Poslední úprava dokumentu: 6. března 2024.

Vztah dvou veličin - popisné statistiky a grafické znázornění

1 Začátek práce (podrobně)

1) BUĎ: chci pokračovat ve skriptovém souboru z minula:

- ☆ Na svém disku J: nalezněte příslušný soubor a klikněte na něj (měl by se automaticky otevřít v RStudiu, pokud ne, tak klikněte pravým tlačítkem myši → Otevřít v programu → RStudio)
- \diamondsuit nebo spusť
te $\mathsf{RStudio}$ z nabídky a v Menu nahoře zvolte

File 🍽 Open File a vyberte příslušný soubor.

 \diamondsuit Nastavení pracovního adresáře: v Menu nahoře zvolte

Session 🗢 Set Working Directory 🍽 To Source File Location

2) NEBO: chci si otevřít nový skriptový soubor:

- \Leftrightarrow Spust'te RStudio z nabídky.
- \Leftrightarrow Nastavte si pracovní adresář.
 - Buď v Menu nahoře:

Session 🗢 Set Working Directory 🍽 Choose Directory ...

a vyberte složku matstat, kterou jste si vytvořili minule.

- Nebo příkazem:

setwd("popis_cesty/matstat")

- \diamond Otevřte si nový skriptový soubor
 - Buď v Menu nahoře:

File 🗭 New File 🍽 R Script

- nebo kliknutím na ikonku papíru se zeleným plus vlevo nahoře a zvolením R Script,
- nebo klávesovou zkratkou Ctrl+Shift+N.
- \diamond Nový skript si nezapomeňte uložit:
 - File ➡ Save as...
 - nebo kliknutím na symbol diskety,
 - nebo klávesovou zkratkou Ctrl+S.

2 Rozcvička

1²

Vytvořte si libovolný vektor o pěti hodnotách a spočtěte průměr a směrodatnou odchylku.

3 Načtení dat

1) Načtěte data studenti do RStudia:

Máte-li data z minula uložená ve formátu RData:

 \blacklozenge Bud' v Menu nahoře:

File 🍽 Open file...

a potvrdit soubor studenti.RData ze složky matstat. Do you want to load the R data file into the global environment?

Yes

♦ Nebo příkazem:

load("studenti.RData")

Máte-li data k dispozici pouze v původním formátu csv:

 \diamond Buď v pravém dolním okně v záložce Files klikněte na příslušná data a zvolte

Import Dataset	From Text	, vyberte soubor studenti.csv a nastavte:
Name		studenti
Heading		yes
Separator		Comma
Delimiter		Period

 \diamond Nebo použijte příkaz:

```
studenti <- read.csv2("studenti.csv", header=TRUE, sep=",", dec=".")</pre>
```

2) Prohlédněte si data a ujistěte se, že jsou správně načtena. Data si můžete zobrazit buď poklepáním na jejich název v pravém horním okně, nebo příkazem

View(studenti)

- **3)** Pomocí příkazu summary(studenti) si nechte vypsat základní popisné statistiky pro všechny veličiny. Připomeňte si, co jednotlivé proměnné znamenají.
 - ♦ Veličiny mesic.naroz a kraj nastavte jako faktory:

studenti\$mesic.naroz <- as.factor(studenti\$mesic.naroz)
studenti\$kraj <- as.factor(studenti\$kraj)</pre>

♦ Dále vytvořte veličinu fpohlavi:

```
studenti$fpohlavi <- factor(studenti$pohlavi, labels = c("zena", "muz"))</pre>
```

Zaved'te novou veličinu, pomocí které zjistíte, kolik procent studentů se narodilo na jaře, v létě, na podzim a v zimě. Vypište si procentuální zastoupení jednotlivých ročních období. namalujte si vhodný obrázek.

pom.obdobi <- 0*(studenti\$mesic.naroz %in% c(12,1,2)) +</pre>

- + 1*(studenti\$mesic.naroz %in% c(3,4,5)) +
 - + 2*(studenti\$mesic.naroz %in% c(6,7,8)) +
 - + 3*(studenti\$mesic.naroz %in% c(9,10,11))

studenti\$obdobi <- factor(pom.obdobi,labels = c("zima","jaro","leto","podzim"))</pre>

Zjistěte, kolik studentů se narodilo v kterém ročním období. Vykreslete si vhodné grafy:

pie(table(studenti\$obdobi), col=c("blue", "green", "red", "yellow"))
barplot(table(studenti\$obdobi), xlab="hmotnost", ylab="četnost")

 \diamond Uložte si aktuální verzi datové tabulky

```
save(studenti,file="studenti.RData")
```

 \clubsuit Zajistěte si přímý přístup k jednotlivým proměnným datového souboru studenti pomocí příkazu

attach(studenti)

4 Popis vztahu kvantitativní a kvalitativní veličiny

- 1) Budeme zkoumat zda a jak se liší výška mužů a výška žen.
 - \blacklozenge Nechte si vypsat zvlášť popisné statistiky pro muže a ženy a prohlédněte si, v čem jsou odlišnosti.

```
tapply(vyska, fpohlavi, summary)
```

 \diamondsuit Graficky lze předchozí čísla znázornit pomocí krabicového grafu

```
boxplot(vyska ~ fpohlavi)
```

✤ Dále by nás mohl zajímat histogram výšky pro muže a ženy zvlášť

```
library(lattice)
histogram(~vyska/fpohlavi, data = studenti)
```

Nemáte-li knihovnu lattice nainstalovanou, pak buď zadejte install.packages("lattice"), nebo v pravém dolním okně běžte na záložku Packages, dále klikněte na Install, do políčka v příslušném okně napište název knihovny a potvrď te tlačítkem Install. Pokud vám knihovna z nějakého důvodu nejde nainstalovat, můžete vykreslit oba histogramy vedle sebe takto:

```
par(mfrow=c(1,2)) # graficke okno se pomyslne rozdeli na dve casti
hist(vyska[fpohlavi=="zena"], main="Histogram pro ženy")
hist(vyska[fpohlavi=="muz"], main="Histogram pro muže")
par(mfrow=c(1,1)) # aby byl nadale v grafickem okne pouze jeden obrazek
```

- 2) Stejným způsobem si prohlédněte, jestli a jak se liší hmotnost u můžu a žen.
- 3) Zjistěte, zda se věk otců liší pro dívky a pro chlapce.

5 Vztah dvou kvantitativních veličin

Podíváme se na vztah výšky a váhy (společně pro muže i ženy).

4) Bodový graf (scatterplot) váhy proti délce. Proveď te následujícíc dva příkazy a porovnejte, která veličina je na ose x a na ose y:

```
plot(vyska, vaha)
plot(vyska ~ vaha)
```

✤ Obrázek lze dále zkrášlovat pomocí argumentů z minulého cvičení:

```
plot(delka, vaha, xlab="Výška (cm)", ylab="Váha (kg)", col="seagreen", pch=13)
```

 \clubsuit V argumentu p
ch si můžete zkusit změnit třináctku za libovolné číslo od 0 do 25.

 \clubsuit V argumentu col můžete použít i jinou barvu. Seznam předdefinovaných barev se objeví, spustíte-li příkaz colors()

✤ Dále obrázek vylepšeme přidáním nadpisu:


```
plot(vyska, vaha, main="Závislost váhy na výšce",
    xlab="Výška (cm)", ylab="Vaha (kg)", col="seagreen", pch=13)
```

Číselně lze vztah dvou kvantitativních veličin popsat pomocí korelace, ale o tom si povíme až na některém z dalších cvičení. Později budeme také zkoumat závislost dvou kvantitativních veličin pomocí lineární regrese.

- 5) Stejným způsobem prozkoumejte vztah věku matky a věku otce.
- 6) Souvisí spolu velikost bot a index BMI?

6 Vztah výšky a váhy v závislosti na pohlaví (tj. vztah 3 veličin)

- 7) V dalším kroku si pomocí barev a symbolů rozlišíme muže a ženy. Připomínám, že pohlaví udávají proměnná pohlavi (1 pro muže, 0 pro ženu), respektive proměnná fpohlavi.
 - ♦ Na naší úrovni je asi nejprůhlednější následující konstrukce:

```
divky <- which(fpohlavi=="zena") # kde jsou v datech dívky
hosi <- which(fpohlavi=="muz") # kde jsou v datech hoši
plot(vyska[divky], vaha[divky], col="pink", pch=16,
main="Závislost váhy na výšce", xlab="Výška (cm)", ylab="Váha (kg)")
points(vyska[hosi], vaha[hosi], col="blue", pch=17)
```

Příkaz plot otevírá nové grafické okno a vykresluje do něj (v našem případě data pro dívky). Příkaz points přidává body do již existujícícho grafu (v našem případě body pro chlapce).

 \Rightarrow Následující dvě konstrukce jsou méně průhledné, ale oceníte je u proměnných s velkým počtem kategorií, kdy by bylo postupné vykreslování pomocí **points** zdlouhavé.

 \blacklozenge barevné odlišení s využitím číselné proměnné pohlavi

```
barvy <- c("pink", "blue")
symboly <- c(16, 17)
plot(vyska, vaha, col=barvy[pohlavi+1], pch=symboly[pohlavi+1],
main="Závislost váhy na délce", xlab="Výška (cm)", ylab="Váha (kg)")</pre>
```

 \diamond barevné odlišení s využitím faktorové proměnné fpohlavi

```
barvy <- c(zena="pink",muz="blue")
symboly <- c(zena=16, muz=17)
plot(vyska, vaha, col=barvy[fpohlavi], pch=symboly[fpohlavi],
main="Závislost výšky na délce", xlab="Výška (cm)", ylab="Váha (kg)")</pre>
```

Příkazy z bodu 5) si rozhodně nemusíte pamatovat! Stačí pouze vědět, že existují a v případě potřeby si je dohledáte.

8) Úplně nakonec přidáme do obrázku též legendu.

legend("topleft", legend=c("Zena", "Muz"), col=c("pink", "blue"), pch=c(16,17))

7 Vztah dvou kvalitativních veličin

9) Budeme se zajímat o to, zda roční období narození (veličina obdobi) nějak souvisí s pohlavím.

 \diamond Nechte si vypsat tabulku četností těchto dvou znaků:

Zamyslete se nad interpretací uvedených hodnot. Je nějaký rozdíl mezi muži a ženami, co se týče nadváhy a podváhy?

10) Vykreslíme si sloupcový graf nadváhy zvlášť pro muže a ženy. Do skriptového okna přepište:

barplot(table(obdobi, fpohlavi), beside=TRUE, legend=TRUE)

11) Další možný popisný obrázek si vykreslíme pomocí:

```
plot(fpohlavi, obdobi, ylab="roční období")
```

Co všechno lze z obrázku vyčísť? Změňte pořadí pohlaví a ročního období narození. Jak se změní obrázek?

8 Vytvoření podmnožiny dat

Někdy je potřeba zpracovávat pouze podmnožinu dat, jež splňuje nějakou podmínku. Tomuto tématu jsme se již krátce věnovali na minulém cvičení. Níže najdete příklady, jak vybrat z dat podmnožinu splňující určitou podmínku a jak tuto podmnožinu uložit.

12) Zjistíme, pro které studenty je otec starší než matka:

```
which(vek.matky < vek.otce)</pre>
```

13) Můžeme též vypsat hodnoty všech veličin z dat, u kterých je otec starší než matka:

```
subset(studenti, vek.matky < vek.otce)</pre>
```

14) V případě, že chceme podmnožinu původních dat ukládat a dále s ní pracovat, doporučuji odpojit přístup k proměnným původních dat (vyhnete se tak možným nedorozumněním plynoucím ze shodných názvů proměnných ve dvou datech – původních a podmnožiny).

```
detach(studenti)
```

15) Řekněme, že dále budeme chtít pracovat pouze se studenty, u nichž je otec starší než matka. Vytvořenou podmnožinu si můžeme uložit do datové tabulky studentiOsM.

studentiOsM <- subset(studenti, vek.matky < vek.otce)</pre>

16) Tuto podmnožinu si dále můžeme uložit (ale není to nutné, nebudeme ji už dále potřebovat) pomocí známého příkazu:

```
save(studentiOsM, file = "studentiOsM.RData")
```

- 17) Sami si můžete zkusit vytvořit nebo se alespoň podívat (nemusíte výsledky nikam ukládat) na následující podmnožiny:
 - (a) Studenti, u kterých je otec jinak starý než matka.
 - (b) Studenti, u kterých je otec o alespoň 5 let starší než matka.
 - (c) Studenti, u kterých se věk rodičů liší o právě jeden rok.
 - (d) Ženy.

1^{CE}

- (e) Ženy, které mají otce staršího než matku.
- (f) Studenti, kteří mají výšku nejvýše 170 cm nebo nejméně 180 cm.

Nápověda: Ke specifikaci jednotlivých podmnožin si vybírejte z následujících logických výrazů (vybraným výrazem pak nahraď te výraz **vek.matky** < **vek.otce** v bodě 16):

♦ fpohlavi == "zena"	\diamondsuit vyska <= 170 vyska >= 180
♦ vek.otce - vek.matky > 4	♦ vek.otce - vek.matky >= 5
✤ pohlavi != 1	\diamondsuit !(vyska $>$ 180 & vyska $<$ 170)
	\clubsuit fpohlavi == "zena"& vek.otce $>$
♦ fpohlavi != "muz"	vek.matky
☆ vek.otce != vek.matky	\diamond abs(vek.otce - vek.matky) == 1

Poznámka: Jestliže s vytvořenou podmnožinou neplánujete dále pracovat (tj. jenom vás zajímá, jak vypadá), není potřeba provádět dokola detach(studenti), attach(studenti).

9 Konec práce

Než zavřete všechna okna, nezapomeňte si uložit poslední změny ve skriptovém souboru:

File 🍽 Save

nebo klávesovou skratkou Ctrl-s.