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AbSTRACT

shannon’s diversity index is frequently used in the determination of landscape diversity. its indisputable advantage is a possibility to 
obtain numeric values that can subsequently be easily compared. However, accurate evaluation of landscape diversity from obtained results 
is rather complicated. the aim of the article is (i) to take a closer look at the theoretical origin of the formula that stems from the principles of 
the calculation of information entropy and (ii) to draw attention to several issues connected to the shannon index application in landscape 
diversity assessment.

numeric value of the shannon’s index depends on applied logarithm base that is not precisely specified by the formula. Presenting the 
resulting shannon index value without stating the logarithm base is not very suitable. nevertheless, a bigger problem is the dependence of 
the resulting shannon’s diversity index value on two parameters, namely the number of studied categories and evenness of spatial distribu-
tion of individual categories. the resulting value may be identical for different types of the division of the study area. therefore, the number 
of categories and the evenness of spatial distribution need to be taken into consideration in the very assessment of the shannon index result. 
the number of categories could also be presented along with the resulting shannon’s index value. a major drawback of the shannon index is 
its inability to express spatial distribution of patches within the area; it only presents the total extent of each category. out of existing mod-
ifications of the index that try to take spatial distribution into consideration, the most convenient is the coefficient of the distance between 
the extent of identical and different categories.

Based on arguments deriving from theoretical basis of the shannon index formula and its practical application, a new view of landscape 
diversity maximum is presented. the application of the shannon index disregards the fact that the original relation required for entropy 
calculation presupposes independence of the existing state (e.g. land cover categories in case of landscape assessment). With regard to 
the fact that commonly defined categories of patches are independent; the index calculation should make use of the relation considering 
conditional probabilities of the occurrence of a certain category.

Key words: shannon index, entropy, landscape diversity, maximum diversity

1. Introduction

landscape assessment represents a complex activity . 
landscape can be described from the point of quality and 
quantity . Quality description of landscape mosaic focus-
es particularly on its content . on the base of qualitative 
characteristics all structures of landscape mosaic are 
ranged into individual categories, e .g . land cover cate- 
gories . Quantitative approach deals with quantitative as-
sessment, i .e . possibilities to measure and calculate vari-
ous values of the landscape structure . Quantitative land-
scape characteristics are determined by means of land-
scape metrics describing landscape structure and evolu-
tion . a benefit of quantitative values consists in obtain-
ing exact numeric data on the landscape structure that 
can be compared, e .g . various years within one locality or 
various localities in individual years (popelková 2009) . 
The number of landscape metrics is high . For exam- 
ple, mcgarigal and marks (1995) present 100 land-
scape metrics, many of which are mutually dependent 
(cushman et al . 2008) . existing metrics are often modi- 
fied and completely new metrics occur as well . one of 
them is a  newly created coefficient of mining-based 
landscape transformation (mulková, popelková 2008), 

which is defined as the ratio of the area that originated 
due to mining to the area representing original cultural 
landscape . The coefficient represents the transformation 
process of original cultural landscape into mining land-
scape (mulková 2007) .

The use of landscape metrics for the assessment of 
landscape structure and evolution is, however, connected 
with many problems . The metrics cannot always be ap-
plied to all data . special attention thus needs to be paid to 
the interpretation of quantitative data .

landscape can be characterised by diversity  
expressing the extent of heterogeneity and variety of 
landscape structure . in ecology, landscape diversity in-
dices are, for example, the simpson’s  diversity index, 
which is particularly sensitive to species richness, and 
the shannon index, which is sensitive to rare species (Fa-
rina 2006) . shannon’s and simpson’s diversity indices can 
also be applied to landscape (umass landscape ecology 
lab 2012) .

if landscape diversity needs to be assessed, it is shan-
non’s diversity index that is used most frequently, as sta- 
ted by mcgarigal and marks (1995) . The aim of the article 
is to draw attention to difficulties related to the applica-
tion of this landscape assessment index .
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2. Theoretic background

2.1 Origin 

The author of shannon’s diversity index equation is 
claude elwood shannon (1916–2001), an american 
electronic engineer and mathematician, known as the 
father of information theory . The equation, which was 
published in A Mathematical Theory of Communication 
in 1948 (shannon 1948), was derived within informa-
tion theory and the quantity that it expresses was named 
entropy . shannon adopted this denomination from Boltz-
mann’s thermodynamic entropy . although there is formal 
congruence of the relations within information and ther-
modynamic entropy, it took many years until their mu- 
tual relation was proved . at present, the relation is ap-
plied in many scientific fields; among others, in geogra-
phy and biology for diversity determination .

2.2 Information and entropy

in order to understand the importance of the relation 
that is used in connection with landscape diversity, its ori- 
gin within the information theory needs to be shown .

Basic concepts:
– alphabet is a set of symbols – the number of symbols s,  

e .g . for the alphabet {a, b, c, d, e} is s = 5 .
– message is a sequence of symbols, e .g . ‘babaccdbeae’, 

of the length n . in the given example n = 11 .
The number of possible messages N of the length n 

over the alphabet of symbols s is calculated as a variation 
with repetition:

N = sn .
in the above case N = 511 = 48,828,125 possible mes-

sages .
We look for a function that can express information 

extent (I) contained in a single message . This function 
must comply with two requirements:

1 . the amount of information in a message depends on 
the number of possibilities (alternatives) N – the higher N 
is, the more information the message contains

I = f(N) = f(sn),
2 . if one message originates as a compilation of two 

messages (n = n1 + n2), the amount of information in the 
resulting message equals the sum of information con-
tained in individual messages:

I = f (sn1+n2) … the message originates as a compilation 
of two messages,

I = I1 + I2 = f (sn1) + f (sn2) … the resulting information 
is the sum of all information,

f (sn1+n2) = f (sn1) + f (sn2) … we look for a function that 
complies with this equality relation .

The mathematical solution (shannon 1948) is the 
equation:

I = k ∙ log (sn) = k ∙ n ∙ log s, (1)

where k is any constant – the issues of the constant are 
dealt with in the section ‘logarithm base’ . The equation 
expresses the information extent within one message . if 
we want to express the average information extent for one 
symbol of the message, then we get 

H = 
1

 = k log s .  n
 (2)

This relation is valid in the case of equal probability 
(frequency) of the occurrence of individual symbols in one 
message . if the symbols appear with dissimilar probabi- 
lity pi ∈ (p1, p2 … ps), where 0 ≤ pi ≤ 1, then after mak-
ing modifications and using stirling’s formula (shannon 
1948) we get the relation expressing the amount of infor-
mation for one symbol of a message

H = 
1

 = −k    s   pi log pi  .  n i=1∑  (3)

as stated above, the quantity H was denominated en-
tropy (information entropy) . The relation (3) presents the 
features of entropy:

1 . entropy only depends on probabilities (not on  
values of symbols in a message),

2 . entropy is invariant to the sequence of symbols,
3 . for a  concrete s, maximum entropy occurs for 

p1 = p2 = … = ps = 1/s, i .e . for steady representation of 
symbols,

4 . minimum entropy occurs for s = 1, then p1 = p = 1 
and p log p = 1 ∙ log 1 = 1 ∙ 0 = 0 → H = 0 .

2.3 Application for landscape diversity

The original equation contained probabilities of phe-
nomena (symbols) that in landscape assessment were 
substituted with proportional representation of areas 
of individual categories . proportional representation of 
individuals within individual categories is used in order 
to determine the diversity of species in biology . shan-
non’s diversity index (ShI) used in landscape assessment 
is defined as follows:

ShI = −    m  Pi log Pi ,∑i=1
 (4)

where m is the number of the studied categories (e .g . land 
cover categories), Pi is proportional representation of i-th 
category in the total area:

 BiPi =  ,
 m Bi∑i=1

 Bi is surface area of i-th category .

ShI expresses uncertainty with which we are able to 
predict which category a randomly selected point within 
the studied area will belong to .

the calculation of ShI derives from the fact that 
a higher value of ShI points to higher landscape diversity . 
although absolute ShI amount can be interpreted with  

AUC_Geographica_02_2012_47_2592.indd   6 19.11.12   14:29



AUC Geographica 7

difficulties, ShI is frequently used as a relative index in  
the comparison of various areas or the same locality  
in several years (mcgarigal and marks 1995) .

The calculation of diversity by means of ShI is not the  
only use case the logarithmic function in geography .  
the other applications are presented for example in 
Thomas and huggett (1980) .

3.  Practical problems related to the Shannon  
index application

equation (1) and subsequently equation (3) were de-
rived from basic requirements of the function I or H . 
The equations do not define the values I and H absolute-
ly clearly because they contain a constant k and a loga-
rithmic function . as for the logarithmic function, a pa-
rameter is logarithm base a which the equations do not 
determine . With regard to the fact that the logarithmic 
function generally complies with the requirements of the 
equations, it is possible to select a random value com- 
plying with the condition a ∈ r, 0 < a ≠ 1 as the logarithm 
base . The logarithm base is also related to the constant k . 
in the calculation, the constant is a criterion that decides 
about the units in which the result will be expressed . The 
constant can be selected based on the requirements of 
a concrete equation value for given values n and s . For 
example, if the average information extent for one symbol 
of binary alphabet (s = 2) is required to equal one, we can 
start from equation (2): 

H = I/n = k ∙ logas,
H = k ∙ loga2 = 1,
k = 1/loga2 .

using the relation (rektorys 1963)
 loga x
logb x = 
 loga b

 (5)

we get: 
 1
H =   loga s = log2 s . loga 2

The selection of the constant thus determined the  
logarithm base . 

it is the binary logarithm (logarithm to the base 2) that 
is exclusively used in the information science because 
each symbol in a message brings one unit of information 
and the information of the whole message is given by  
the number of symbols . as it is generally known, a unit 
of information expressed by means of binary logarithm 
is the bit . other commonly used logarithm bases are 
e  =  2 .7182… (euler number)  – the so-called natural  
logarithm and 10 – decadic logarithm .

The question of logarithm base in ShI remains often 
unresolved . consequently, it is merely the ShI value that 
is presented regardless the concrete logarithm base . This 

fact is accompanied by disunity in logarithm denotation . 
different countries and different fields of science use dif-
ferent logarithm denotations: log, lg, ln, lb, and ld . if the 
logarithm base used in the calculation is unknown, no 
comparison of calculated values with the values of other  
authors is possible . This problem could be solved by 
conventional modification of the equation in which the  
logarithm base is presented as an index, as in the case 
ShI2 = 1 .12, which means that the index was calculated by 
means of a binary logarithm .

3.1 Numeric perspective

For Pi = 0, the logarithm reaches the value minus in-
finity and the expression Pi ∙ log Pi is indefinite (0 ∙ -∞) . 
on the basis of the limit it is determined that 0 ∙ log 0 = 0 . 
There is a  drawback in the practical calculation that 
log 0 = -∞ can cause calculation collapse . Therefore, there 
are two methods:

a) make sure zero stays away from the calculation – 
this is feasible using manual calculation in which zero 
values are left out,

b) include a condition into the calculation which says 
that for Pi = 0 the calculation disregards the equation and 
directly substitutes the expression Pi ∙ log Pi (0 ∙ log 0 = 0) 
with zero . This way it is necessary to treat all bulk calcu-
lations in e .g . spreadsheet or gis software .

ShI can acquire values coming from real num- 
bers from 0 to +∞, while 0 is the result for Pi = 1 .  
the value of Pi decreases with increasing number  
of categories, namely for Pi → 0 there is, in theory,  
log Pi → +∞ . practically, however, ShI never reaches high 
values – e .g . for a million of evenly represented cate- 
gories and in case of the binary logarithm ShI2 = 20 .  
as for practical calculations, we are always limited by 
the number of categories which is always finite . even 
theoretically, with an infinite number of categories, 
we are limited by the accuracy of processed data . if we 
suppose the accuracy of 1 m2, in case of e .g . the uni- 
ted kingdom (243,610 km2) we are able to distinguish  
2 .44 ∙ 1011 of individual patches for which ShI2 = 37 .8 . 
Thus, it is impossible to even remotely approximate in-
finitely high values in practical calculations . 

in calculations and subsequent assessment of land-
scape diversity, it is essential that maximum diversity 
value is precisely given for a concrete number of patch 
categories . maximum diversity value occurs with even 
representation of categories .

4.  Theoretical problems of the application  
of the Shannon index

4.1 Dependence on two parameters

equation (4) shows that ShI value depends on two 
parameters . The first parameter is the number of studied  
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categories m; the ShI value increases with an increa- 
sing number of categories . The other parameter is the 
evenness of the spatial representation of individual 
categories; maximum ShI value is reached with fully 
even spatial representation of categories . The depend-
ence of the only value of the result on two parameters 
is a drawback of the equation for ShI calculation . equal 
diversity value is thus observed in the territory whose 
90% is dominated by one category and the rest 10% is 
evenly divided into 10 parts (total number of categories 
in the area is thus 11) as well as in the territory that 
contains two categories in a ratio of 24 .4 : 75 .6 . in both 
cases ShI2  makes  0 .8 . The situation is graphically re- 
presented in Figure 1 . The figure shows that ShI prefers 
large areas to small areas . 

Fig. 1 example of two areas with a different number of categories 
but equal ShI value

The dependence of ShI on two variables is given in 
Figure 2 . The figure shows an isoline graph of ShI values . 
The calculation was carried out as follows:

1 . the so-called basic part was singled out of the whole 
studied area (100%) . The size of this basic part ranged 
from 1% (1/100 of the area) up to 50% (1/2 of the area) – 
the size of the basic part is presented on the horizontal 
axis in percentage,

2 . the rest of the area (100% minus the basic part) was 
gradually divided into one, two, three up to fifty equal 
segments – the number of the segments is presented on 
the vertical axis,

3 . providing each segment represents a different cate-
gory, for the area divided in this way, ShI was calculated in 
the network of coordinates 1 × 1 and isolines were drawn .

Fig. 2 ShI isoline graph for different types of area division  – 
explanation in the text

as the graph shows, the highest ShI values are reached 
in the upper left corner (the upper limit is marked with 
a  black point) . a  clear perspective view of the graph 
is given in Figure 3 . The exact position of the upper 
limit occupies the coordinates x = 1 .96078 = 1 .96 . ;  
y = 50 . in this case, the size of the basic part is 1 .96% 
and the rest (98 .04%) is divided into 50 segments . 
The size of one segment is 98 .04/50 = 1 .96 . The whole 
area is therefore divided into 51 equal segments and  
ShI2 = 5 .672 . The lower limit lies on the coordinates  
[1; 1], which correspond to the basic part equal to 1%, 
and the rest is divided into one segment – which means it 
is not further divided . The territory consists of two parts 
whose areas are in a ratio of 1 : 99 ShI2 = 0 .081 . Then, 
ShI2 = 1 for the coordinates [50; 1] .

Fig. 3 Perspective view of the graph from Figure 2
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Figure 2 demonstrates that ShI isolines are curves and 
the same index value thus holds true for more (in theory, 
infinitely many) variants of the area division . For this rea-
son, the ShI interpretation is difficult .

taking a formal view of diversity, the above described 
drawback of ShI can turn into a seeming asset . if we make 
little effort to understand diversity and simplify its defi-
nition to e .g . the shannon index, then making an easy 
calculation we obtain a single number with which we can 
further work relatively blithely .

similarly to the logarithm base, also in the case of 
the number of categories, it would be suitable to pre- 
sent the information together with ShI value . as for 
the example in Figure 1, it is convenient to distinguish 
ShI2 = 0 .8{11} and ShI2 = 0 .8{2}, i .e . ShI calculated from  
eleven categories and two categories respectively . gallego 
et al . (2000) use the denomination ‘sh9, sh23’ for the 
index calculated for 9 and 23 categories respectively . as 
in the case of logarithm base, concrete graphic form of 
the presentation of the number of categories is a ques-
tion of convention . There is a  multitude of possibili-
ties (e .g . ShI72 = 0 .91; ShI(2) = 0 .91[7]; ShI = 0 .91[7/2]; 
7ShI2  =  0 .91…) and the main problem is not how to 
visualise but to start visualising .

4.2 Diversity solving in the plane

similarly to many other landscape metrics, a funda-
mental problem of ShI is that it is not explicitly spatial . 
Within the studied area, no attention is paid to spa- 
tial distribution of individual patch types with different 
land cover . This problem is demonstrated on two dif- 
ferent territories in Figure 4 . Both visualised territories 
contain three categories with spatial representation in 
a ratio of 36 : 34 : 30 . Both the areas thus present identical 
ShI2 = 1 .58{3} . With the naked eye we can see in the figu- 
re that diversity within the first territory (situation i) is 
higher than diversity within the other territory (situation 
ii), which, however, ShI results do not disclose . That is 
a fundamental problem of ShI related to its application . 
landscape diversity should reflect not only the number 
of patches and their total extent but also the spatial dis-
tribution of individual landscape elements . ShI, however, 
is unable to express this information .

although a majority of ShI users fail to occupy them-
selves with the issues of spatial distribution, some authors 
are evidently trying to deal with this disadvantage . one 
of the first authors to deal with the problem was Batty 
(1974) who used entropy for regionalization . applying 
entropy in human geography, he completed the calcula-
tion with a parameter of the zone extent . subsequently 
using the iterative technique, he clustered zones in or-
der to achieve maximum entropy . one of his thoughts 
presented in the conclusion of his work can be men-
tioned in connection with the ShI application: ‘it is un-
believable how many [geographic analyses] ignore the  
question of space’ (sad but true this statement is even in 

this time of advanced geoinformation technologies) . Bat-
ty’s method was employed by e .g . paszto et al . (2009) in 
cartographic applications .

a different approach was selected by gorelick (2006) 
who introduced a matrix analogue of the shannon’s and 
simpson’s indices . This procedure is an interesting trans-
fer of ShI into 2d space . it can be used in theoretical  
solving of some problems; however, it is not suitable for 
practical application related to a  territory of a general 
shape . 

situation i

situation ii

Fig. 4 two examples of distribution of 3 categories in the area

category a category B category c
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spatial distribution was successfully taken into consi- 
deration by claramunt (2005) . his method was applied 
by li and claramunt (2006) and Wang and Wang (2011) .  
its principle is the calculation of average distances  
between patches of the same category and patches of 
different categories . The equation (4) was modified into  
the form

 dint
ShI = −   m  (Pi log Pi) ,
 dext∑i=1 i

i  (6)

where dint is an average distance between areas of the 
same category (‘inner distances’), dext is an average dis-
tance to areas of other categories (the distances relate 
to gravity centres of areas) . The fraction is practically 
a balance which takes into consideration whether the 
areas of individual categories are clustered or ‘dispersed’ 
all around the territory . examples of values calcula- 
ted for the situations in Figure 4 are presented in tab . 1  
and tab . 2 . 

resulting ShI values after spatial distribution of indi-
vidual areas has been taken into consideration:

situation i: ShI = 1 .5597 .
situation ii: ShI = 0 .9836 .
The original value is equal for both situations: ShI = 

1 .5809 .
The results show that these values rather correspond 

to general notion of landscape diversity . advantage of this 
method rests in the fact that it can be used with raster 
data format in which each raster cell represents a single 
patch (as shown in Figure 4, situation ii) . With regard 
to regular cell shape, there is no need to determine the 
distance between areas of a general shape .

despite interesting results, the method brings a new 
problem, which is the theoretic base (not connected only 
with this method, but all ShI modifications) . ShI has an 
explicit theoretic base and even though its interpretation 
in landscape assessment is difficult, it is clear what base 
it stems from and what conditions it complies with . The 
modification of the ShI equation does not mean ‘modi-
fied shannon index’ but new characteristics with a differ-
ent theoretic starting point that does not necessarily have 

to have anything in common with the original shannon 
entropy . 

another problem of the calculation according to (6) 
is the determination of maximum diversity . The compli-
cated parameter of average distances practically makes 
it impossible to exactly determine maximum possible 
diversity . 

if we use landscape diversity to infer the species diver-
sity, another important indicator, apart from the number 
of patches and their distribution, is also boundary seg-
mentation and boundary length . however, no informa-
tion of this parameter is brought by ShI . unlike the spa-
tial distribution of landscape elements, the issue of the 
boundaries is not solved by means of ShI modification, 
but different landscape metrics such as the total boundary 
length, boundary density and fractal dimension (mcgari-
gal and marks 1995) .

4.3 Independence of categories 

shannon’s derivation of entropy starts from a prem-
ise of independent occurrence of individual symbols in 
a message . This premise is valid for a randomly generated 
message, but not for a majority of natural systems . an 
example of non-random occurrence of symbols is a text 
in english or another language in which some pairs (tri-
os …) of letters are more probable than others . shannon 
(1948) presents the following hierarchy:

– zeroth-order approximation … symbols are inde-
pendent and characterised by equal probability,

– first-order approximation … symbols are indepen- 
dent and characterised by dissimilar probability – it is 
a model for which entropy or ShI are derived,

– second-order approximation … symbols are char-
acterised by dissimilar probability which depends on the 
previous symbol (some pairs of symbols occur more often 
that others),

– third-order approximation … symbols are charac-
terised by dissimilar probability which depends on previ-
ous two symbols (some trios of symbols occur more often 
than others),

– etc .

Tab. 1 values of average distances between categories

A–A B–B C–C A–B A–C B–C

Situation I 2.4635 2.5194 2.7126 2.5085 2.6262 2.6549

Situation II 1.7989 1.8575 1.8343 2.5009 3.8647 2.5903

Tab. 2 values of the numerator and the denominator of a fraction for individual categories

Situation I Situation II

category a category B category c category a category B category c

Numerator 2.4635 2.5194 2.7126 1.7989 1.8575 1.8343

Denominator 2.5690 2.5884 2.6415 3.2023 2.5497 3.1877

Fraction 0.9589 0.9734 1.0269 0.5618 0.7285 0.5754
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in case of the second-order approximation and high-
er-order approximation it is necessary to consider aggre-
gate or conditional probabilities . 

mutual independence of individual categories in land-
scape diversity assessment is given by a concrete defini-
tion of the categories . commonly used categories are not 
independent . For example, the categories of arable land, 
forest and water bodies can be considered independent . 
on the contrary, the categories of industrial and commer-
cial units and road and rail networks are dependent cat-
egories because the occurrence of road and rail networks 
is closely related to the occurrence of industrial and com-
mercial units . a similar situation holds good for water 
bodies, water streams and other categories .

if we wanted to preserve entropy as a principle of di-
versity calculation, we would have to deal with at least 
the second-order approximation . This would mean be-
ing acquainted with estimates of mutual dependences of 
pairs of categories and applying them in the calculation . 
such a method is not unusual and it is equation (4) that is 
almost exclusively used, even though land cover charac-
teristics do not comply with its demands .

4.4 Maximum diversity

in addition to direct ShI calculation used in landscape 
assessment, we can also use maximum diversity, which is 
calculated:

ShImax = log m (7)

the denomination indicates that it concerns the 
highest possible value of the shannon index that can be 
reached within a given territory . ShI reaches the highest 
values for regular representation of individual categories 
if the relation (4) is simplified to (7) . almost all authors 
present m as a number of land cover categories . however, 
a question is if it represents a number of categories occur-
ring in the study area or a theoretically possible number 
of all the categories . maximum diversity is generally cal-
culated for the number of categories occurring in a giv-
en territory . although the resulting value has a certain 
reporting ability, it is not maximum diversity . maximum 
diversity can be obtained if m represents a number of all 
potential categories – this number depends on how the 
categories are defined . For example, the eu corine 
land cover (clc) methodology contains 44 land cover 
categories .

arguments for the use of all categories in the calcula-
tion of maximum diversity:

1 . if we really want to achieve maximum entropy, the 
use of all categories brings a higher value .

2 . in a calculation made on the basis of existing cate- 
gories we only work with one parameter, which is the 
distribution of categories . in reality, diversity is depen- 
dent on two parameters, neither of which needs to be 
favoured . using the existing categories, one parameter 

is fixed and we try to reach the maximum by changing 
the other parameter . it is difficult to imagine that we fix 
the distribution of categories while changing the num-
ber of categories because the change in the number of 
categories inevitably causes changes in the distribution 
of categories . still, we can imagine a situation in which 
the distribution of categories is given and the maximum 
is reached by means of the number of categories . an ex-
treme but easily understandable example is regular re- 
presentation of categories . how can maximum diversity 
be achieved with regular representation of categories? 
We need to increase the number of categories to its maxi- 
mum; the maximum is all the categories within used 
methodology .

3 . The unsuitability of calculating maximum diversi-
ty using the number of existing categories becomes dis-
closed for m = 1 . Then ShI = 0 and also ShImax = 0 . We get 
into an absurd situation in which the smallest possible 
diversity is at the same time the maximum diversity .

4 . Within the information theory entropy is calculated 
as a sum made not only over symbols contained in a mes-
sage but over all the symbols of the alphabet (all possible 
states) . maximum entropy is then logically calculated 
from the number of alphabet symbols . if the land area of 
categories is an analogue of the probability of the symbol 
(state) occurrence, diversity is calculated over all catego-
ries and in the same way maximum diversity should be 
calculated .

The calculation of maximum diversity is related to 
the comparison of the existing diversity with its maxi-
mum value . a different case is the calculation of shan-
non’s evenness index (ShEI) which also contains ‘maxi- 
mum’ diversity in the denominator: ShEI is supposed 
to express the regularity in the representation of in-
dividual categories, which is why the denominator is 
logically calculated from the existing categories . in this 
case it is not suitable to use the term ‘maximum’ di-
versity for the denominator . instead of the equations 

i=1 − ∑m
  (Pi log Pi) − ∑m

  (Pi log Pi)ShEI =  = 
 ShImax log m

i=1
 

it would  
 

be more suitable to use:

i=1 − ∑m
  (Pi log Pi) − ∑m

  (Pi log Pi)ShEI =  = 
 ShI' log n

i=1 , where 

n is a number of categories occurring in the territory,  
n ≤ m .

5. Recommendation and conclusion

‘a model of reality is created emphasizing certain con-
nections, while (inevitably) neglecting others,’ present  
guiasu and shenitzer (1985) in connection with the maxi- 
mum entropy used for solving mathematical models 
of reality . This statement precisely depicts the situation 
in which ShI tries to express very complex landscape  
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characteristics using a single figure . despite the fact that 
the shannon index is the most popular diversity index 
(mcgarigal and marks 1995), its application is connected 
with a number of problems that a majority of users are 
unaware of or fail to deal with . mechanical application 
of ShI is not suitable since the resulting values can bring 
distorted characterisation of the studied locality . From 
the above mentioned we can derive the following recom-
mendations for the application of ShI:

1 . be aware of the origin of the equation,
2 . avoid overestimating the ShI value – it does not rep-

resent universal characteristics of landscape diversity,
3 . avoid presenting the resulting numeric value only; 

include parameters that are essential for further com- 
parison of the results – logarithm base and the number 
of categories, 

4 . be aware of insufficient information related to spa-
tial distribution; use ShI modification that takes spatial 
distribution into consideration,

5 . express maximum landscape diversity advisedly .

5.1 Conclusion
as it is necessary to approach the application of shan-

non’s diversity index critically, it is also necessary to pay 
close attention to other concepts and procedures related 
to landscape diversity . With regard to the fact that on 
one hand, diversity is a very complex feature and, on the 
other hand, it is a very popular phenomenon, there are 
many other improper simplifications . For example, the 
statement that higher diversity leads to higher landscape 
stability is completely misleading if the type and quality 
of patches are disregarded . Therefore, the understand-
ing and characterisation of landscape diversity require 
a more complex approach which avoids using a single 
figure or a simple term but focuses on capturing diver-
sity from a complex perspective, for example la rosa, 
martinico, privitera (2011), Fahrig, Baudry, Brotons et 
al . (2011) .
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RéSuMé

Teoretický pohled na Shannonův index při hodnocení  
diverzity krajiny

příspěvek se zabývá teoretickými aspekty používání shannono-
va idexu při hodnocení diverzity krajiny a rozebírá problémy, které 
s sebou přináší jeho formální aplikace . základním východiskem je  
původní teoretický základ vzorce, který vychází z principů výpočtu 
informační entropie . analyzována je závislost numerické hodno-
ty indexu na dvou parametrech, kterými jsou počet sledovaných 
kategorií a  rovnoměrnost plošného zastoupení vyskytujících se 
kategorií . vzhledem k  tomu, že pro více způsobů rozdělení zá-
jmového území může být výsledná hodnota shannonova indexu  
stejná, je nutné při hodnocení výsledku přihlížet k počtu kategorií 
i k rovnoměrnosti plošného zastoupení jednotlivých kategorií . pro- 
to je doporučeno uvádět u výsledné hodnoty shannonova indexu 
také počet kategorií .

základním nedostatkem shannonova indexu je skutečnost, že 
nevyjadřuje prostorové uspořádání ploch kategorií v území, ale 
pracuje pouze s celkovými velikostmi kategorií . Je uveden přehled 
a provedeno zhodnocení existujících modifikací indexu, které se 
snaží prostorové uspořádání zohlednit . Jako nejvhodnější se jeví 
využití koeficientu, který zohledňuje vzdálenosti mezi plochami 
stejných a odlišných kategorií . tato modifikace je podrobně před-
stavena na modelovém příkladu .

na základě argumentů vycházejících z  teoretického základu 
vzorce pro výpočet shannonova indexu a z praktických aplikací 
tohoto vzorce je také představen nový pohled na pojem maximální 
diverzita krajiny .

při užívání shannonova indexu je zcela opomíjeno, že původní 
vztah pro výpočet entropie předpokládá nezávislost vyskytujících 
se stavů (v případě hodnocení krajiny např . kategorií krajinného 
pokryvu) . vzhledem k tomu, že běžně definované kategorie ploch 
nejsou nezávislé, měl by se pro výpočet shannonova indexu užívat 
vztah zohledňující podmíněné pravděpodobnosti výskytu kategorií .
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