

Model limitations and prediction uncertainty in the context of analyticdeliberative catchment management Acceptance by stakeholders and their role in improving model predictions

Tobias Krueger, Alex Inman, Kevin Hiscock & Laurence Smith

Negotiating conflicting interests & impacts

Negotiating conflicting interests & impacts

Under catchment change

How best to understand & manage catchments?

Physical change **Facts**: uncertain

Uncertainty about current behaviour

Uncertainty about future behaviour & drivers Limited data availability

www.wfdvisual.com

A collaborative & adaptive process

Interested citizens, conservation groups, farmers, tourism industry, water companies, local to national government, environment agencies, ...

An **adaptive management cycle** for catchment planning and process implementation Source: US EPA Handbook 2005

Developing & testing the process

Semi-real case study

- Stakeholder identification & engagement
- Workshop 1: Framing the problem
- Workshop 2: Revision of perceptual model
- Farmers meeting: Review of formal model & crucial data input
- Workshop 3: Review of formal & procedural model; management scenario development
- Workshop 4: How to implement management scenario

Perceptual modelling stage

Revision of graphical representation

Perceptual modelling stage Lessons

- However, it was agreed that models can lend scientific credibility to catchment management & serve as a basis for scenarios & costbenefit analysis
- There remained the issue of invasion of privacy: who will govern the model that is collectively produced?
- Stakeholders advised that the model must not neglect the effects of soils, land management & roads
- This created new challenges as the understanding of some of these processes is incomplete and data are limited – the stakeholders drove the agenda at this point

Formal modelling stage Review of model assumptions & limitations

Pathway

Export Coefficients¹, extended by farm practices & in-stream processes (SPARROW²)

Mobilisation

0.2

Rainfall

Source

Septic tanks Sewage treatment works Phosphorus stripping

Land use & livestock Land management

Roads & tracks

Soil Slope Land management Land management permanent grass 0.4 0.3 0.3 0.2 0.1 0.4 0.4 Net I

0.4

P export coefficient (kg ha⁻¹ yr⁻¹)

0.6

Rainfall Soil Slope

Land management

Roads & tracks

Net loss in rivers & lakes

¹Johnes et al., 1996, JH ²Smith et al., 1997, WRR

Formal modelling stage Lessons

- All factors important to stakeholders were included in the model this had been ensured at the perceptual modelling stage
- But discussions evolved around explicit vs. implicit representations, the dominance of some factors which justifies the exclusion of others & how model limitations are accounted for in effective uncertainty estimates
- In fact, the usefulness of the model despite its limitations could only be argued because uncertainties were quantified
- Farmers understood the concept of probability easily & were able to explain it to others in non-scientific terms (collective learning)

Importance of local knowledge Land use & livestock distributions

	Agricultural census 2004	Local farmers	
Permanent grass (ha)	19	19	
Temporary grass (ha)	3	3	
Rough grazing (ha)	3	3	
Cereals (ha)	33	33	
Root crops (ha)	16	16	
Field vegetables (ha)	3	3	
Oilseed rape (ha)	0	0	
Woodland (ha)	2	2	
Bare fallow (ha)	0	0	
Cattle	158	300	
Pigs	110	0	
Sheep & goats	97	10	
Poultry	35121	0	

Importance of local knowledge Ranking & uptake of farming practices

Local expert opinion	Scientific expert opinion		
	Current uptake (%)	P export reduction (% range)	
Cultivate compacted tillage soils	30	25	35
Do not leave autumn seedbeds too fine	10	25	35
Avoid tramlines over winter	10	25	35
Loosen compacted soil layers in grassland fields	3	50	70
Build new livestock access tracks	30	10	10
Reduce field stocking rates when soils are wet	90	10	10
Integrate bag fertiliser and manure nutrient supply	90	4	4
Do not apply fertiliser, slurry & manure to high-risk areas	90	27	40
Avoid spreading fertiliser, slurry & manure at high-risk times	90	15	50
Increase the capacity of farm manure (slurry) stores	10	25	25
Minimise the volume of dirty water produced	30	5	5
Site solid manure heaps away from watercourses and field drains	90	4	4

Importance of local knowledge Lessons

- The input of farmer knowledge encouraged their ownership of the model & overcame initial mistrust
- We sensed a great enthusiasm for this type of engagement for example, the farmers stayed longer than we expected them to in order to completed the task

Procedural modelling stage

Interactive scenario development

Conclusions

- Collaborative modelling clarifies expectations, encourages transparency & openness
- + Being explicit about **uncertainties** helps building **trust**
- Measured data will always be limited stakeholder (esp. farmer) knowledge can plug important gaps & this encourages ownership
- It is expected that individual & collective learning makes communities more resilient & adaptive to catchment change

Future research questions

- How to formally test levels of trust, ownership, social learning & resilience?
- How to **engage stakeholders** efficiently?
- Only works if stakeholders have real interest, demand & power: how to restructure governance of natural resources?
- + How to **weight** different types of knowledge in models?
- + How deep can discussion of **model assumptions/limitations** go?