

Jakub Dvořák, Markéta Potůčková

CNN compare

Motivation

- Utilization of convolutional neural networks (CNN) in remote sensing (RS) has been growing rapidly in recent years
- Online learning materials and textbooks exist but there is a lack of "sandboxes" suited for teaching classification of RS data using CNN

Goal

 To develop easy-to-use tools enabling practical experimenting with different designs of CNNs

Target audience

 MSc and PhD students, researchers and practitioners from public sector and industry in fields related to remote sensing and computer vision dealing with CNNs at a beginner level

A basic knowledge of CNN, Python and Jupyter notebooks required.

CNN compare

- Classifier Comparison tool to understand 1D (spectral), 2D (spatial) and 3D (spectrospatial) CNN architectures for classification of hyper- or multispectral images
- Implemented in PyTorch
- A straightforward framework ready for building more complex networks

CNN compare – source code and data

 The code is available from <u>github.com/YesPrimeMinister/ETRAINEE-</u> <u>ClassifierComparison</u>

- Two datasets (or just use any GDAL-compatible rasters):
- Luční hora, Krkonoše, Czechia 54 bands, 1847x1563 pixels
- 9 classes in Arctic-alpine tundra grassland
- Not open yet, available for experimentation during this session
- Pavia City centre 1096x1096 pixels, 102 bands, 9 classes
- Used in the currently available version of our tool
- Available from www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sen sing_Scenes#Pavia_Centre_and_University

Understand CNN parameters by experimenting

2.3. Hyperparameter definition

Training networks requires first setting several hyperparameters, please feel free to play around with them and epochs, learning rate, batch size, or class we.

- n_channel number of channels, set to 54 for the Lucni hora dataset and to 102 for Pavia city centre
- n class number of classification classes
- size e number of filters in each NN layer of the encoder
- size d number of filters in each NN layer of the decoder
- · crossval nfolds Number of folds for crossvalidation
- n_epoch_test after how many training epochs do we validate on the validation set
- scheduler milestones after how many epochs do we reduce the training rate
- scheduler gamma by what factor do we reduce the training rate
- class weights training weights for individual classes, used to offset imbalanced class distribution
- n epoch how many epochs are performed during training
- . Ir how fast can individual network parameters change during one training epoch
- batch size how many tiles should be included in each gradient descent step.

```
args = { # Dict to store all model parameters
    'n_channel': 54,
    'n_class': len(unique),
    'size_e': [64,64,128,128,256,256],
    'size_d': [256,128,128,128,64,64],

    'crossval_nfolds': 3,
    'n_epoch_test': 2,
    'scheduler_milestones': [60,80,90],
    'scheduler_gamma': 0.3,
    'class_weights': torch.tensor([0.00, 0.20, 0.25, 0.05, 0.20, 0.15, 0.04, 0.02, 0.02]),

    'n_epoch': 3,
    'lr': 5e-6,
    'batch_size': 2,
}
```


CNN compare – raster outputs

Thank you for your attention!

jakub.dvorak@natur.cuni.cz

Acknowledgement: CNN compare was developed withing the ERASMUS+ Strategic partnership project "E-learning course on Time Series Analysis in Remote Sensing for Understanding Human-Environment Interactions" (E-TRAINEE, ID 2020-1-CZ01-KA203-078308)

https://web.natur.cuni.cz/gis/etrainee/

