
NMR spectroscopy

• vector model – energy levels model

• chemical shift

• J interaction

• equivalence

• interpretation



Nuclear spin and magnetic moment
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Ensemble of spins

Energy of magnetic moment in magnetic field

I = 1/2
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Boltzman distribution of energies
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B0 = 0

random orientations precession and polarization

random initial phase
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Ensemble of spins



Bloch equations

Behavior of magnetization in magnetic field (general)
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Rotating frame
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Resonance condition

Has no effect
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Effect of radiofrequency field
B
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Rotating frame
in resonance with Larmor precession
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feels only static B1
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http://www.drcmr.dk/blochLars G. Hanson: Bloch Simulator
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RF pulses and NMR signal
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Quantum physics view on NMR

I = 1/2
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Larmor frequency

NMR signal proportional to initial magnetization

– difference of populations on energy levels
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inversion of populations

90°-pulse creates a coherence

equalizes populations

Full description, might not always be intuitive
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NMR frequency
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Chemical shielding

electron cloud

shielding tensor

„bare“ nucleus nucleus in molecule
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resonance frequency

���� � ���	��

����

��

Isotropic rotation in liquids

� � ��  ���� � �� 1 � �"#�
shielding constant



Chemical shift

1H

13C

ppm

parts per milion
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Chemical shielding
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General principle

The more electrons around a nucleus the higher shielding and lower chemical shift

dia electrons in s-orbitals, decreasing local magnetic field

para π-electrons and in p-orbitals, increasing local magnetic field

local influence of surrounding substituents, both positive and negative

strongest



Proton chemical shifts

Resonance (mezomeric) effect
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Proton chemical shifts

Anisotropic effect

Ring current effect
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- lower δ
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J interaction
Indirect spin-spin coupling through common electrons
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AX AX2

When X is spin-1

-1, 0, +1
1 : 1 : 1

1 : 2 : 3 : 2 : 1

possible states

CDCl3
… also for NH4+ CD2Cl2

11B (80%) : spin-3/2

-3/2, -1/2, +1/2, +3/2

Proton spectrum of +BH4

10B (20%) : spin-3

J interaction

possible states

possible states



Karplus curve

C
R

H

C

R

H

R
R

6 – 8 Hz

without conformational

preference

H

H

R

R

H

R

H

R

14 – 18 Hz 7 – 12 Hz

trans
cis

C C

H

H

R

R
0 – 2 Hz

H

H

H

H
H H

8 – 10 Hz 2 – 3 Hz

2 – 3 Hz

J interaction (proton-proton)



J interaction – multiplet structure
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Heteronuclear decoupling
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Heteronuclear decoupling



Exercise

Draw 1H and 13C (both coupled and decoupled) spectra of ethanol



Chemical equivalence

Nuclei are chemically equivalent if there is asymmetry operation that connects them

CH3 protons are equivalent due to fast rotation

Chemically equivalent nuclei have the same chemical shift
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Magnetic equivalence

Nuclei are chemically equivalent

Have the same geometric relation to all other NMR active nuclei

(have the same J interactions with all other NMR active nuclei)

AND
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Spectra of magnetic equivalent nuclei 
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Higher order spectra

∆ν >> J

∆ν = 0 A2

AA’

AB

AX First order

higher order

„pseudo-first order“

roof effect



I OH
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Chemical shift difference 0.11 ppm

J-coupling 7 Hz
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Information from 1H spectrum

• Number of signals

• Intensity

• Chemical shift

• Fine structure and J-constants

Information from 13C spectrum (decoupled)

• Number of signals

• Chemical shift

• intensity does not correspond to number of equivalent nuclei

symmetry

number of equivalent nuclei

functional group

neighboring protons



Solving NMR spectra

• Read number of signals, their position (shift) and intensity in 1H spectrum

• split protons to corresponding groups

• from splitting patterns decide which groups are neighbors

• guess which functional groups they are according to chem. shifts (and perhaps

using additional info like 13C spectrum, APT/DEPT)

• draw possible molecule

• check what spectrum that molecule would give to verify the solution



C8H9Br



C4H4N2 in CDCl3



C5H10O4

in DMSO



C8H11NO 

in CDCl3

J=8 Hz

J=4 Hz
J=4 Hz

J=8 Hz
J=13 HzJ=13 Hz



C9H13NO

in CDCl3

J=3 Hz

J=11 Hz

J=6 Hz

J=10 Hz

J=4 Hz

J=12 Hz

J=12 Hz

J=8 Hz


