

Katerina Mrazova

Staining Strategies of Biological Samples Prepared for Volume Microscopy

Summary

- On section vs. En bloc staining
- Staining reagents
 - → osmium tetroxide
 - → thiokarbohydrazide
 - → uranyl acetate
 - → lead aspartate
- Mostly used methods
 - \rightarrow OTO
 - \rightarrow rOTO
 - \rightarrow Hua
- Possible problems
- Alternative staining methods

Staining strategies

Staining reagents

- Osmium tetroxide
 - → yellow crystals, highly oxidizing, volatile vapours
 - → reaction with organic compounds (unsaturated bonds of fatty acids)
 - → secondary fixation agent (membranes) as well as a contrasting agent
 - \rightarrow reduced osmium (+ K₃[Fe(CN)₆] / K₄[Fe(CN)₆])
- Thiokarbohydrazide
 - → white to pale grey crystals, toxic, light-sensitive
 - → very slightly soluble (0.5g/100g, 25°C)
 - → attachment to osmium bound in the tissue enabling second osmium binding

Staining reagents

- Uranyl acetate
 - → negative staining, on-section staining, en bloc staining since the 1960s
 - → highly toxic, mildly radioactive
 - → mostly reacts with nucleic acids and proteins
 - → subject to rising legal restrictions
 - → lanthanoids as a possible substitute
- Lead aspartate (Walton PbAsp, 1979)
 - → aspartic acid + lead nitrate
 - → lesser contaminations, lower pH than lead citrate
 - → toxic, challenging preparation

Conventional staining strategies

	protocol					
incubation steps	гото	ото	Hua			
1.	2% OsO4, 2.5% ferrocyanide, 0.15 M Cac, pH 7.4	2% OsO4, unbuffered	2% OsO4, 0.15 M Cac, pH 7.4			
	1.5 h @ rt	1.5 h @ rt	1.5 h @ rt			
	No wash					
2			2.5% ferrocyanide, 0.15 M Cac, pH 7.4			
			1.5 h @ rt			
	0.5 h wash in water x 2					
3	1% TCH, unbuffered	1% TCH, unbuffered	1% TCH, unbuffered			
	0.75 h @ 50 °C	0.75 h @ rt	0.75 h @ 40 °C			
	0.5 h wash in water x 2					
4	2% OsO4,	2% OsO4,	2% OsO4,			
	unbuffered 1.5 h @ rt	unbuffered 1.5 h @ rt	unbuffered 1.5 h @ rt			
	0.5 h wash in water x 2					
	1 % uranyl acetate, unbuffered	1 % uranyl acetate, unbuffered	1% uranyl acetate, unbuffered			
5	2 h @ 50 °C	2 h @ 50 °C	overnight @ 4 °C, 2 h @ 50 °C			
	0.5 h wash in water x 2					
6	Lead aspartate, pH 5.0	Lead aspartate, pH 5.0	Lead aspartate, pH 5.0			
	2 h @ 50 °C	2 h @ 50 °C	2 h @ 50 °C			
		0.5 h wash in water x 2				
	dehydration, infiltration and embedding					

OTO, Seligman, 1966

ISI CAS

- Firstly published to enhance the contrast of osmicated sections on grids
- Variations of the protocol used for en bloc staining
- Procedure
 - \rightarrow glutaraldehyde (2,5% in buffer, RT/4 °C, 4h)
 - \rightarrow washing buffer (3x15min)
 - \rightarrow OsO₄ (2% in buffer, RT, 1,5h)
 - \rightarrow washing buffer (3x15min)
 - → thiocarbohydrazide (1% in water, 50°C, 1h)
 - \rightarrow washing water (3x15min)
 - \rightarrow OsO₄ (1% in water, RT, 1h)
 - \rightarrow washing water (3x15min)
 - \rightarrow uranyl acetate (1% in water, 50°C, 2h)
 - \rightarrow washing water (3x15min)
 - → Walton lead aspartate (50°C, 2h)
 - \rightarrow washing water (3x15min)
 - → acetone (30% » 50% » 70% » 80% » 90% » 95% » 100%, RT, 15min)
 - → epon (in acetone, 1:2 » 1:1 » 2:1 » 2x pure resin, RT, 1h, last overnight, curing 60°C 48h)

rOTO, Willingham, 1983

- Improvement of fixation/staining of lipidic structures and membranes before EtOH dehydration
- Procedure
 - \rightarrow glutaraldehyde (2,5% in buffer, RT/4 °C, 4h)
 - \rightarrow washing buffer (3x15min)
 - \rightarrow OsO₄ + K₄[Fe(CN)₆] (2%+2,5% in buffer, RT, 1,5h)
 - \rightarrow washing buffer (3x15min)
 - → thiocarbohydrazide (1% in water, 50°C, 1h)
 - \rightarrow washing water (3x15min)
 - \rightarrow OsO₄ (1% in water, RT, 1h)
 - \rightarrow washing water (3x15min)
 - \rightarrow uranyl acetate (1% in water, 50°C, 2h)
 - \rightarrow washing water (3x15min)
 - \rightarrow Walton lead aspartate (50°C, 2h)
 - \rightarrow washing water (3x15min)
 - → acetone (30% » 50% » 70% » 80% » 90% » 95% » 100%, RT, 15min)
 - \rightarrow epon (in acetone, 1:2 » 1:1 » 2:1 » 2x pure resin, RT, 1h, last overnight, curing 60°C 48h)

rOTO, Willingham, 1983

Improvement of fixation/staining of lipidic structures and membranes before EtOH dehydration

Procedure

 \rightarrow epon (in acetone, 1:2 » 1:1 » 2:1 » 2x pure resin, KI, In, last overnight, curing 60°C 48h)

Hua, 2015

- Main changes in Os and U steps to achieve high-contrast staining throughout large tissue blocks
- Procedure
 - \rightarrow 2,5% glutaraldehyde (in buffer, RT/4 °C, 4h)
 - \rightarrow washing buffer (3x15min)
 - \rightarrow OsO₄ (2% in buffer, RT, 1,5h)
 - \rightarrow K₄[Fe(CN)₆] (2,5% in buffer, RT, 1,5h)
 - → thiocarbohydrazide (1% in water, 40°C, 45min)
 - \rightarrow washing water (3x15min)
 - \rightarrow OsO₄ (2% in water, RT, 1,5h)
 - → washing water (3x15min)
 - → uranyl acetate (1% in water, 4°C overnight, 50°C 2h)
 - \rightarrow washing water (3x15min)
 - \rightarrow Walton lead aspartate (50°C, 2h)
 - \rightarrow washing water (3x15min)
 - → acetone (30% » 50% » 70% » 80% » 90% » 95% » 100%, RT, 15min)
 - → epon (in acetone, 1:2 » 1:1 » 2:1 » 2x pure resin, RT, 1h, last overnight, curing 60°C 48h)

Hua, 2015

Main changes in Os and U steps to achieve high-contrast staining throughout large tissue blocks

→ epon (in acetone, 1:2 » 1:1 » 2:1 » 2x pure resin, RT, 1h, last overnight, curing 60°C 48h)

Hua, 2015

Main changes in Os and U steps to achieve high-contrast staining throughout large tissue blocks

 \rightarrow epon (in acetone, 1:2 » 1:1 » 2:1 » 2x pure resin, RT, 1h, last overnight, curing 60°C 48h)

Issues

Unpublished	Unpublished	Unpublished	Unpublished	Unpublished	Unpublished
Unpublished	Unpublished	Unpublished	Unpublished	Unpublished	Unpublished
Unpublished	Unpublished	Unpublished	Unpublished	Unpublished	Unpublished
Unpublished	Unpublished	Unpublished	Unpublished	Unpublished	Unpublished
Unpublished	Unpublished	Unpublished	Unpublished	Unpublished	Unpublished
Unpublished	Unpublished	Unpublished.	Unpublished	Unpublished	Unpublished

Issues

Unpublis	Unpublic Ed.	Unpublished	Unpublished
Unpublis o	Unpublished	Unpublished	Unpublished
Unnulty hed	Unpublished	Unpublish	Unpublished
Unipublished	Unpublished	Unpublished	Unpublished
. Dublished	Unoublish	Unavolished	Unpubli
Unpublished	Unpublished	Unpublished	Unpublished
Unpublished	Unpublished	Unpublished	200 nm

- Kuipers, 2020
- Use of neodymium acetate as uranyl substitute
- Simillar chemical properties due to the position in the table of elements therefore assumption → very similar in binding to tissue
- Procedure
 - → standard fixation and postfixation by osmium
 - \rightarrow 4% NdAc 30 / 60 / 120 min at RT
 - → dehydration and resin embedding

*Lanthanoids

**Actinoids

• Pinto, 2021

- Testing commercially available uranyl-less staining agents on cilia
- UA-zero (Agar Scientific) → ytterbium chloride +phosphothungstid acid
- UAR (EMS) → samarium and gadolinium triacetate
- Procedure
 - → glutaraldehyde (2,5% in buffer, 4°C, overnight)
 - \rightarrow wash (buffer)
 - \rightarrow OsO₄ (1% in water, RT, 1h)
 - \rightarrow wash (water)
 - → UA/Ua zero/UAR/no stain (1% in water 30min / no dilution 30min / 1:4 in water 30min / no stain)
 - → ethanol (50% » 70% » 90% » 100%)
 - → propylene oxide + resin

• Pinto, 2021

Alterna

- Pinto, 2
- Testing com
- UA-zero (Ag
- Procedure
 - → gluta
 - \rightarrow wash
 - \rightarrow OsO₄ (
 - \rightarrow wash
 - \rightarrow UA/U $\stackrel{\circ}{\sim}$ $\stackrel{\circ}{\rightarrow}$ ethan $\stackrel{\circ}{\sim}$

 - → propy **ō**

iter 30min / no stain)

ISI CAS

- Moscardini, 2020
- Use of ytterbium chloride and phosphotungstic acid (PTA) as an alternative stain
- Commercially available as UA zero (Agar Scientific)
- For negative staining, on-section staining, en bloc staining
- Ytterbium high electron scattering power, PTA previously proven to enhance Uac staining

Moscardini,

- Use of ytterbium c
- Commercially avail
- For negative staini
- Ytterbium high ele

ISI CAS

- Moscardini, 2020
- Use of ytterbium chloride and phosphotungstic acid as an alternative stain
- Commercially available as UA zero (Agar Scientific)
- For negative staining, on-section staining, en bloc staining
- Ytterbium high electron scattering power, PTA previously proven to enhance Uac staining
- Procedure
 - → glutaraldehyde (2% in buffer, 4°C, overnight)
 - \rightarrow OsO₄ + K₃[Fe(CN)₆] (1% +1% in buffer)
 - \rightarrow washing
 - \rightarrow optimized X Solution (ratio 15 YbCl : 1 PTA), PTA 3.2 mM, YbCl₃ 48 mM alone and UA 3% (1h)
 - → dehydration, resin embedding

• Moscardini, 2020

- Commerci
- For negating
- Ytterbium
- Procedure
 - → glut
 - \rightarrow OsO
 - \rightarrow was
 - → opti
 - \rightarrow dehy

% (1h)

Alternative strategies - lanthanoids ISI CAS Uranyless Mosc Use of yt Commer For nega Ytterbiui Procedu $\rightarrow gli$ UAR \rightarrow Os $\longrightarrow \mathsf{W}\check{\epsilon}$ (1h) \rightarrow op \rightarrow de

Thank you for your attention.