NMR hardware, pulses and signal processing

NMR spectrometer – magnet

NMR spectrometer – probe

NMR spectrometer – schema

Radiofrequency pulses

Pulse length and excitation profile

Selective and shaped pulses

Selective excitation

Fourier transform

analyzing periodicity of time-domain signal

FTprincip.xls

Quadrature detection

Quadrature detection

Spectrum phase

NMR signal

$$s(t) = \exp[i(\Omega t + \varphi)] \exp\left(-\frac{t}{T_2}\right)$$

receiver dead time

Lorentzian lineshape

$$S(\omega) = \frac{\frac{1}{T_2} - i(\omega - \Omega)}{\left(\frac{1}{T_2}\right)^2 + (\omega - \Omega)^2} \exp(i\varphi)$$

Acquisition time $\, t_{acq} = N_p \Delta t \,$

Nyquist.m

Spectral window

Acquisition time

If too long >>>> we get more noise

Acquisition time

Apodization

Apodization

Zero filling

Apodization

Signal averaging

Magnetic field stability and homogeneity

