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The context – 

 ONE 



(NEAA, 2009) 

Climate Sensitivity – Best estimate +3C for 

 2x CO2 pre-industrial, but it can be much  higher … 



Change in annual runoff by 2041-60 (SRES A1B) 

– Ensemble of 12 climate models  

 

Source: Kundzewicz et al. (2007); chapter in IPCC (2007) 



'climate colonialism'  

 A massive land-grabbing 

scramble in Africa as 

foreign companies - 

some with foreign aid 

money support - rapidly 

establish enormous 

monoculture fields in 

tropical countries. 

Prof Seif Madoffe, SUA 

Sugar Cane – Kilombera Basin, 

Tanzania 

The context – TWO 



Picture from Fairless, 2007, Nature 
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Impact of land use change on 

hydrological processes 

Short-term dynamics (e.g. interception, flood generation) vs.  

long-term dynamics (e.g. groundwater recharge, base flow) 
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Global Changes 
  Climate (temperature, precipitation, radiation …) 

  Land use, land cover 

 De-forestation / re-forestation 

 Urbanisation 

 Etc. 

  Population (amount, density, structure, …) 

  Hydraulic works 

  Technological development  

  Globalisation 

  Water use in space and time 

  Economic development 

  Change of diet (more meat => more water) 

  N- and P-fluxes to water bodies 

  Pollution (new substances etc.) 

  Change in composition of species 

  etc. etc. etc. 

 
…. and many interdependencies/feedbacks! 

 



Why is it so difficult to predict hydrological 
effects of change? 

1. Many global changes occur simultaneously with positive or 
negative (unknow) feedbacks 

2. Spatial and temporal scales for hydrological processes are 
different  from scales dominant in other disciplines  

3. Hydrological processes are often non-linear or depend on 
thresholds/tipping points  

4. Hydrological extremes (e.g. floods and droughts) do not 
occur often and are difficult to measure, consequently, good 
data sets are usually not available 

5. Boundary conditions during hydrological modelling are not 
clear (i.e. subsurface flows) 

6. Hydrological observation methods are insufficient to study 
hydrological process dynamics (e.g. subsurface flow 
processes, extreme events etc.) 
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The Karkheh basin, 

Iran 
Some basic facts and figures 

 Drainage area: 50,764 km2 

 More than 80 % is mountainous 

 Divided into five sub-basins 
 

 Mediterranean climate: Cool and 
wet winter; dry and hot summers 

 Precipitation 450 mm/year,  
range: 150 mm to 750 mm 

Water allocations in 2001 

(4949 MCM)

Irrigation, 4149

Environment, 

500

Others, 14
Domestic, 262

Industry, 23

Water allocations in 2025

(8903 MCM)

Irrigation, 7416

Environment, 

500

Others, 512

Industry, 113

Domestic, 362

Source: JAMAB 2006 



Improving precipitation input in rainfall-

runoff modeling using SWAT 

 The current way of climatic data input in SWAT is 

rather simple 

One station nearest to the centroid of a catchment  

Gauge nearest to the centroid may not be the best 

representative 

This can undermine the full use of available data (e.g. if two 

stations in a sub-catchment, only one will be used) 

 

 Quality of the climatic data input will has serious 

implications for the model parameterization and 

quality of (spatial and temporal) the results 



Preparation of areal precipitation input 

 

 

 

1) Rain gauge data 

2) Gauge location    

3) DEM /Elevation    

   4) Sub-basin  ID            

Interpolation using IDW 

 including elevation weighting 

Cross validation 

Areal average 

for sub-catchment 

Virtual rain gauge data 

Input for each sub-catchment            
Masih et al., JAWRA; in review 



Comparison of the input precipitation:  
Case II  (areal precipitation) vs. Case I (station data): 

Spatial view 

High spatial variability,  mainly influenced by topography (left) 

The precipitation difference in Case II compared to Case I ranged 

from -40 to 40 % (right) 

Sub-catchment precipitation 

(Case II) 
Precipitation difference (Case II vs. Case 1) 



Comparison  

Case II vs. Case I: 

Temporal view 

Divergent variations by sub-catchment, 

illustrated by four selected cases. 

Precipitation dynamics in Case II could 

be different in many respects. 

Daily values can be higher/lower. They 

also show clear pattern in extreme 

values:  

1) lower P events can be totally missed 

out be a single rain gauge;  

2) extremes in Case II are 

comparatively small in most cases, 

though could be other way around 

for some sub-catchments and P 

events. 
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SWAT calibration and performance 

evaluation 

 

 

 

 Rigorous calibration approach using both manual and automatic procedure  
(SUFI-2, Abbaspour et al., 2007) 

 Daily climatic data of 1987-2001  

(Precipitation: 41 stations; Temperature: 11 stations) 

 Performance evaluation: NSE, R2 and annual volume balance 

 15 stream flow gauges across the Karkheh River System 

 Temporally at daily, monthly and annual time scales, over period of 1987-2001 
(Calibration: Oct 1987-Sep1994; Validation: Oct 1994-Sep 2001) 



Comparison of stream flow simulations under  

Case I & II 

Comparison (Calibration: Oct 1987-Sep 1994)
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Comparison of streamflow simulations 

under Case I & II 

Comparison (Validation: Oct 1994-Sep 2001)
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Uncertainty analysis using SWAT-CUP: 
Summary of results 

P-Factor indicates the percentage of observed data bracketed by 

95PPU band. The achieved values are in reasonably good range 

(e.g. >0.5 in most cases) 

P-Factor based on daily calibration (1988-94)
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Uncertainty analysis using SWAT-CUP: 
Summary of results 

R-Factor indicates the width of the 95PPU band. The achieved 

values are in reasonably good range (<0.5 in most cases) 

R-Factor based on daily calibration (1988-94)
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Uncertainty analysis using SWAT-CUP: 
Example results 

Jelogir at the Karkheh River (1988-1994) 
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Most of the observed data fall well within 95PPU band. 



Uncertainty analysis using SWAT-CUP: 
Example results 

Most of the observed data fall well within 95PPU band. 

Jelogir at the Karkheh River (1988-1994)
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Main findings from this case study 
 Areal precipitation, based on interpolation of the available 

station data, improved SWAT model 

 Results were strongly influenced by the spatial extent and 

the station density/spatial distribution of the rain gauges 

 Smaller catchments (600-1600 km2) showed noteworthy 

improvements 

 Larger catchments (>5000 km2) showed comparable 

performance 

 

 

 Uncertainty analysis applying SUFI-2 algorithm was used 
(Abbaspour et al., 2007)  

 Next steps: 

 Testing of other (semi-)distributed models  

 Use of other input data, e.g. interpolation methods, radar data and 

satellite observations 

 More attention to model parameterization and uncertainty analysis 

 Evaluating the downstream impacts of increasing water 

consumption in the upstream rain-fed area  
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Background 

Synthetic DNA in multi-tracing  

hydrological processes 

 DNA is a nucleic acid  contains genetic 

instructions 

 DNA has got unique inherent coding abilities 

 Multiple DNA can be designed and produced in the 

laboratory 

 Each DNA can be determined specifically in solution 

using quantitative polymerase chain reaction (qPCR) 

 First experiments in groundwater studies (Sabir et 

al., 1999) – were only qualitative and showed how DNA 

can be used as a marker 

 Two case studies were carried out in surface water 

and laboratory column experiment between May and 

July 2010 

 



100 m downstream 

1) Merkske stream, The Netherlands 600 m downstream 

 Discharge of 50 l/s 

 6 kg of NaCl injected 

 6 DNA (each 1ml of 1.67 μ M) injected 

 All DNA traced downstream 

 Similar BTC as that of NaCl 

Results – Surface water 
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Foppen et al., in prep. 

PERCENTAGE RECOVERY AT LOCATION 2 – 600m 

DNA2 DNA3 DNA4 DNA5 DNA6 DNA8 

25% 64% 73% 82% 85% 59% 



Elapsed time (Hr)
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Results – Surface water 

2)  Strijsbeekse beek stream, 

The Netherlands 

 Discharge of 40 l/s 

 6 kg of NaCl injected 

 6 DNA (each 1ml of 1.67 μ M) 

 All DNA traced downstream 

 Similar BTC as that of NaCl 

115m 

620m 
1200m 

Foppen et al., in prep. 



Results – Transport in porous media 

BTC of NaCl and DNA , laboratory column –  

pure quartz sand 

 NaCl influent concentration - 0.5 g/l 

 DNA influent concentration - 0.01 μ M 

 4 PV of NaCl and DNA injected at 

pore water velocity of 0.4 cm/min 

 Similar BTC as that of NaCl  DNA 

travels with water 

 Kinetic attachment, and not retarded 

– reduced peak concentration 

 Slow detachment – seen in recession 

limb 
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Main findings  -  DNA as Tracer 

 DNA travels with water and can be detected at 

very low concentrations consisting of multiple 

DNAs 

 Very small quantities were required as input 

 Suitable as tracers for multi-tracing experiments 

 More experiments (lab and field) needed to 

further understand its transport properties 
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Transpiration Evaporation 

Soil moisture 

sensors 

Data Logger 

Soil 

Balance 

Percolation 

Rhizon water 

samplers 

Better Understanding of Evaporation Fluxes  

using Environmental Isotopes 

Wenninger et al., 2010; PCE 



 

 
 Evaporation is the driving factor in isotopic fractionation 

 

 Transpiration and percolation do not cause fractionation 

 

 Quantification between fractionating and non-fractionating losses 

 

 

 Conservation of mass and isotopes 

Isotope Mass Balance 

p; precipitation 
t; transpiration 

v; evaporation 

z; percolation 

i; f 
f; final WC 

i; initial WC 

with: 

(e.g. Robertson et al. 2006, J. of Hydrol.) 
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Isotope Depths Profiles and Evaporation Line 

Wenninger et al., 2010; PCE 



 

 The irrigation water is in the range of the GMWL 

 Soil water samples are isotopically heavier and move along the 
evaporation lines 

Meteoric Water Line and Evaporation Line 
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Lysimeter A: slope = 3.75 
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Lysimeter A: 
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Lysimeter B: 
 

Irrigation 

Soilwater 

Percolation 

Wenninger et al., 2010; PCE 



Comparison between different evaporation estimations: 

(a) measured using hydrometric data and HYDRUS 1D, and 

(b) calculated using isotope mass balance. 

(a) 

(b) 

(a) 

(b) 

New way to estimate evaporation fluxes?! 

Lysimeter A Lysimeter B 

Evaporation E (mm) 19 77 

Transpiration T (mm) 99 0 

T/E
total

 ratio 84% 0 





 Area: 46,800 km2 

 Semi-arid climate 
◦ Rainfall ~ 740 mm/a 

◦ Epot ~ 1900 mm/a 

Mhlume Estates 

  Irrigated sugar cane Water 

scarcity 

INTRODUCTION – STUDY AREA 

 

(Adapted from Carmo Vaz et al., 2003) 













Results  - Climate data 
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Results  - Soil Moisture   
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Results  - Soil Moisture  
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Results  - Sap Flow / Transpiration 
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Plant density ~ 130 000/ ha 

 

LAI ~ 4 to 7 



Concluding Remarks 

 The world is changing – Hydrology too (‘stationary is dead’) 

 Global changes (incl. CC) are impacting the hydrological cycle; 
i.e. often ‘acceleration of the water cycle’, but not consistent 
world-wide 

 SWAT application in Karkheh basin: Need for new model? 
Innovate existing ones? 

 New experimental methods are needed! 

 DNA offers new possibilities to trace flow pathways 

 Potential of environmental isotopes to measure evaporation fluxes 
demonstrated through lab experiments 

 First interesting field results from Swaziland – more to come … 

 
Progress in science depends on new techniques, new discoveries and 
new ideas, probably in that order (S. Brenner, 1980) 

 

 


