

Climate and landuse change impacts on water availability: a case study from Tasmania, Australia

David Post HydroPredict 2010 Prague, 20-23 Sep 2010

Background

- Australia is the driest inhabited continent. In order to effectively manage its water resources, detailed, accurate (and therefore reliable) assessments of water availability are required.
- The Australian Government has commissioned CSIRO to carry out water availability assessments for some of the major river systems across the country.
- This presentation gives the methods used and some results for one such 'sustainable yields' project – for Tasmania, an island state in south eastern Australia where there are State and Commonwealth plans to increase the area of land under irrigated agriculture.

'Sustainable yields' project areas

Overview of project methods

Historical climate

Future climate

- Calculate change in seasonal rainfall per degree global warming for 15 of the 23 GCMs in IPCC AR4
- Scale daily rainfall amounts differently depending on their size

Dynamic downscaling

 Use spatial patterns of projected changes from dynamically-downscaled CCAM model to scale GCM results.

Rainfall-runoff modelling

- Calibrate 5 models

 (SIMHYD, Sacramento,
 IHACRES, SMARG,
 AWBM) to 90 unregulated
 catchments
- Evaluate model performance through cross-validation using parameters from the nearest neighbour
- Choose optimal model and regionalise to ungauged areas.

Changes in rainfall and runoff by ~2030

Reporting metrics

Reporting metrics

Ecological impacts

- 2% of subcatchments and 15 key ecological sites are potentially impacted:
 - 80 iniversections
 - 4 riverine wetlands
 - 2 Ramsar wetlands
 - @ estuaries

Conclusions

- A method has been developed which allows estimates of current and future water availability to be made across very large regions.
- The method includes assessments of changes in water availability due to changes in climate, as well as impacts due to catchment development such as forestry, irrigation and groundwater extractions.
- The method produces a wide range of reporting metrics, including:
 - > Spatial patterns of changes in rainfall and runoff
 - > Current and future water availability and use at catchment scale
 - Reliability of proposed future irrigation development schemes
 - Impacts of climate change and catchment development on streamflows
 - > Ecological impacts of projected changes in streamflows.

