Design Strategies in Hydrothermal Polymerization of Polyimides

Baumgartner, B.; Bojdys, M. J.; Skrinjar, P.; Unterlass,* M. M. Macromolecular Chemistry and Physics 2015, DOI: 10.1002/macp.201500287.

TOC

Hydrothermal polymerization, a benign synthesis for aromatic polyimides, is studied in detail to gain greater insight in the ongoing mechanisms. By performing an extensive set of experiments at various parameters, polyimides of outstanding crystallinity are obtained and could thus refine their crystal structure from powder XRD data. Initial condensation intermediates could isolate, which indicates that HTP is mechanistically closely related to classical step-growth polycondensations.

DOI: 10.1002/macp.201500287

This is the pre-peer reviewed version of the following article: Baumgartner, B.; Bojdys, M. J.; Skrinjar, P.; Unterlass,* M. M. Macromolecular Chemistry and Physics 2015, DOI: 10.1002/macp.201500287, which has been published in final form at [DOI: 10.1002/macp.201500287].

2D or not 2D-layered functional (C, N) materials “beyond silicon and graphene”

Bojdys,* M. J. Macromolecular Chemistry and Physics 2015, DOI: 10.1002/macp.201500312.

TOC

As of 2015, the number of mobile phone subscriptions outstrips Earth’s human population. Critical raw materials (CRMs) and silicon, won in energy intensive refinement make up the electronics in all these devices. While graphene still has to deliver on its potential in electronic applications, we look to 2D polymer materials that go beyond silicon and graphene.

DOI: 10.1002/macp.201500312

This is the pre-peer reviewed version of the following article: Bojdys,* M. J. Macromolecular Chemistry and Physics 2015, DOI: 10.1002/macp.201500312, which has been published in final form at [DOI: 10.1002/macp.201500312].

Dr. Michael J. Bojdys receives ERC Starting Grant

LOGO-ERC

For the second time in recent years the European Research Council (ERC) has awarded one of the prestigious ERC Starting Grants to a scientist of the Department of Organic Chemistry at the Charles University in Prague. Materials chemist Dr. Michael J. Bojdys received this grant endowed with up to 1.5 Million Euro to promote basic research on “functional nanomaterials beyond graphene” over the next five years. Function and structure of these organic materials beyond graphene can provide opportunities for designing new generations of electronic devices such as field-effect transistors, gas sensors etc.

Read more…

Triazine-based graphitc carbon nitride (TGCN) featured in “Stanene the next miracle material?” – by Michael Gross

“Ten years after the discovery of graphene, analogous two-dimensional sheets made from other elements, including tin, are emerging as competitors for the miracle material.” – Gross, M.

Chemistry & Industry 2014, 78, 24. [DOI: 10.1002/cind.789_5.x]
Highlight for the article: Algara-Siller, G.; Severin, N.; Chong, S. Y.; Björkman, T.; Palgrave, R. G.; Laybourn, A.; Antonietti, M.; Khimyak, Y. Z.; Krasheninnikov, A. V.; Rabe, J. P.; Kaiser, U.; Cooper,* A. I.; Thomas, A.; Bojdys,* M. J. Angewandte Chemie International Edition 2014, 53, 7450–7455, [DOI: 10.1002/anie.201402191]

Carbon nitride vs. graphene – now in 2D!

Cooper, A. I.; Bojdys,* M. J. Materials Today 2014, 17, 468–469.

p18

A polymer laboratory might not be your first port-of-call for replacement materials for silicon in sensors and transistors, but polymer chemistry and organic synthesis may have much to offer here: enter the world of modular chemical design of new 2-dimensional materials.

DOI: 10.1016/j.mattod.2014.10.001 [Download]

This article is published under the terms of the Creative Commons Attribution-NonCommercial-No Derivatives License (CC BY NC ND) in final form at [DOI: 10.1016/j.mattod.2014.10.001].

“gt-C3N4—The First Stable Binary Carbon(IV) Nitride” – by Prof. Dr. Edwin Kroke

Twenty-five years ago a diamondlike C3N4 phase was postulated. After many unsuccessful attempts the synthesis of an s-triazine-based modification was accomplished, which is reported to show interesting semiconducting and catalytic properties similar to that of graphene and related graphitic C/N/H phases.” – Prof. Dr. Edwin Kroke

Angewandte Chemie International Edition 2014. [DOI: 10.1002/anie.201406427]

p17

Highlight for the article: Algara-Siller, G.; Severin, N.; Chong, S. Y.; Björkman, T.; Palgrave, R. G.; Laybourn, A.; Antonietti, M.; Khimyak, Y. Z.; Krasheninnikov, A. V.; Rabe, J. P.; Kaiser, U.; Cooper,* A. I.; Thomas, A.; Bojdys,* M. J. Angewandte Chemie International Edition 2014, 53, 7450–7455, [DOI: 10.1002/anie.201402191]

Bojdys Group