006» |ा
2500»-13223.727>12.846»0.244453>0.248604>0.240938 »0.266006 » I
2600»-13068.844>12.554>0.244453>0.248604>0.240938 >0.266006» |
2700»-12919.087»12.327>0.244453>0.248604>0.240938»0.266006» |
2800»-12819.285»12.081»0.244453>0.248604>>0.240938>0.266006» I
2900»-12690.801»11.929>>0.244453>0.248604>0.240938>0.266006» |
```

Output of analyses - files:
*.p - recorded model parameters for particular generations
*.t - recorded topology of the tree and branch lengths
*. con - recorded consensus tree with posterior probabilities for individual branches (-> program TreeView)

```
114\cdot rapCN, I
115 - rapPO, g
116\cdotgallaecica, I
117-barPE1, II
118\cdotbarso1, I
119\cdotbarPE3, II
120\cdotbar1KA, gI
121\cdot aus369, gI
122.ausALTT, T
*22.ausALIT,
23. impRB1, It
124. impat SCH3, It
125\cdotpectBN19,9
126\cdotpectBJ4,9
127\cdothirHEI, II
128\cdothir4BRG4,
129\cdotparviflSTR,
130\cdotRoriPalustrisX98639,I
131\cdotRorippaheterophyllax98638;9I
tree\cdotrep. 1. =. ((()(()((()(()(()(()(()(()(((111, (93, ((113,63), (48, (127, (90,79))))))), (69, (77, (17, 86)))), (76, (47, (99,45)))), (4
tree rep. 100.=. ((()((()((()((()((()(((48,(111, (21, (((87, (4,104)),33),(22,122)))))),5),((60,120),11)), (100,86)),24),51),52)
```



```
tree\cdotrep.500.=. ((93, (31, (36,105))), (((()((38, (72,41))),((71,77), (2,19))), 15),108), (121, (()((18, (()((73, (()((34,45), ((64,5)
tree\cdotrep.600.= ((31, (93, (36,105))), (((((()38, (72,41)), ((71,77), (2,19))),15),108), ((121, (((18, (()((73, ((()34,45), ((64,57),
tree\cdotrep.700.=. ((31, (93, (36, 105))), (((()(38, (72,41)),(2, ((71,77),19))),(15,108)),((121, (((18, (()((73, (()(34,45), ((64,57),
tree\cdotrep.800.=. ((31, (93, (36, 105))), (((((2, (( (71,77)), (38, (72,41))), 19)), (15, 108)), ((121, (((18, (()((73, (()(34,45), ((64,57),
```



```
tree rep.1100.=. ((31, (93, (36,105))), (((2) (()71,77)),(38, (72,41))),19))),(()
```



```
tree rep. 1300.=. (( (93,31), ((2, (()71,77), (38, (72,41))), 19)), ((((124,69), 102),56), (((121, ((18, ()(()(()(51, ((86, ((48, (87, (4, )
tree\cdotrep. 1400.=. (( (93,31), ((2, (((71,77), (38, (72,41))), 19)), ((((124,69), 102),56), (((121, (()(18, (()((61, (109,58)), 131), ((88
tree\cdotrep.1500.=. (((93,31), ((2, (((71,77), (38, (72,41))), 19)), ((((124,69), 102),56), ((121, (()(18, (()((61, (109,58)), 131), ((88,
tree\cdotrep. 1600.= (((93,31), ((((124,69), 102),56), ((2, (((71,77), (38, (72,41))), 19)), ((121, ((()(18, (()((109,61),58), 131), ((88,
tree\cdotrep.1700.= (((93,31), ((((124,69),102),56), ((2, (((71,77), (38, (72,41))), 19))),((121, ((()(18, (((88,78), ((61, (109,58)), ((
tree rep. 1800.= (((93,31)),((((124,69),102),56), ((2, (((71,77), (38, (72,41)))),19)), ((121, (()((18, (()88,78), ((61, (109,58)), ((
```



```
tree\cdotrep.2100.= (((93,31), ((((124,69),102),56),(((71,77),((38,41),72))),((),(()((28,(43,47)),84),((7),(((18,)(((88,78),((61),
tree\cdotrep.2200.= ((36, ((93,31), ((((124,69),102),56),((71,(77,((38,41),72))),((((115,(65,63))),(2,((((28,(43,47))),84),((7, (()
tree.rep.2300.=.((36, ((93,31), ((( (124,69), 102),56), ((71, (77, ((38,41),72)))),((((115, (65,63))),(2, ((()70,66),15), (((28, (43,4
tree\cdotrep.2400.=. ((36, ((93,31), (((69, (124, 102)),56), ((71, (77, ((38,41),72))),((((115, (65,63)), (2, (((15, (((28, (43,47)),84), (
tree\cdotrep.2500.=. ((36, ((93,31), (((69,56), (124, 102)), ((()71, (77, ((38,41),72))), 106), (2, ((115, (65,63)), (((15, (()28, (43,47)),
```


[^0]: Estimated marginal likelihood $=-2165.34$ 〈arithmetic mean) *
 $=-2191.34$ (harmonic mean) *

 * Note that these estimates may be unreliable because some extreme values were excluded

 Model parameter summaries:
 〈Based on a total of 99001 samples out of a total of 100001 samples recorded)

