Diskriminant Analysis (DA)
Hypothesis Testing

(a) Interpretation of differences - Canonical Discriminant
Analysis

(aa) To what extent it is possible to distinguish defined
groups of objects based on the characters available.

(ab) Which of these characters contribute the most to this
distinction.

(b) Identification of objects - Classification Discriminant
Analysis

Derivation of one or more equations for the purpose of
identifying objects.



Data Requirements:

(a) Quantitative or binary characters

(b) None of the characters should be a linear
combination of another character or characters

(c) It is not possible to simultaneously use two or more
highly correlated characters

(d) The covariance matrices for individual 2]
groups must be approximately similar
(e) The characters describing each
group should meet the requirement
of multivariate normal distribution




For the number of groups (g), the number of characters
(p), the number of objects in groups, and the total number
of objects in the analysis (n) in discriminant analyses, the
following must hold:

(a) There must be at least two groups of objects: g = 2;

(b) Each group must contain at least 2 objects;

(c) The number of characters used in the analysis must be
less than the number of objects reduced by the number of
groups: 0 < p < (n—Q);

(d) No character should be constant in any group.



Canonical Discriminant Analysis, Canonical
Variates Analysis — CDA

Allows observing relationships between objects in a
space defined by canonical axes.

An ordination procedure that maximizes differences
between groups.

------------------------------



Canonical Discriminant Analysis, Canonical Variates
Analysis — CDA

Canonical diskriminant function
fkm = a0 T a1X1km t a'2)(2km Tt apokm’

f., = the value (score) of the canonical discriminant function
for case m in group Kk;

X,.m = the value of the discriminant characteristic x; for case
m in group K.

a, = coefficient of diskriminant function (i=0, 1 ..., p);

The coefficients (a) for the first function are derived so that the group centroids
(centers of gravity, means) are maximally distant (in terms of Mahalanobis
distance). The coefficients calculated for the second function must further
maximize the differences between group centroids, and simultaneously, the

values of both functions must not be correlated.
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PCA, PCoA, NMDS DA

Predefined groups
no yes

Explanation of maximum total between groups
variation

Character weighting no yes

X

Figure 7.22. Comparison of the underlying ideas in PCA and CVA by an artificial example with two
original dimensions. Component 1 (a) coincides with the main trend of variation in the entire sample,
whereas canonical variate | (b, there is only one in this case) explains the optimum separation of the
two groups.



Coefficients ,a“ of discriminant function

unstandardized coefficients of disriminant function
not adjusted - raw coefficients

adjusted

The adjusted coefficients are modified so that the origin of the
discriminant function (i.e., the point where all canonical axes have
zero values) is located at the grand centroid, that is, at the point of
the average values of all characters.

standardized coefficients

Maximum number of discriminant functions
(maximum number of axes, maximum number of non-zero

eigenvalues)
s=min (p; g — 1)



Interpretation of canonical axes (canonical discriminant functions)

(a) Relative position of objects, position of centroids
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(S5% confidence circles + centroid biplat with a factor of £.34 for wvars)

95 % Confidence interval
of the centroid

@ fAxis 2 £95% isodensity circles + centroid biplet with a factor of &.34 for wars

The area in which 95% of the
objects of a given group should be
located (assuming a normal
distribution of characters).




Interpretation of canonical axes (canonical discriminant functions)

(a) Relative position of objects

100 -
90 -
5 80 -
i _ b3 70 - []
] 3] >
. SRS Q e0-
= S 2 5 .
o
RIS & a0
RIS Y
ssopsspsslasy
ssofsspslasy 20
Seosspsasy "
10 B BIES .
A R B8 %@W - 0% 37 21 -15 06 -03 03 09 15 21 27 83 39 45
-3.6 -2.8 2 2.0 2.8 3.6 4.4 5.z Can1



(b) total structure coefficients, total canonical structure
(c) eigenvalues

(d) canonical correlation coefficients
The square of the canonical correlation coefficients can be interpreted
as the proportion of the variability of the discriminant function
explained by the groups or the differences between the groups. This
characteristic can sometimes be more useful than the percentage
representation of eigenvalues. If the groups differ only slightly in the
analyzed characteristics, the values of the canonical correlation
coefficients will be low.

(e) The statistical significance of discriminant functions
(axes) is evaluated using the criteria of Wilks'
lambda, chi-square, or the likelihood ratio.
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Oxycoccus - kanonicka diskriminacni analyza

The CANDISC Procedure

Adjusted Approximate Squared
Canonical canonical standard canonical
correlation correlation error correlation
1 0.942491 0.940682 0.003217 0.888290
2 0.905916 0.903497 0.005164 0.820683

Test of HO: The canonical correlations in the current row and all that follow are zero

Values of Inv(E)*H = CanRsg/(1-CanRsq)

Likelthood Approximate

Eigenvalue Difference Proportion Cumulative ratio F value Num DF Den DF Pr > F

1 7.9518 3.3750 0.6347 0.6347 0.02003149 202.76 70 2340 <.0001
2 4.5767 0.3653 1.0000 -.17931699 157.63 34 1171 <.0001



The CANDISC Procedure

Total Canonical Structure

Variable Canl Can2
v4 0.672599 0.282658
v5 0.712117 0.099797
V6 0.683018 0.232456
v7 0.693296 0.143058
v8 0.814472 0.054974
v9 0.542881 -0.217714
v10 0.266363 -0.256140
vll 0.361661 -0.180027
v12 0.830531 -0.094723
v13 -0.126190 -0.090211
v14 0.663007 0.090076
v15 0.760576 -0.095871
v16 0.593574 0.269126
v17 0.451203 -0.111711
v18 0.725532 0.417065
v19 0.361339 -0.197338
v20 0.116087 -0.283614
v21 0.512043 0.345655
v22 -0.045555 0.264878



Variable

v4
v5
v6
v7
v8
v9
v10
vlil
v12
v13
vl4
v15
v16
v1l7
v18
v19
v20

v21
v22

Canl

.20664064
-29441256
-88656987
-19813550
.88095578
.53521212
.16348543
.48940387
.34296483
.21085257
.20793931
.17302770
.13295992
.02748186
.42290424
.85793927
-40526450

.19589232
.27396644

) Total-Sample Standardized Canonical Coefficients

Can2

-14717014
.28758830
-41224150
-97436468
-97932782
.25167526
.20978626
-.02370969
-19078962
.63991444
.40710833
.24243622
-41005661
-.00185147
. 71065636
-40534569
.42814071

-29079279
.17566832



Oxycoccus - kanonicka diskriminacni analyza
The CANDISC Procedure

Raw Canonical Coefficients

Variable Canl Can2
v4 0.838448541 0.435885713
v5 -1.304051753 -7.341857294
v6 -1.452234796 1.087108555
v7 1.134513637 6.604020879
v8 0.784902149 0.872548345
v9 -0.992564918 -2.321264617
V10 0.689107945 -0.884270705
vil -2.269512407 -0.109948923
v12 0.454311114 -0.252730994
v13 0.793906003 -2.409417741
v14 0.525571082 1.028975078
v15 0.176677291 -0.247549821
v16 0.242091319 0.746624615
v17 -0.102516110 -0.006906569
v18 0.660204493 1.109420248
v19 1.877413657 -0.855803828
v20 1.939521377 -0.865483332
v21 0.199233118 0.295752053

v22 -0.581907220 -2.497130258
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Classificatory discriminant analysis

(a) Searching for an identification (classification)
criterion
Groups of objects with known classification
Group of objects with uncertain status
(b) Ascertaining the effectiveness of classification
criterion
resubstitution
cross-validation

The effectiveness of the classification criterion is tested on the same dataset from
which this classification rule is derived (this testing method is called
resubstitution). If we have a smaller number of objects, it is advisable to use
cross-validation: From a dataset of n objects, we select n—1objects, which we use
as the training set. Based on this training set, we derive the classification criterion,
which we then apply to the one omitted case. We repeat this procedure n times.



Methods of deriving the classification rule:

(1) Canonical discriminant function - objects are
classified based on their score on the canonical
discriminant function or based on their projection into
canonical space

B. pubescens = -35 B. pendula = +21

LTF=1 _
— LTW=8 1} LTF=3

LTW=19

DFT=7

=

DFT=12

Discriminant function for the identification of Betula pubescens and B. pendula
12LTF + 2DFT — 2LTW - 23

Positive values B. pendula, negative values B. pubescens

Probability of correct identification 93%

(Stace, C. A., 1991, New Flora of the British Isles)



Methods of deriving the classification rule:

(1) Canonical discriminant function - objects are classified
based on their score on the canonical discriminant
function or based on their projection into canonical
space
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(2) Calculation of the linear classification function for
each group

A separate linear classification function is calculated for each group of
objects. The classification score of the unknown (classified) object is then
calculated for each of these functions. The object will be assigned to the
group for which the classification score reaches the highest value.

(3) Classification rules based on probabilistic models

() Linear discriminant function

(i) Quadratic discriminant function

(i) Nonparametric methods, e.g., k-nearest
neighbors



(3) Classification rules based on probabilistic models

- Vv Is generally a p-component vector of characters
-V, represents a vector of characters of a specific object
- v has different probabilities of belonging to , and m,

- probability densities - f,(v) for 11, and f,(v) for ..

- the space R containing all objects has subspaces R, and
R2,
itholdsthatR;, "R, =0and R=R; UR,)

- a classification rule will define the division of space R into
two mutually exclusive subspaces R, and R,, and at the
same time will assign objects from group m, to R,

and objects from group 7, to R,.



Subspace R, is defined as the set of vectors v,
for which: f,(v) > f,(v)

Subspace R, is defined as the set of vectors v,
for which: f,(v) < f,(v).

The values of f,(v) and f,(v) can be estimated based on the
results of training set measurements.

The classification rule then takes the form:
v belonds to my, if f;(v)/f,(v) > 1
v belonds to m,, if f;(v)/f,(v) <1
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In these cases, f(v) Is based on the assumption that
most objects are clustered around the center of mass
(centroid), and their density decreases with increasing
distance from the centroid.
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L(v) — linear discriminant function
A — Mahalanobis distance expressing the distinction between
groups 1, and 1,



Number of Observations and Percent Classified

From v2

1

2

4

Total

Priors

1

30
100.00
0

0.00

0

0.00

30
2.49

0.33333

2

0
0.00
209
99 .52
2
0.21

211
17.48

0.33333

966
80.03

0.33333

into v2

Total

30
100.00
210
100.00
967
100.00

1207
100.00



Obs

200
437
452

@ Posterior Probability of Membership in v2

From Classified
V2 into v2 1 2
2 4 * 0.0000 0.4354
4 2 * 0.0000 0.8598
4 2 * 0.0000 0.5198

* Misclassified observation

4

0.5646
0.1402
0.4802



Stepwise discriminant analysis

Stepwise discriminant analysis seeks a combination of features
that together allow the best possible separation of predefined
groups.

The set of the most suitable features is selected gradually, in
iIndividual steps.

The method starts by selecting the feature that best separates the
predefined groups; in the next step, it evaluates all remaining
features and finds the one that best separates the groups in
combination with the already selected feature.

At each step, the statistical significance of the selected features is
calculated (the value 'F-to-remove,' statistics for removal) as well
as the statistical significance of the remaining features (the value
'F-to-enter,’ statistics for entry).



	Snímka číslo 1
	Snímka číslo 2
	Snímka číslo 3
	Snímka číslo 4
	Snímka číslo 5
	Snímka číslo 6
	Snímka číslo 7
	Snímka číslo 8
	Snímka číslo 9
	Snímka číslo 10
	Snímka číslo 11
	Snímka číslo 12
	Snímka číslo 13
	Snímka číslo 14
	Snímka číslo 15
	Snímka číslo 16
	Snímka číslo 17
	Snímka číslo 18
	Snímka číslo 19
	Snímka číslo 20
	Snímka číslo 21
	Snímka číslo 22
	Snímka číslo 23
	Snímka číslo 24
	Snímka číslo 25
	Snímka číslo 26
	Snímka číslo 27
	Snímka číslo 28
	Snímka číslo 29

