Outline analysis: Eigenshape analysis
Radius function r(6)

The reference line is a radius drawn from the centroid (or
another corresponding point) to a primary landmark. From this
radius, additional lines are drawn at equal angles. The radial
function describes the relationship between the angle of rotation
and the corresponding radius length.
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Outline analysis: Eigenshape analysis
Radius function r(6)

If the number of radii drawn from the centroid is sufficient (p),
their lengths describe the studied shape quite well.

The result is a p x m matrix, where m is the number of studied
objects. The matrix forms the basis for PCA, which is based on
correlations between objects (not between features) — eigenshape
analysis.

Podani (2000)



Eigenshape analysis - Radius function r(0)

Unio PCA - eigenshape analysis,  Unio PCA — correlations of
the first eigenvalue accounts for traits, the first eigenvalue

97% — size component, so It IS accounts for 91.3%, the second
better to assess the second and third for 5.2%.
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Eigenshape analysis
Radius function — r(0)

For more complex shapes,
this function is not suitable

for describing more complex % 7

forms — In some cases, r does
not have a single value for a
given angle 0.

The choice of the central
landmark or centroid is also
problematic — if its position
IS variable in relation to the
biological structure, it
significantly influences the
result.
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Eigenshape analys

Zahn & Roskies* shape function

P*(M) =0 (1) -

t Is the distance from the initial (zero) reference point along the
outline, normalized to the total length 2mxr.

o(t) Is the angle in radians between the tangential vector at point
0 and the vector at a distance t from the zero point.

The function has a value of zero for a circular outline.
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Eigenshape analysis

Zahn & Roskies* shape function

The result is a matrix that is used for
the analysis of principal shapes
(PCA). "Sampling" of the outline is
therefore not at equal angles but at
equal distances along the outline. The
shorter these distances, the more
accurate the result (minimum n =
100).

Shape — the function ¢*(t)
Size-S=t/n

Angularity — amplitude

Lohmann & Schweitzer (1990, ,,Blue Book*)
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Eigenshape analysis

Zahn & Roskies* shape function
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Figure 13. The average outlines (edge and spiral views) of
the shells of G. truncatulinoides from 10 size-fractions of a
single sample. The outlines are plotted to the same scale,
the starting reference point is indicated, and the outline of

-

on the left) of the combined edge and spiral views of G.
truncatulinoides shown in Figure 13 and their first 5 eigen-
shape functions (plotted on the right). See Figure 11 for
explanation.

each view is drawn between 100 equally spaced points.

Lohmann & Schweitzer (1990, ,,Blue Book*)
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Figure 15. Shape outlines constructed from the 5 eigen-
shape functions plotted in Figure 14 (rebuilt and plotted by
program CSHAPE). The implicit 90° turn between the
combined outlines separates the edge and spiral views of

the eigenshapes.
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Figure 11. Zahn and Roskies' ¢*(f) shape functions (on the
left) of the ostracode outlines shown in Figure 10 and their
first 5 eigenshape functions (on the right). The values of ¢*,
the net angular bend around each outline, are plotted on the
horizontal axis. The vertical axis orders the 128 comparable
points located around the perimeter of each outline.

A-4 instar A-4 instar
Figure 10. The average outlines of ostracode shells from 5
instars (growth stages) in each of two related species of
Cavellina (from Schweitzer et al,, 1986). The outlines are
plotted to the same scale, the starting reference point is indi-
cated, and each outline is drawn between 128 equally spaced
points.

Lohmann & Schweitzer (1990, ,,Blue Book*)
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Figure 12. Shape oulines constructed from the 15 eigen-
shape functions plotted in Figure 11 (rebuilt and plotted by
program CSHAPE). Only the first eigenshape resembles
the ostracodes that were analyzed. Since it accounts for
most of the "variance" among a collection of similar objects,
it describes features they all share, features that make them
look the same, and it approximates the mean shape. The
other eigenshapes account for the remaining "variance"
contributed by features that make the objects look differ-
ent.




Paleobiology, 27(2), 2001, pp. 226-240

The role of phylogeny in quantitative paleobiological data

analysis

Norman MacLeod

Figure 5. Results of MacLeod and Rose’s (1993) shape analysis
of modern mammalian distal phalanx (A) and proximal radial
head (B) data. Symbols as follows: solid square = arboreal spe-
cles, open squares = scansorial species, solid triangles = fossorial
species, solid circles = cursorial species (see MacLeod and Rose
1993 Appendix 1 for species lists). Note that the ordination of
species on the two most important distal phalanx shape-
dissimilarity axes (eigenshape axes 2 and 3) separate the data set
into three locomotor groups (with a small number of intergroup
outliers) whereas the group separation in the proximal radial
head analysis i1s much less pronounced. Since each locomotor
group contains species from different mammalian clades, a
functional signal may be overwhelmed by the phylogenetic
signal 1n the latter analysis
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Outline analysis: Fourier analysis

Fourier analysis using equally spaced radii

k ;
6 =ag+ Y (ajcos(ib) + b;sin(i 0))

The angle 0 varies from 0 to 2z, a; b, —— Fourier

coefficients of the i-th harmonic function, k — the "3 \[g ﬁ
maximum number of harmonic functions: ‘

k<pl/2

1.5

1-

Rohlf (1990, ,,Blue Book*)



Outline analysis: Fourier analysis

Fourier analysis using equally spaced radii

Table 7: Lengths, p, of radii at an angle 6 and Fourier
coefficients for harmonics 0 through 6.

0 o i a; b;
0.00000 2.0 0 1.34167 0.00000
0.52360 15 1 0.65427 -0.20813
1.04720 1.0 2 0.85732 -0.42426
1.57080 1.0 3 0.08165 -0.20412
2.09440 12 4 0.08165 0.07071
2.61799 1.2 5 -0.12355 0.00400
3.14159 1.5 6 0.12247 0.00000
3.66519 12
4.18879 1.0
471239 1.0
5.23599 1D
5.75959 2.0
6.28319 2.0

10 12

Rohlf (1990, ,,Blue Book*)



Fourier analysis

Fourierova analysis of tangent
angles

o*(t) = () -t

0 1 2 3 4 5 6
f
Figure 6. Plot of ¢ and ¢* as functions of cumulative chordal

distance t.

Table 8. Zahn and Roskies (1972) ¢* values and their Fourier
coefficients for the example data of Table 7.
t ¢ gt ot b aj b
0 232241 0 0 -0.34626
0.71074 299739  -0.03575 |1 0.17595 -0.10944
126974 287979 -0.71236 |2 091564  0.26300
1.62813  3.07630 -0.87424 | 3 -0.15540  0.02055
2.04442  -235619  -0.43984 | 4 -0.02769 0.37984
247448  -2.22569 < -0.73939
299824  -0.91591 0.04663
3.5220n  -0.45831  -0.01954
393829 -0.26180  -0.23932
429668 -0.37940  -0.71530
485568  0.29558  -0.59933
556642 130900  -0.29665
0.2
LA
phi*
-0.2
-0.4
-0.6
-0.8
-1 - T - r - v
0 1 2 3 4 5 6 7

t
Figure 7. Plot of ¢* and an estimate of ¢* based on the first
four harmonics.

Rohlf (1990, ,,Blue Book*)




Fourier analysis

Elliptic Fourier analysis

The positions of points and steps on the outline are characterized

by x and y coordinates.
dx4

dy6
d dyl

dx6 dx7 dx1



Fourier analysis

Elliptic Fourier analysis

The function we are looking for describes the simultaneous change
of coordinates, I1.e., Ax and Ay in accordance with a set of harmonic
functions. For each harmonic function, 4 coefficients are derived
(two for horizontal coordinates and two for vertical coordinates). In
addition, two constants are calculated.

Fourier coefficients for the k-th harmonic function and the x-
projection of the outline are calculated as follows:

AX; = X; — X; ; — chordal

o A [ 2k 2xke; 4 distance of the step
Ay = ﬁ — | cos — cos between points 1 aand I -1
k= op2g2 S Al T _
=1 t. — cumulative length of
o begl ﬁ Ax | 2wk 2wkt g | steps up tostep i
k™ op2e2 = Ay |®" T “S T | T—total length of the

outline  Rohlf (1990, ,,Blue Book*)



The constant for the x-coordinates is calculated as follows:

Ay =+

1 (A 5 5 i-1 Ax; |
P f: '23,';(‘;' —ti.1)+ [ 5 Ax; — Kffm] Ay

‘-1 ;
i=1 .

.

The Fourier coefficients for the k-th harmonic function

and the y-projection of the outline are calculated
equivalently.

For the entire curve, n harmonic functions, and t from
the interval 0 — 27, the following holds:

x(f) '+ kos kt; sin kt;, 1
y(t) k%@os kty in kt; 1

Fourier coefficients can then be used for further analyses —
PCA, cluster analyses, discriminant analyses, etc.



Fourier analysis

Elliptic Fourier analysis

Table 9. Elliptic Fourier coefficients for the example data of
Table 7.
6 p i A; B; Ci D;
0 0.31460 — -0.09995 —
O'M 2.0 1 1.56468 -0.27246 0.00959 1.13297
0.52360 1.5 2 -0.0179% 0.00444 0.00135  0.03388
3 0.06718 -0.03061 0.08219 0.03999
1.04720 1.0
1.57080 1.0 N
2.09440 12 Y
2.61799 12 051
3.14159 13 0 :
366519 12 -
418879 1.0
471239 1.0
5.23599 1.5 s =1 -0.5 0 ' 05 1 15 2
Figure 8. Plot of elliptic Fourier function based on the first 3
5.75959 20 harmonics for the example data (squares connected with thin
628319 20 lines) of Table 7.

Rohlf (1990, ,,Blue Book*)




Paleobiology, 24(3), 1998, pp. 359-370

— >

intertooth :
Ontogeny of Trimerocephalus lelievrei (Trilobita, Phacopida), . distances
a representative of the Late Devonian phacopine . internotch

paedomorphocline: a morphometric approach

Catherine Crénier, Sabrina Renaud, Raimund Feist, and Jean-Christophe
Auffray

64 points characterizing the outline

orig. | 1 harm. f. 2 harm. f.

3 harm. f. 5 harm. f. 9 harm. f.
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FIGURE 2. Average Fourier power (or variance) spectrum for cephala (A) and pygidia (B). The Fourier power for
the n" harmonic is (an® + bn® + cn® + dn?)/2. For any outline, the total power is calculated as the sum, from 1 to
64, of individual harmonic powers where 64 is equal to the Nyquist frequency. For both cephala and pygidia, 99.95%
of the power is described by the first eight harmonics, represented by arrows.
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FIGURE 5. Location of the instar means and their recon-
structed outlines in the canonical space corresponding
to standardized Fourier coefficients. Axes CA1-3 rep-
resent 68%, 26%, and 4%, respectively, of the among-in-
star variance for cephala




Paleobiology, 22(2), 1996, pp. 255-265

Fourier analysis applied to Stephanomys (Rodentia, Muridae)
molars: nonprogressive evolutionary pattern in a gradual lineage

Sabrina Renaud, Jacques Michaux, Jean-Jacques Jaeger, and Jean-Christophe

Auffray

In order to determine the rank of the last har-
monic that has to be retained for a satisfactory
description of the outline, we have considered
the accuracy of the information provided by
these harmonics. For that purpose, six repeated
measurements were performed on a sample of
eight upper molars. The coefficient of variation
of the harmonics amplitude a;+ b+ i+ d2 in-
creases strongly for the eighth harmonic and the
subsequent ones (Fig. 3A). From this harmonic
onward, the noise, caused by variation of such
factors as light and positioning of the tooth dur-
ing optical measurement, reduced the repro-
ducibility of the measurement. Hence, the coef-
ficients from the eighth harmonic onward were
excluded in the statistical analysis.

Coefficient of variation of harmonics
amplitude
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FiGurRe 2. Reconstruction of a first upper molar for the successive cumulative contribution of the first twelve harmonics.



Paleobiology, 28(4), 2002, pp. 435448

Ontogenetic and evolutionary patterns of shape differentiation
during the initial diversification of Paleocene acarininids
(planktonic foraminifera)

Frédéric Quillévéré, Vincent Debat, and Jean-Christophe Auffray
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Ficure 1. A, Phylogenetic reconstruction of Paleocene acarininids studied in this paper (dashed line represents
range extension at southern high latitude sites). After Berggren and MNorris (1997), Olsson et al. {1999}, and Cuil-
léveré et al. (2000). B, Scanning electron photomicrographs of representative Paleocene acarininids from ODF Hole
761B. 1: umbilical (a) and edge (b) views of A. strabocella from 761B-18X-2: 10-12 cm. 2: umbilical (a) and edge (b)
views of A. mitida from 761B-18X-2: 10-12 cm. 3: umbilical {a) and edge (b) views of A. subsphaerica from respec-
tively 761B-17X—-4, 10-12 cm and 761B-17X-3: 10-12 em. 4: umbilical (a) and edge (b) views of A. mckannai from
761B-17X=1: 10-12 cm. Scale bar, 100 pm.



SYMBOL CAPTIONS
[ Ac. strabocella circles: 59.0 Ma

Wl Ac. nitida squares: 58.7 Ma
" Ac. subsphaerica diamonds: 58.4 Ma
[ 1 Ac. mckannai triangles: 57.2 Ma

25 15 05 0.5 1.5 2.5
CA1 (46.3%)

FicUre 4. Location of the sample means in the canonical plane of the MANOVA performed on standardized Fourier
coefficients of ontogenetic stages and stratigraphic horizons of the acarininid species considered in this study. The
species name is expressed by the color of the symbols. The age of the samples analyzed is expressed by the shape
of the symbols. Labels correspond to the different test size fractions (1 = 63125 pm; 2 = 125-150 pum; 3 = 150-
212 pm; 4 = 212-250 pm; and 5 > 250 pm). Reconstructed outlines for some group means visualize shape changes
in the plane defined by the first two canonical axes. These reconstructed mean outlines of selected groups have been
obtained using inverse Fourier Transform.



Euphytica 102: 143-149, 1998, 143
© 1998 Khewer Academic Publishers. Printed in the Netherlands.

Evaluation of variation of root shape of Japanese radish (Raphanus sativus
L.) based on image analysis using elliptic Fourier descriptors

Hiroyoshi Iwata', Satoshi Niikura®, Seiji Matsuura®, Yasushi Takano' & Yasuo Ukai!

C d

Figure 2. Series of image processing which extracts chain-coded contour from red digital image; a: red digital image of 236 gray levels; b:
hinary image: o0 image after noise redoetion, arosion, dilation, and filling holes: d- extracted contones
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Figure 3. The shape variation which can be accounted for by each principal compenent. Each shape was reconstructed from the coefficients
which were calculated by letting the score on the corresponding principal component be equal to mean with plus or minus two times standard
deviation and the scores on the remaining component zero. (a) symmetrical variation from group A coefficients, (b) asymmetrical variation
from group B coefficients. Dashed line, thick solid line, and thin solid line stand for mean, mean + 25.D., mean - 25.D.



Botamical Journal of the Linnean Sociefy (20000, 132: 7T9-95, With 10 figures

dol: 10.1006/bojl.1999.0292, available online at http://www.idealibrary.com on IDE #l.®

Geographic variation and plasticity of leaf shape
and size in Begonia dregei and B. homonyma
(Begoniaceae)

TRACY McLELLAN FLS*

Department of Molecular and Cell Buology, University of the Witwatersrand, Private Bag 3,
Wits 2050, South Africa

”“J!_\“‘m-ﬂ-"‘
SINUS TO TIF

e e et

Figure 2.  Measurement taken on digitized leaf outlines. Point A was the first point in the outline at
the junction of the petiole and the lamina; points B and C were designated during digitizing, and
point D) was found by finding the point on the outline at the greatest distance from point A. Part
perimeter 15 the distance along the perimeter between points C and D.
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Figure 3. Silhouettes of representative leaves from each of 39 populations. Population numbers are
as in Table 1.



The first six harmonics of elliptic Fourier coeflicients (EFC) were calculated,
normalized, and the power series was calculated from the x,» coordinates of the
mmages (McLellan & Endler, 1998). These coeflicients were then averaged over all
the leaves taken from each plant, and the means of the coeflicients were used in
the principal component analysis.
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Iigure 6. Plot of the first two principal components of the first five harmonics of elliptic Fourier
coeflicients for 39 population samples.

~ Ellipses are one standard error from the means of the PCs for each population, and
polygons are defined by samples with extreme values for each population.
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