

Hydrological applications of probabilistic ensemble forecasts for flash flood early detection

Lorenzo Alfieri and Jutta Thielen

European Commission, Joint Research Centre Ispra, Italy

Prague, 21/09/2010

IMPRINTS 🔊

EC-FP7 Project

IMproving Preparedness and RIsk maNagemenT for <u>flash floods</u> and debriS flow events

Introduction

WHAT: Improve flash flood early detection

- HOW: Hydrological simulation of probabilistic ensemble forecasts (EPS)
- Performance analysis from 3 predictors derived from the EPS
 - Quantitative estimation
 - Threshold exceedance analysis (Important for Early Warning)
 - Influence of forecast persistence

What is the best predictor to use in (flash) flood Early Warning?

Meteorological data

(Source: COSMO Consortium)

COSMO-LEPS 10 km:
 7/2008 - 11/2009, 3 hourly, 10 km grid, 16
 members , lead time =
 5.5 days.

- COSMO-LEPS 7 km:
 From 12/2009, 3-hourly,
 7 km grid, 16 members,
 lead time = 5.5 days.
- 30-year Climatology: (1971-2000), 3-hourly, 10 km grid resolution,1 member from ECMWF EPS control run

Hydrological simulation

17-month simulation (Jul 2008 - Nov 2009) with COSMO-LEPS 10 km

Comparison of simulated ensemble hydrographs with hourly discharge observations, for different forecast lead times (1 to 5 days).

- 1. Sample quantiles of the ensemble (EPS)
- 2. Ensemble mean (EPS mean)
- 3. Fitting of a probability distribution to the EPS (Gamma) Gamma distribution with L-moments fit (Hosking and Wallis, 1997)

	Advantages	Drawbacks
EPS	Use of the original EPS sample quantiles	Little robust, especially in the lowest/highest quantiles
EPS mean	Very robust, it considers all the members	Deterministic prediction, no info on uncertainty/spread of EPS
Gamma	Probabilistic forecast. Robust	Additional uncertainty due to fitting a probability distribution

Comparison of the predictors

Quantitative discharge estimation

9

<u>Threshold = 0.3</u>

10

<u>Threshold = 0.3</u>

- A framework aimed to operational probabilistic flash flood early warning is being tested. The adopted methodology is derived from that of the European Flood Alert System (EFAS)
- Current NWPs give useful support in flash flood forecasting, though some limitations are found in quantitative discharge estimation (extreme events).
- Fitting a (gamma) <u>probability distribution</u> to the hydrologic EPS leads to significant improvements, particularly in the threshold exceedance analysis
- <u>Persistence of forecasts</u> improves the early detection of (flash) floods, especially for short lead times.
- The <u>EPS mean</u> is however a robust and quite accurate (deterministic) predictor

Hydrological applications of probabilistic ensemble forecasts for flash flood early detection

Lorenzo Alfieri and Jutta Thielen

European Commission, Joint Research Centre Ispra, Italy

Prague, 21/09/2010

Flash Flood Warning

14

THRESHOLD EXCEEDANCE ANALYSIS + PERSISTENCE

