

Modelling human interventions in the Rhine basin using the hydrological model SIMGRO

Erik Querner

Contents

Introduction

framework of the study

- Simgro model application to the Rhine basin
 - Climate and land use scenarios
- Adaptation measures
- Conclusions

Objective of the study

- How does a physical based hydrological model perform for a basin as the Rhine (snow module)
- Quantify the effect of land use and climate change on river flows
- What are the changes on droughts or low flows

Hydrological model SIMGRO

Aim of model SIMGRO

- Physical based model
- For practical problems and hydrological research

Model area

Subcatchments

Nodes

Modelling the Rhine basin

Basin area: 160 000 km² Mainly Switzerland, Germany, France, Luxemburg, Belgium >> Netherlands

Finite element network: 5 x 5 km ; 8144 cells

Surface water:

Larger rivers > 400 km² 630 sub catchments

Groundwater: data Rhine Commission (CHR) Land use: CORINE Soil map FAO

Surface water

Drainage network is derived from DTM (Voigt e.a., 2007)

Important for interaction groundwater – surface water

SW: sub catchments

GW: transmissivity

Gauging stations

42 gauging stations used

Procedure to compare calculated-measured discharges in term of Nash-Sutcliffe model efficiency

Lobith	0.90	
Main	0.74	
Neckar	0.65	
Moselle	0.79	
Switzerland (5 stat)	0.30	
Downstr. Switzerl. (13 stat)		0.79

Downstr. Switzerl. (13 stat)

• Land use change (extreme)

Hoof WAARDIG

all crops to grass ~ 33% area changed

all crops to forest

Climate change

scenarios from Dutch Meteorological Institute (standardized)

"

Climate scenarios for the Netherlands

Climate scenarios: some details

Global tem Change in a	perature rise ir circulation patterns	G +1°C no	G+ +1°C yes	₩ +2°C no	W+ +2°C yes
Winter ³ Summer ³	average temperature average precipitation amount average temperature average precipitation amount	+0.9°C +4% +0.9°C +3%	+1.1°C +7% +1.4°C -10%	+1.8°C +7% +1.7°C +6%	+2.3°C +14% +2.8°C -19%
	potential evaporation	+3%	+8%	+7%	+15%

Scenario - land use

year 1992

Strategy to follow

Is it acceptation or adaptation

Note the mark on high water levels (Moselle)

In the past: use of flood levees

There is an end in raising dikes

Strategy: analysis concept

Reduce floods and droughts

• Further implications of climate change

- Make use of the groundwater system (retain water in the ground)
 - Before the wet season have enough storage cap. available to cope with peak flows
 - After the wet period save water for the dry period
- Natural flood defenses

The Ecoflood report gives guidelines on how to restore flood plains

 SIMGRO model: has the ability to model practical situations (scenarios like land use and climate change)

 Climate change has a much larger impact on discharges and droughts than extreme changes in land use

Consider natural flood defence measures

Is this the challenge we are facing?

Is this Acceptation or Adaptation ?

Thank you

