

Impact of Potential Climate Change on Plant Available Soil Water and Percolation in the Upper Danube Basin

M. Muerth, W. Mauser & C. Heinzeller

Hydrology and Remote Sensing WG of the BMBF-project GLOWA-Danube

21.09.2010

Federal Ministry of Education and Research

Objectives of GLOWA-Danube

"Integrative Techniques, Scenarios & Strategies for the Future of Water in the Upper Danube Basin"

- Development and setup of the Global Change
 Decision Support System DANUBIA
- Development, analysis & evaluation of and socioeconomic and Climate Change Scenarios
- Cooperation with Stakeholders to communicate results and develop adaption strategies
- Initiate a interdisciplinary Open-Source project called
 OpenDanubia (Start: October 2010)

A Regional Scale River Basin

Hydropredict 2010, Prague

21.09.2010

LMU

3

UNIVERSITÄT

UNCHEN

Upper Danube Soil Regions

The Alps - mainly shallow Leptosols (grey colours)

Alpine foothills – mainly Luvisols of loam and sand loam texture (orange coulours)

Tertiary lowland – mainly Cambisols on silty Loess sediments (green colours)

Limestone (Alb) – mainly loamy clay Cambisols and Leptosols (blue-grey colours)

Bavarian Forest – loamy, sandy Leptosols and Cambisols (orange and violett)

4

The DANUBIA components

The Landsurface component

21.09.2010

IPCC-A1B based climatic trends

Climate trend	dT (°C)	dP(%)		Trend based on
(per 100 years)		winter	summer	
IPCC regional	+3.3	+7	-14	IPCC (2007)
REMO regional	+5.1	-5	-31	Jacob et al. (2008)
MM5 regional	+4.7	+8	-29	Pfeiffer & Zängl (2009)
Extrapolation	+5.2	+47	-69	Extrapolation of station data
Selection 1: Climate trends		Selection 2: Climate variants		
IPCC regional		Baseline		
REMO regional		5 warm winters 5 hot summers		16 different Climate scenarios
MM5 regional				
Extrapolation		5 dry yea	rs	
21.09.2010 Hydropredict 2010, Prague 7 LNU UWiG- MAXIMILI UNVERST				

Danube

Impact on soil water dynamics

Example from REMO regional – Baseline scenario:

Average change for 2036-2060 compared to 1971-2000

Hydropredict 2010, Prague

UDWIG MAXIMILIANS

UNIVERSITÄT

8

Results II

21.09.2010

GLOWA

Danube

Hydropredict 2010, Prague

MAXIMILIANS UNIVERSITÄT

2060

LUDWIG

2050

9

REMO regional

Extrapolation Reference period

Dry soils during summer (2036 – 2060)

21.09.2010

Hydropredict 2010, Prague

10

UNIVERSITÄT

Conclusions

- Temporal redistribution of soil moisture has a strong impact on aquifer recharge, low flow occurence and evapotranspiration (& vice versa!)
- During winter, changes in snow water storage due to an increase in air temperature affect water availability in spring and early summer
- Future adaptation of crop production by irrigation and change of cash crops is simulated together with the *Biological* and *Farming* working groups

INIVERSITÄ

Thank you very much for your attention!

www.glowa-danube.de