Impact of climate change on salinization

- during dry periods in Dutch polders and
- necessity of adaptation strategies J. Velstra, J. Oosterwijk and J. Groen

vrije Universiteit am

amsterdam

Human induced land subsidence and land reclamation since medieval times

Flushing the water system

Purpose for water intake	
Supress high salt concentrations	45%
Compensate evaporation surface water -> safety dikes	35%
Sprinkler irrigation	15%
Other use	5%

Water shortage 2003

Year	Description	Recurrence (years)				
		Current	Future (2050-scenario)			
1976/1990	extremely salt	32.1	17.6			
2003	salt	11.1	6.95			
1996	average salt	3.33	2.51			
1994	brackish	1.64	1.43			
2002	moderate brackish	1.19	1.12			

(Beersma, et.al 2005)

Climate change leads to an increased occurrence of periods with water shortage

 Decrease in water availability due to a decrease of water availability from the great rivers (Rhine)

Strategies for measures are being developed

- <u>Adaptation</u> (Salt tolerant crops, Convert agricultural area to nature reserve, ...)
- <u>Mitigation</u> (Desalinization, Seasonal water storage, Pipeline from Germany, ...)
- On national scale discussion on how to divide the water to different land use functions and parts of the country

Strategies for measures are being developed

- <u>Adaptation</u> (Salt tolerant crops, Convert agricultural area to nature reserve, ...)
- <u>Mitigation</u> (Desalinization, Seasonal water storage, Pipeline from Germany, ...)
- On national scale discussion on how to divide the water to different land use functions and parts of the country
- What is the necessity for taking measures?
- Water intake is demand driven and not monitored
- Water shortage is estimated based on the historic actual intake

Strategies for measures are being developed

- <u>Adaptation</u> (Salt tolerant crops, Convert agricultural area to nature reserve, ...)
- <u>Mitigation</u> (Desalinization, Seasonal water storage, Pipeline from Germany, ...)
- On national scale discussion on how to divide the water to different land use functions and parts of the country
- What is the necessity for taking measures?
- Water intake is demand driven and not monitored
- Water shortage is estimated based on the historic actual intake
- How much water is needed to maintain good water quality for farming and safety of dikes
- Can the intake volume be reduced (current and under future climate scenarios)

Case polder Schermer

- Reclamed 17th century
- Surface area (± 1900 ha)
 - < 100 ha surface water</p>
 - 1800 ha land
- One main inlet and several small inlets period april – october (appr. 30.000 m3/d)
- Outlet by pumping station (capacity 170 m3/min, appr. 244.000 m3/d)
 Acacia Water

Typical cross-section

- Seepage
 - flux \pm 0.5 mm/day
 - concentration 100 8000 mg/l
- Precipitation ±2.2 mm/d
- Evaporation ±1.6 mm/d
- Net Prec. ±0.6 mm/d

Water balance approach

- Fluxes and chloride balance on a daily basis •
 - Water ____
 - Chloride

Measurements on fresh water lens and salt accumulation

• Geophysical measurements (CVES) on an agricultural field

SWAP: Fresh water lens and salt accumulation

Transp (40cm/yr)> evap(8cm/yr)

Acacia Water

Transp (15cm/yr) ~ evap(18cm/yr)

SWAP: Chloride discharge from ditches and pipe drains

Water balance: Calibration results

Acacia

0

1-Jan-03

1-Jan-04

1-Jan-05

1-Jan-06

Date

1-Jan-07

1-Jan-08

1-Jan-09

Waterbalance: Calibration results

Water balance: Origin of the surface water in the polder

Chloride concentration with different inlet amounts

Climate scenarios

									\frown
	2050					2100			
	G	G+	W	W+	١.	G	G+	W	W+
e temperature rise	+1°C	+1°C	+2°C	+2°C		+2°C	+2°C	+4°C	+4°C
average precipitation increase	4%	7%	7%	14%		7%	14%	14%	28%
average precipitation increase	3%	-10%	6%	-19%		6%	-19%	12%	-38%
potential evaporation increase	3%	8%	7%	15%		7%	15%	14%	30%
	e temperature rise average precipitation increase average precipitation increase potential evaporation increase	2050 Ge temperature rise+1°Caverage precipitation increase4%average precipitation increase3%potential evaporation increase3%	2050CGGG++1°C+1°Caverage precipitation increase4%3%3%potential evaporation increase3%	2050 GG+We temperature rise+1°C+1°C+2°Caverage precipitation increase4%7%7%average precipitation increase3%6%6%potential evaporation increase3%8%7%	2050 GGWW+e temperature rise+1°C+1°C+2°C\$average precipitation increase4%7%7%\$average precipitation increase3%-10%6%\$potential evaporation increase3%8%7%\$	2050 GMW+CG+WW+C+1°C+1°C+2°C+2°CAverage precipitation increase4%7%7%14%Average precipitation increase3%-10%6%-19%potential evaporation increase3%8%7%15%	2050 GG+WW+2100 Ge temperature rise+1°C+1°C+2°C+2°C+2°Caverage precipitation increase4%7%7%14%7%average precipitation increase3%-10%6%-19%6%potential evaporation increase3%8%7%15%7%	2050 GMW+2100 GG+e temperature rise+1°C+1°C+2°C+2°C4004001400+2°Caverage precipitation increase4%7%7%14%7%14%14%10%60%10%60%10%60%10	2050 G G G W W + 2100 G G G + W e temperature rise $+1^{\circ}$ C $+1^{\circ}$ C $+2^{\circ}$ C

- Climate scenarios made available for all meteo stations by the Dutch Meteorological Institute
 - Precipitation with daily values
 - Potential evaporation with monthly averages

Chloride concentration with different climate scenarios (no flushing)

Chloride concentration with different climate scenarios (with flushing)

Conclusions and further research

- Impact of meteorological change is limited, but
 - Increased salinization due to sea level rise and land subsidence is not accounted for
- In current climate and future climate scenarios a reduction of water intake by 50% is feasible
- Challenge to move forward to efficient distribution and monitoring intake. Which should lead to intake amounts adjusted to the specific purpose.
- Simulations show a decrease of thickness fresh water lens and salt/brackish water reaching the root zone
- Processes on a field scale are important but processes not fully understood. Currently working on:
 - Measurements in different polders for a period of 1-2 years. Water- and mass balance measurements on a field and polder scale
 - Development of fresh water lenses and salt accumulation in the unsaturated zone
 - Model simulations include (un)saturated density dependent flow and transport modeling

Thank you for your attention