Cluster analysis

A cluster is a group of objects that, within a larger
group, do not have a random or uniform occurrence, and
their mutual distance or dissimilarity is smaller than the
distance or dissimilarity with objects that belong to other
clusters.

The centroid of a cluster is a hypothetical (not
necessarily existing) element whose coordinates in the
feature space are given by the average values of the
coordinates of individual objects.



Cluster analysis

Method of cluster creation: agglomerative methods —
divisive methods

Cluster arrangement: hierarchical methods — non-
hierarchical methods

Cluster overlap: non-overlapping or overlapping clusters
(fuzzy clustering)

Clustering procedure: sequential methods — simultaneous
methods

SAHN category clustering methods:

(a) methods based on minimizing the distance between
clusters

(b) methods based on optimizing the homogeneity of clusters
according to a certain criterion



Examples of coefficients used in cluster analyses:

(a) for binary data — Jaccard coefficient, Sgrensen
coefficient, simple matching coefficient, Euclidean distance,
chordal distance;

(b) for mixed data — Gower coefficient, distance for mixed
data;

(c) for quantitative data — Euclidean distance, Manhattan
metric, chordal distance.



Single linkage (the nearest neighbor method)
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Complete linkage (the furthest neighbor method)
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Average linkage (UPGMA - unweighted pair-group
method using arithmetic averages)
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Centroid method (UPGMC — unweighted pair-group
method using centroids, Gower’s method)

centralni bod
ABDEC = central point ABDEC



Character (variable)
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Character (variable)
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Median method ( WPGMC - weighted pair-group method
using centroids, weighted centroid clustering)

centralni bod
ABDEC
= central point ABDE

centralni bod
ABDEC = central point ABDEC



Minimum spanning tree

A graph that connects all objects in such a way that no loops
or circles occur, and at the same time, the sum of the lengths
of the connections between the nodes (objects) is minimal.
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General notes/comments on clustering methods

If the data do not have a completely unambiguous and clear structure
(e.g., more or less randomly distributed objects), it is likely that using
different clustering technigques will yield different results.

If various clustering techniques provide identical or similar results from
the same dataset, this to some extent confirms the structure contained
within the data (although clustering methods are hypothesis-generating
procedures and are not meant for hypothesis testing).

Many clustering techniques are sensitive to the presence of outliers
(highly atypical cases). Before performing the actual cluster analysis, it
Is advisable to use some method for their detection, such as principal
components analysis. Significant outliers are usually excluded from
further analyses.

Cluster analyses are generally not suitable for data describing clinal
variability of traits (cline = variability of a trait dependent on an
environmental gradient).
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Clear support is for two taxa, further groupings reflect differences in clustering algorithms.



The single linkage method would, as a result of the chaining
effect, group the filled triangles into one cluster and the empty
triangles into another, whereas Ward's method and the

average linkage method would produce groups bounded by
lines (according to Everitt & Dunn 1983).



Ties

a b /‘: d
X &7

a — the graph is complete, b — the graph is
disconnected and all isolated components are
complete, ¢ — the graph is disconnected and at least
one component is not complete, d — the graph is
connected but not complete.



(a) ,,silent mode
(arbitrary)*

(b) ,,single
linkage*

(c),,suboptimal
fusions*
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Ordination methods

Objects characterized by p variables can be imagined as

points in a p-dimensional space, where each dimension
represents the values of one variable

If we work with only two or three variables, it is possible

to observe the relationships between obiects. the|r
distances, and clustering without 7

three-dimensional graph. Y
A larger number of variables =>

necessity to reduce their number

with the least possible loss
of information.
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Ordination methods

Principal components analysis (PCA)
Principal coordinates analysis (PCoA)

Non-metric multidimensional scaling (NMDS)

Useful information about ordination methods can be found on
the website

http://ordination.okstate.edu/



Sl BV ANy

Membears of the Laboratory for Innovative Biodiversty

Reswarch And Analysiy (LIBRA) are often available to engage in

consuliing activities for particular projects, or to offer short
coursss on ordination methods and the use of CANOCO,
For more information, contact Mike Falmer at

mike palmer@okdate. edu.

Ordination is a widely-used family of methods which attempts to
reveal the relationships between ecological communities. For

definitions. zo HERE.

This ordination web page is designed to address some of the
maost frequently asked questions about ordination. It is my
mtention to gear this page towards the student and the
practitioner rather than the ordination specialist, so please

conitact me if the jargon is unintellizible!

The ecological literature is filled with papers describing,
contrasting, and modifying existing ordination techniques. Then
why is an ordination web page needed? My main motivation is
based upon the following observation: many of us, when we start
to use ordination methods, make the same simple mistakes. If we
are good scientists, we will leam from our own mistakes. But
wouldn't it save alot of time if we could also learn from other

https://ordination.okstate.edu/

people’s mistakes?

It turns out that there are a number of
concerning ordination, as well as a number of "tricks of the trade"

Ordination Methods
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PCA — principal component(s) analysis

Replaces the original set of observed variables with a
set of new (hypothetical) variables that are mutually
uncorrelated, so that the first new axis (the first principal
component, PC1, the first new variable) is directed in the
direction of the greatest variability among objects, and
the second axis (the second principal component, PC2,
the second new variable) PCAD X2

IS directed in the direction 30
of the greatest variability,
which is perpendicular to
the direction of the first

component, and so on..
10 F




Geometric interpretation of PCA (podle Dunn & Everitt 1982):
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PCA — principal component(s) analysis

It is based on eigenanalysis of symmetric matrices
(correlation, covariance matrices)

Objective of PCA: determining the angles between the original
and new axes of the coordinate system, and the coordinates of
objects in the new coordinate system.



Original set of p observed variables x;, X, ..., X,
IS transformed into a new set of variables y,, y,, ...., ¥

Y1 = anpXy T apX, ¥ ...+ apX, )

Yo = @yXq + Xy + .+ A X,

Coefficients of the first principal component — vector a,

the first principal component y; = a;;X; + a;,X, + ... + a;X
expressed as vector a,'x

P

Similarly y, = ay;X; + a,X, + ... + a,,X, can be expressed as
a, X etc.



Components are not mutually correlated
Therefore applies: a,'a; =0

The sum of the squares of the coefficients of each linear
combination equals one a,'a; = 1, a,'a, = 1 etc.

In general, for the j-th principal component, the following
applies y; = a/'x

and this has the greatest variance under the conditions that
a'a;=landa'a=0,i=#]



A symmetric matrix S;, (such as a covariance or correlation
matrix) can be assigned p real eigenvalues (characteristic
numbers, characteristic roots, latent roots) A, ... A, and p-
column vectors of eigenvectors (characteristic vectors,
characteristic vectors, latent vectors) a,, ...., a,, with the

condition that Spp = AIOIO /\IOIO App'.

It is possible to prove that the coefficient vectors a;, a,, ... a,
are the eigenvectors of the covariance or correlation matrix; if
the sum of their squares is 1 (see above a,'a, = 1), the
eigenvalues Ay, A,, ... A, of this matrix can be interpreted as

measures of variance captured by the components y,, ..., y,



PCA — principal component(s) analysis

The number of objects in PCA must be at least one
greater than the number of analyzed variables.

However, it is usually recommended that the number of
objects approaches the square of the number of variables
(this relates to the degrees of freedom).

In the case where n < p (where n is the number of objects
and pp is the number of variables), the resulting matrix
(correlation or covariance) of order p hasonly n—1
Independent rows or columns. In such a case, the
corresponding matrix has p — (n — 1) zero eigenvalues (to
position n objects based on their mutual distances, only

n — 1 dimensions are needed).



Prin3

-2.83 7
5.06

Interpretation of the ordination of objects can be complicated if the data
contains a very complex structure. For example, if two basic groups (separated
along the first axis) are internally divided in a more complicated way, the
second, third, and further axes tend to be a compromise between the structure
in both basic groups.

=> |t is advisable to analyze each group (separated by the first axis) separately
in further steps.

Prin3

7 subspecies (defined by the degree
of ploidy and range)

2.81




Although the PCA technique was originally designed for quantitative
traits, it can also be used for binary and semi-quantitative traits. However,
binary data tend to cause the so-called 'horseshoe effect', where objects
in the plane defined by the first two components are arranged in the
shape of a horseshoe.

This curvature is corrected by so-called detrended techniques, for
example, in the DECORANA program (Hill 1979), but such 'straightening'
IS generally not used in taxonomic applications




Cardamine amara (Brassicaceae)

subsp. amara subsp. opicii




Correlation matrix

RESEMBLANCE MATRIX

ROW 1
O0.1000E+01 -0.3509E-01 0.6541E+00 -0.2760E+00 -0.2020E-01
0.5767E+00 O.7991E+00 -0.3839E+00 0.8776E+00 O0O.7924E+00
ROW 2
-0.3509E-01 O0.1000E+01 0.3224E+00 0.4878E+00 0.7738E+00
0.2010E+00 -0.7949E-01 0.6593E-01 -0.1057E+00 -0.6612E-01
ROW 3
0.6541E+00 0.3224E+00 0.1000E+01 -0.9458E-01 0.3456E+0O
0.4514E+00 0.6788E+00 -0.4203E+00 O0.5752E+00 0.6789E+00
ROW 4
-0.2760E+00 0.4878E+00 -0.9458E-01 O0O.1000E+01 0.6564E+00
0.1018E+00 -0.4963E+00 0.5808E+00 -0.4945E+00 -0.5906E+0O0
ROW 5
-0.2020E-01 O0.7738E+00 0.3456E+00 0.6564E+00 0.1000E+01
0.2194E+00 -0.1818E+00 0.2400E+00 -0.1856E+00 -0.2039E+00




Eigenvalues

(1) NUMBER OF POSITIVE EIGENVALUES = 10
(2) SUM OF POSITIVE EIGENVALUES = 0.10000000E+02
(3) EIGENVALUES
0.5030E+01 0.2590E+01 0.1127E+01 0.3886E+00 0.3164E+00
0.1992E+00 0.1353E+00 0.1054E+00 0.6441E-01 0.4339E-01
(4) EIGENVALUES AS PERCENT
50.30 25.90 11.27 3.89 3.16
1.99 1.35 1.05 .64 .43
(5) CUMULATIVE PERCENTAGE OF EIGENVALUES
50.30 76.20 87.47 91.36 94.52
96.52 97.87 98.92 99.57 100.00
(6) SQUARE ROOTS OF EIGENVALUES
2.242671 1.609441 1.061811 .623400 562464
. 446362 367773 324655 253790 .208292



Eigenvectors (direction cosines)
EIGENVECTORS (DIRECTION COSINES)

VECTOR 1
-38449 -.05267 -31208 -.26483 -.09857
-16803 .42428 -.32014 -41978 -43035
VECTOR 2
.15583 .50365 .33372 .40278 .954941
-34739 -02809 -15840 .00622 -00253
VECTOR 3
.26530 -.38005 -.13325 -05345 -.24200
.62749 -.00397 .955644 -01315 -.04942
Component Scores
COMPONENT SCORES
1 2.440 -.617 -.296
2 3.203 1.866 -.442
3 1.689 1.730 -.520
4 4_.332 -1.803 1.150
5 3.485 2.018 -820
6 2.192 -.477 -.485
7 3.268 1.295 -.575
8 3.077 -.271 -.586



Ordinace objektli



Percentage of variance of variables accounted for by each component

PERCENTAGE OF VARIANCE OF VARIABLES ACCOUNTED FOR BY EACH COMPONENT

VARIABLE 1 (Sirka baze lodyhy)
74 _.352 6.290 7.935
VARIABLE 2 (délka nitek delsich tycinek)
1.395 65.706 16.284
VARIABLE 3 (délka kalisnich listki)
48.986 28.849 2.002
VARIABLE 4 (Sirka korunnich listki)
35.274 42 .023 .322
VARIABLE 5 (délka korunnich listkit)
4._887 78.187 6.603
VARIABLE 6 (pocet kvetii v hlavnim kvétenstvi)
14_.201 31.260 44 392
VARIABLE 7 (pocet listkii na lodyznich listech)
90.539 .204 -002
VARIABLE 8 (vétveni lodyhy)
51.548 6-499 34 .909
VARIABLE 9 (pocet lodyznich listii)
88.628 -010 -019
VARIABLE 10 (nahloucent listu pod kvétenstvim)

93.148 -002 .275



Ordination of characters/variables

,Euclidean option® - The position of the variables
expresses the positions of the corresponding variable
vectors.

EIGENVECTORS AS COORDINATES OF VAR.

SCORES FOR VARIABLES

VARIABLE 1 .384 -156 .265
VARIABLE 2 -.053 .504 -.380
VARIABLE 3 .312 .334 -.133
VARIABLE 4 -.265 -403 .053
VARIABLE 5 -.099 -549 -.242
VARIABLE 6 -168 .347 .627
VARIABLE 7 .424 .028 -.004
VARIABLE 8 -.320 -158 -556
VARIABLE 9 -420 -006 .013
VARIABLE 10 -430 .003 -.049




Ordination of characters/variables

,Rohlf mixed option“ - The position of the variables expresses
the values of the correlation (or possibly covariance) of the
variables with the corresponding components

CORRELATIONS OF VAR. WITH COMPONENTS

SCORES FOR VARIABLES

VARIABLE 1 .862 .251 .282
VARIABLE 2 -.118 .811 -.404
VARIABLE 3 .700 .537 -.141
VARIABLE 4 -.594 .648 .057
VARIABLE 5 -.221 .884 -.257
VARIABLE 6 377 .559 .666
VARIABLE 7 .952 .045 -.004
VARIABLE 8 -.718 .255 .591
VARIABLE 9 .941 .010 .014
VARIABLE 10 .965 .004 -.052



Ordination of objects and variables (biplot)

Euclidean biplot - The position
of the variables expresses the
positions of the corresponding
variable vectors.

Rohlf mixed option - The position of
the variables expresses the values of
the correlation (or possibly
covariance) of the variables with the
corresponding components




Types of PCA

Centered PCA — based on the covariance matrix of variables

The starting point of the new coordinate system (principal components) is shifted from
the original starting point of the coordinate system of the original variables to the
centroid of the "cloud" of ordinated objects (a hypothetical point representing the
"average object"). Distances between objects in the new coordinate system remain the
same as in the original system.

Standardized PCA — based on the correlation matrix of variables

It includes data standardization (compare the relationship between covariance and
correlation: by dividing covariance by the product of standard deviations, we obtain the
correlation coefficient). The starting point of the new coordinate system shifts to the
centroid of the object cloud, and the original variables are rescaled to have unit
variance. The new variables (principal components) do not have unit variance, but their
variance corresponds to the respective eigenvalues (the sum of the eigenvalues
equals the number of variables).

Non-centered PCA — based on the matrix of scalar products of variables (cross-
products between variables)

It does not involve standardization or centering. The starting point of the new
coordinate system is in the same place as in the original system. This technique is
used in some ecological applications.



PCoA — principal coordinate(s) analysis (metric
multidimensional scaling, classical scaling)

Arrangement of the set of objects in the new space defined by
the principal coordinates (new axes).

The mutual (Euclidean) distances between objects reflect the
relationships between the original objects measured by any
similarity or distance coefficient.

Binary variables
Multistate qualitative variables
Mixed data



(1) Primary data matrix —— secondary distance matrix ——
—— Symmetric matrix, equivalent to the correlation or
covariance matrix used in PCA

(2) Calculation of eigenvalues, eigenvectors, and
component scores

The coordinates in the space determined by the principal
coordinates are not linearly dependent on the values of the
original variables.

It can also be appropriately used when the number of
variables exceeds the number of objects (e.g., in molecular
data).



(1) EIGENVALUES

271.59700 139.87590 60.88202 20.98608 17.08320
10.7592 7.30412 5.69138 3.47811 2.34287
.00060 .00001 .00001 .00001 .00001
.00001 .00001 .00001 .00001 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
.00001 .00001 .00001 .00001 .00001
.00001 .00001 .00001 .00001 .00001

(2) SUM OF POSITIVE EIGENVALUES

540.00054

(3) NUMBER OF POSITIVE EIGENVALUES
33



(4) EIGENVALUES AS PERCENT

50.30 25.90 11.27
1.99 1.35 1.05
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

(5) CUMULATIVE PERCENTAGE OF EIGENVALUES

50.30 76.20 87.47

96.52 97.87 98.92

100.00 100.00 100.00
100.00 100.00 100.00
100.00 100.00 100.00
100.00 100.00 100.00
100.00 100.00 100.00
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COORDINATES

OBJECT 1

2.44015 -.61730
OBJECT 2

3.20319 1.86563
OBJECT 3

1.68897 1.73017

(abbreviated)




NMDS — non-metric multidimensional scaling
Reducing the dimension of the original variable space
Maintaining the order of distances between objects

4 OTU and 6 dissimilarity values:
093 <01, <034 <0;3<0,,<0y

OTU = points in Euclidean space, their mutual
distances are: d,,, dy3, dy4, dsg, doy, dgy

It is assumed that these distances perfectly match the
observed dissimilarities if:

Oy < dp, Sy <djz<dy <dy






Stress

A measure of the agreement of distances on the ordination
diagram with the original dissimilarity values

below 0.05 — excellent agreement
0.05-0.10 — satisfactory agreement
0.10-0.15 — acceptable agreement with reservations

DIMENSIONALITY USED BELOW = 5

CHANGE VERY SMALL, FINAL STRESS = -01672606
DIMENSIONALITY USED BELOW = 4

CHANGE VERY SMALL, FINAL STRESS = -02733298
DIMENSIONALITY USED BELOW = 3

CHANGE VERY SMALL, FINAL STRESS = -04378727
DIMENSIONALITY USED BELOW = 2

CHANGE VERY SMALL, FINAL STRESS = -10600522
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