NMR spectroscopy

- vector model energy levels model
- chemical shift
- J interaction
- equivalence
- interpretation

Nuclear spin and magnetic moment

 $\vec{I} = (I_x, I_y, I_z)$ Nuclear angular momentum *intrinsic* $|\vec{I}| = \hbar \sqrt{I(I+1)}$ *spin number* Magnetic moment $\vec{\mu} = \gamma \vec{I}$. *gyromagnetic ratio*

Magnetic moment in magnetic field

Ensemble of spins

Energy of magnetic moment in magnetic field

Slight preference of parallel orientation

Ensemble of spins

random orientations

precession and polarization random initial phase

Bloch equations

Behavior of magnetization in magnetic field (general)

Effect of radiofrequency field

Magnetization feels only static B₁

Has no effect

$$\omega_{RF} = \gamma B_0$$

+

Lars G. Hanson: Bloch Simulator

http://www.drcmr.dk/bloch

RF pulses and NMR signal

Quantum physics view on NMR

Boltzman distribution of energies

$$rac{N_lpha}{N_eta} = \exp\left\{rac{\Delta E}{k_bT}
ight\}$$

$$\|\vec{M}\| \propto N_{\alpha} - N_{\beta}$$

NMR signal proportional to initial magnetization - difference of populations on energy levels

Larmor frequency

90°-pulse creates a *coherence* equalizes populations

180°-pulse inversion of populations

NMR frequency

Chemical shielding

Chemical shift

$$\delta = 10^6 \, rac{
u -
u_{ref}}{
u_{ref}}$$
 ppm prm

13C

Chemical shielding

 $\sigma = \sigma^{dia} + \sigma^{para} + \sigma^{local}$

dia electrons in s-orbitals, decreasing local magnetic field

para π -electrons and in p-orbitals, increasing local magnetic field

local influence of surrounding substituents, both positive and negative strongest

General principle

The more electrons around a nucleus the higher shielding and lower chemical shift

Proton chemical shifts

	CH4	CH3I	CH3Br	CH3CI	CH3F
Electronegativity	2.1	2.5	2.8	3.0	4.0
Shift [ppm]	0.23	1.98	2.45	2.84	4.13

Resonance (mezomeric) effect

Proton chemical shifts

Anisotropic effect

Ring current effect

J interaction

J interaction

J interaction

11B (80%) : spin-3/2

possible states -3/2, -1/2, +1/2, +3/2

10B (20%) : spin-3

possible states

J interaction (proton-proton)

J interaction – multiplet structure $J_1 = J_2 = J_3$ $J_1 >> J_2 = J_3$ **J**₁ J_{2} J_3 dt q $J_1 = J_2 >> J_3$ $J_1 > J_2 > J_3$ J_1 **J**₁ J_2 $\overline{J_2}$ Û J_3 td ddd

Heteronuclear decoupling ¹H NMR with ¹¹B Decoupling ortho-Carborane (C2B10H12) 'H ["B] impurity w "H 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 3.6 ppm

Exercise

Draw 1H and 13C (both coupled and decoupled) spectra of ethanol

Chemical equivalence

• Nuclei are chemically equivalent if there is asymmetry operation that connects them

- CH₃ protons are equivalent due to fast rotation
- Chemically equivalent nuclei have the same chemical shift

Chemical equivalence

NOT chemically equivalent

Magnetic equivalence

Nuclei are chemically equivalent

AND

Have the same geometric relation to all other NMR active nuclei (have the same J interactions with all other NMR active nuclei)

Spectra of magnetic equivalent nuclei are not influenced by J-couplings between them

Chemically equivalent but magnetically nonequivalent nuclei provide spectra of higher order (complicated pattern due to Jcouplings)

Higher order spectra

Higher order spectra and mag. field

J-coupling 7 Hz

OH

Information from ¹H spectrum

Number of signals symmetry
 Intensity number of equivalent nuclei
 Chemical shift functional group
 Fine structure and J-constants neighboring protons

Information from ¹³C spectrum (decoupled)

- Number of signals
- Chemical shift
- intensity does not correspond to number of equivalent nuclei

Solving NMR spectra

- Read number of signals, their position (shift) and intensity in 1H spectrum
- split protons to corresponding groups
- from splitting patterns decide which groups are neighbors
- guess which functional groups they are according to chem. shifts (and perhaps using additional info like ¹³C spectrum, APT/DEPT)
- draw possible molecule
- check what spectrum that molecule would give to verify the solution

