

A multi-site approach to risk assessment for the insurance industry

Linda Speight

Supervisors: Jim Hall, Chris Kilsby, Paul Kershaw

HydroPredict, Prague 2010

linda.speight@ncl.ac.uk

Outline

- Introduction
- Methodology
 - Modelling extreme events
 - Flood defences
- Calculating Risk
- Conclusions

Catastrophe Models

Premium = AAL + Risk Load + Expense Load

AIR model output

Aims and Objectives

To develop a method for multi-site concurrent damages due to weather related extremes

Spatial dependencies at multiple scales

2007 Flood (BBC News)

Methodology

Modelling extreme events

• Aim

- Spatial dependency between events
- Large scale model for UK
- Good representation of extremes

Method

 Conditional dependence model of Heffernan and Tawn (2004) applied by Keef et al (2009)

$\mathbf{Y} \mid \mathbf{X}, \, \mathbf{x} > u_{\mathbf{x}}$

- **Y** = set of gauges
- X = conditional gauge
- x = daily mean flow
- $u_x =$ threshold

$\mathbf{Y} = a(x) + b(x)\mathbf{Z}$

- *a* = strength of dependences
- *b* = changing dependence
- Z = residuals

Example application

55023

n

5

28046

10

- = observed
 below threshold
- o = observed

o = simulated

Estimating peak flows at site

Peak flow conversion methods

- Shape of hydrograph
- Catchment characteristics

Ungauged site transfer methods

S1

G2

G1

Analogue sites

S2

• Weighted by distance and catchment characteristics

Flood defence system

Characterised by

- Design standard
- Construction type

Novel aspects

- No restriction on length
- Consideration of upstream breaches

Sampling crest heights

Autocorrelation function for crest height = f (defence type, age, condition, data quality)

Defence reliability

Initiation

- Type

- Fragility curves
- ConditionSequencing

Photos from FLOODsite

Sampling breaches

Autocorrelation function for strength =

f (defence type, age, condition)

Breach widths

Growth Rate

Max width

- Materials
- Floodplain type
- Amount of water
- Sequencing

Case study	Observed values	Assumed values	Source
Elbe	20m to 200m	Log normal	De Kok and
	Median 20m	width mean of	Grossmann
		64m	2010
Lower Rhine		Width 100 –	Apel et al
		400m	2004
Lower Rhine		Width 50 -	Kamrath et al
		150m	2006
UK RASP		Function of load	Hall et all
method		and defence	2003
		length	
Netherlands	Largest 520m		Muir-Wood
	wide and 36m		and Bateman
	deep		2005
River Po		Normal Width:	Govi and
		100m - 300m	Turitto 2000
		Depth:	
		0.5m - 4m	

Damage

Raster based floodplain inundation model

• Depth-damage curves

damage

Damage £/m²

Penning-Roswell et al (2006)

Risk

Risk = Probability x Consequence

$$P(I_{max,i,j} | F_{i,j} | OT_{i,j}, B_{i,j}, BW_{i,j} | L_{j,i}, C_{i,j}, R_{i,j} | Q_{i,j} | X_i)$$

I_{max,i,j} = maximum inundation depth across site j for event i

Risk

Risk = Probability x Consequence

$$P(I_{max,i,j} | F_{i,j} | OT_{i,j}, B_{i,j}, BW_{i,j} | L_{j,i}, C_{i,j}, R_{i,j} | Q_{i,j} | X_i)$$

) = *f*(type, rial, L_{i,j})

F_{i,j} = Flow over or through defence

$$P(B_{i,j}) = f(C_{i,j}, L_{i,j}, R_{i,j}, OT_{i,j})$$

Risk

Risk = Probability x Consequence

$$P(I_{\max,i,j} | F_{i,j} | OT_{i,j}, B_{i,j}, BW_{i,j} | L_{j,i}, C_{i,j}, R_{i,j} | Q_{i,j} | X_i)$$

Q_{i,i} = Inflow to hydraulic model

P(L_i) = f(upstream breaches, Q_{i,i})

Conclusions

- Integrated system model
- Detail nested in national scale
- Consider risk load
 - If modelling of flood defences is poor how much impact does this have?
 - Which areas could flood at the same time / where are we over exposed?
- Future...
 - Sensitivity testing
 - Resilience measurers

Thank you

Civil Engineering and Geosciences

Linda Speight Civil Engineering & Geosciences Newcastle University, UK Linda.speight@ncl.ac.uk

Modelling extreme events (2)

1. Extreme data at conditional gauge

Fit Generalised Pareto

- Shape (β)
- Scale (ε)
- threshold

(years) x

2. Extreme dependence between gauges

Fit dependence model

 $\boldsymbol{Y} = \boldsymbol{a}(x) + \boldsymbol{b}(x)\boldsymbol{Z}$

Solid lines: parametric Dashed lines: nonparametric (residuals)

References

Hall, J. W., R. Dawson, et al. (2003). A methodology for national-scale flood risk assessment. *Proceedings* of the Institution of Civil Engineers-Water and Maritime Engineering, **156**: 235-247

- Heffernan and Tawn (2004) A conditional approach to modelling multivariate extreme values. Journal of the Royal Statistical Society Series B, **66(3)**, 497-547
- Keef, C., Lamb, R., *et al.* (2009a) Spatial coherence of flood risk Methodology report. *Science Report SC060088/SR.*, Environment Agency
- Keef, C., Svensson, C., *et al.* (2009b) Spatial dependence in extreme river flows and precipitation for Great Britain. *J. Hydrology*, **378**, 240-252.
- Keef, C., Tawn, J., et al. (2009c) Spatial risk assessment for extreme river flows. Journal of the Royal Statistical Society Series C- Applied Statistics **58**(5), 601-618.
- Penning-Roswell et al (2006) The benefits of flood and coastal risk management: a manual of assessment techniques, Middlesex University FHRC