Seznámení s R

1 Úvod

1) Postup prací pro cvičení se bude postupně objevovat na webu:

https://web.natur.cuni.cz/uamvt/turcm6am

- 2) V počítači si vytvořte složku k tomuto cvičení, v tomto textu ji nazveme např. matstat.
- 3) Do složky matstat zkopírujte složku data a soubor MScv01.R, které se nacházejí v mé složce V:/turcicova/MatStat_cv na disku V.
- 4) Data k dnešnímu cvičení a soubor MScv01.R najdete též na mé webové stránce (viz adresa výše) u materiálů k 1. cvičení.
- Spust'te RStudio (stručný návod na jeho instalaci najdete na stránkách výše v záložce "Odkazy").
- 6) V RStudio nastavte coby pracovní adresář složku matstat, a to jedním z následujících způsobů:
 - (a) Napište a pomocí Enter odešlete v okně Console příkaz

setwd("popis_cesty/matstat")

kde popis_cesty nahrad'te za popis cesty ke složce matstat, který bude vypadat přibližně jako J:/prijmeni/matstat. (Lomítka v popisu cesty musejí být dopředná, tj. "/", nikoli zpětná.)

(b) V horní nabídce postupně zvolte

7) Zjistěte, zda se vše povedlo. Po zadání příkazu

getwd()

by se mělo vypsat popis_cesty/biostat.

8) Pomocí horní nabídky zaveď te do skriptového okna (alias Script Window, vlevo nahoře) skriptový soubor MScv01.R:

File	•	Open	File

Několik poznámek k práci se skriptovým souborem

- Při psaní příkazů v Script Window jsou vám automaticky nabízeny příkazy začínající na daná písmena. Pokud se vám některý z těchto příkazů zamlouvá, vyberte ho pomocí šipky na klávesnici a poté potvrď te klávesou Enter.
- Znak # odděluje poznámky, tj. něco, co chcete v souboru vidět vy, ale nechcete, aby to vidělo R.
- \clubsuit Různé příkazy musí být na různých řád
cích (doporučuji), nebo na stejném řádku oddělené středníkem.
- Když chceme, aby se provedl příkaz na konkrétním řádku, nastavíme kurzor na příslušný řádek a zmáčkneme klávesovou zkratku Ctrl-Enter, nebo klikneme na tlačítko Run (v pravém horním rohu Script Window).
- Když chceme, aby se provedlo více příkazů najednou, označíme je myší jako blok a zmáčkneme klávesovou zkratku Ctrl-Enter, nebo klikneme na tlačítko Run (v pravém horním rohu Script Window).
- ☆ Čas od času si (doplňovaný) skriptový soubor uložte (stačí sem tam stisknout klávesovou zkratku Ctrl-S) nebo kliknout na ikonu diskety vlevo nahoře.
- Nápovědu k libovolnému příkazu vyvoláme pomocí help(prikaz) nebo ?prikaz. (Nápověda se pak zobrazí v pravém dolním okně.)

Další poznámky pro práci s R / RStudiem

♦ Všechny požadované příkazy je nutné napsat do Script Window nebo do Console.

- ✤ Po odeslání požadovaného přikazu se příkaz v tichosti provede a v Console se objeví výsledky výpočtu (jsou-li nějaké). V případě chybného příkazu se objeví červená chybová hláška.
- Předchozí příkazy je možné v Consoli vyvolávat pomocí "šipky nahoru" na klávesnici. Vyvolaný příkaz lze dále upravit a odeslat klávesou Enter.
- Chceme-li provést ve výpočtu drobnou změnu (např. zpracovat proměnnou vaha místo proměnné vyska), můžeme si příslušnou část ve skriptovém okně zkopírovat níže, upravit a odeslat.
- ✤ Pro pozdější použití vytvořeného skriptu je dobré si do něj sem tam napsat nějaký komentář (za znak #).

2 Základní operace a funkce v R

 Nejprve použijte R jako kalkulačku a spust'te postupně ze skriptového okna následující příkazy:

2		
2 + 3	# scitani	
2 - 3	# odcitani	
2 * 3	# nasobeni	
2 / 3	# deleni	
2^3	# mocnina	
3^(1/2)	# (od)mocnina	
sqrt(3)	# jeste jednou odmocnina	
exp(3)	# exponenciela (e na neco)	
log(3)	<pre># prirozeny logaritmus (pozor! jinde se casto znaci ln)</pre>	
exp(log(3))		
sin(3)	# sinus	
cos(3)	# cosinus	
pi	# konstanta pi	
sin(pi/2)		
cos(pi/2)		
factorial(3)	# 3! (faktorial)	
choose(3, 2)	# "3 nad 2 (kombinacni cislo)"	

2) Nyní budeme pracovat s proměnnými

a	<-	- 2	#	ulozeni hodnoty do promenne
a	=	2	#	jiny zpusob ulozeni (nelze kombinovat s jinymi prikazy, viz nize)
a			#	podivame se, co tam mame
b	<-	- 3	#	ulozeni do jine promenne
b				
a	+	b	#	secteni ulozenych hodnot
a	-	b	#	odecteni ulozenych hodnot
a	*	b	#	vynasobeni ulozenych hodnot
a	1	b	#	vydeleni ulozenych hodnot

3) Ukládání výsledku do dalších proměnných

1²

c <- log(b)	<pre># ulozi, ale nevytiskne vysledek</pre>
С	# vytiskne vysledek
<pre>print(c)</pre>	# tez vytiskne vysledek

4) Vytvoření vektoru hodnot a základní aritmetické operace s vektorem

v <- c(6,4,8,2,1,2)	<pre># vytvoří vektor hodnot a uloží ho do proměnné "v"</pre>
V	# vytiskne vysledek
v+1	# ke všem položkám vektoru "v" přičte 1
v*3	# všechny položky vektoru "v" vynásobí třema
v^2	# všechny položky vektoru "v" umocní na druhou
sum(v)	# sečte všechny položky vektoru "v"

Označme si náš vektor výše jako $v = (v_1, v_2, v_3, \ldots, v_6)$. Za pomoci funkce sum a základních matematických operací spočítejte

$$3 \cdot \sum_{i=1}^{6} v_i^2$$
 a dále $3 \cdot \left(\sum_{j=1}^{6} v_i\right)^2$.

5) "Úklid" (před začátkem jiné práce)

ls() # zjistime, jake promenne mame nadefinovane
rm(list=ls()) # vycistime Rko (vsechny promenne se smazou)
ls() # zjistime, jake promenne mame nactene (snad nic)

6) Zkontrolujte si, zda vám zůstal nastavený správný pracovní adresář:

getwd()

Pokud se vám při "úklidu" stane, že vám zmizí nastavení pracovního adresáře, můžete ho znovu nastavit příkazem

setwd("popis_cesty/matstat")

nebo pomocí

Session 🗢 Set Working directory 🍽 To Source File Location

což nastaví za pracovní adresář ten, v němž je uložený právě otevřený skript.

3 Načtení dat

- Data (nějaká vlastní měření apod.) budete mít většinou uložená v tabulkovém editoru (např. LibreOffice Calc, MS Excel, apod., takový soubor má příponu .csv) či v poznámkovém bloku (přípona .txt). V těchto formátech si lze již data snadno načíst do R.
- ✤ Podívejme se nyní na data Sleep, která jste si stáhli do své pracovní složky na disku J. (Je opravdu nezbytné, abyste měli data zkopírovaná do své složky na J!)
- ✤ Data Sleep obsahují následující proměnné:

age	Age of the person $(18-60 \text{ years})$
gender	Gender (Male, Female)
sleep_length	Total duration of sleep (in hours)
sleep_quality	Self-reported sleep quality (scale: 1-10)
exercise	Minutes spent exercising per day
caffeine_intake	Amount of caffeine consumed in mg
screen_time_before_bed	Time spent using screens before sleeping
work_hours	Total working hours in a day
productivity_score	Self-reported productivity score (scale: 1-10)
mood_score	Self-reported mood score (scale: 1-10)
stress_level	Self-reported stress level (scale: 1-10)

1) Načtěte data do R:

Buď v pravém dolním okně v záložce Files klikněte na data Sleep.csv a zvolte **Import Dataset** a nastavte:

Name	Sleep
Delimiter	Semicolon (středník)
First Row as Names	\checkmark
Locale: stiskněte Configure	Decimal Mark $ ightarrow$ zvolte: , $ ightarrow$ Configure

(volbu Delimiter a Decimal Mark musíte uzpůsobit svým datům, která vidíte v náhledu). Pak stiskněte Import v pravém dolním rohu.

nebo využijte některý z následujících příkazů (v závislosti na zvoleném formátu dat):

Sleep <- read.table("data/Sleep.txt", header = TRUE, sep=",", dec=".") # txt soubory
Sleep <- read.csv2("data/Sleep.csv", header=TRUE, dec=".") # csv soubory</pre>

Argument **sep** udává znak, kterým jsou oddělené jednotlivé sloupce v textovém souboru, argument **dec** udává znak oddělující desetinná místa. Argument **header** říká, že první řádek souboru obsahuje názvy sloupců.

2) Data si můžete prohlédnout pomocí

View(Sleep)

nebo vypsat pomocí

```
print(Sleep) # nedoporučuji pro dlouhé datové soubory (což je i ten náš)
```

abyste zkontrolovali, že načtení dat do R proběhlo v pořádku.

4 Přístup k jednotlivým položkám dat

3) Jednotlivé řádky či sloupce datové tabulky si lze vypsat pomocí hranatých závorek

```
Sleep[3, ] # vypíše 3. řádek
Sleep[,5] # vypíše 5. sloupec
Sleep[3,5] # vypíše hodnotu nacházející se ve 3. řádku a 5. sloupci
```

4) K jednotlivým proměnným můžete přistupovat pomocí Sleep\$, to jest

Sleep\$age Sleep\$exercise

a podobně pro všechny ostatní proměnné. Chcete-li si pro kontrolu vypsat pouze prvních či posledních 6 hodnot, můžete použít

head(Sleep\$age) # prvnich 6 hodnot tail(Sleep\$age) # poslednich 6 hodnot

5) K jednotlivým složkám vektoru age se lze dostat opět operátorem [].

6) Abyste nemuseli při přístupu k jednotlivým proměnným stále opisovat Sleep\$, je možné zadat

```
attach(Sleep)
```

a pak lze již názvy jednotlivých proměnných volat přímo

age exercise

Notace

Sleep\$age Sleep\$exercise

přitom funguje stále!

7) Obdobně jako v bodě 5) se lze dostat k naměřeným údajům konkrétního člověka pomocí []:

```
Sleep[10, 5] # hodnota 5. proměnné u 10. člověka (to už jsme viděli výše)
Sleep[10, "exercise"] # totéž
Sleep[10, c(5, 6)] # hodnota 5. a 6. proměnné u 10. člověka
Sleep[10, c("exercise", "cafeine_intake")] # totéž
```

8) Chceme-li vypsat údaje více lidí oučasně

```
Sleep[7:11, ] # všechny údaje 7.-11. člověka
Sleep[c(2, 5, 12), ] # všechny údaje 2., 5. a 12. člověka
Sleep[c(2, 5, 12), c(5, 6)] # hodnota 5. a 6. proměnné u 2., 5. a 12. člověka
Sleep[c(2, 5, 12), c("exercise", "cafeine_intake")] # totéž
```

5 Výpočet nových proměnných

Pokud jsme si dříve data připojili pomocí **attach**, je potřeba před tvorbou nových proměnných (či jakýmkoli jiným zásehem do dat) data odpojit pomocí

detach(Sleep)

9) V datech je příjem kofeinu uveden v miligramech. Co kdybychom chtěli zpracovávat množství kofeinu v gramech? Vytvořme novou proměnnou, kterou nazveme caffeine_intake.g, jež bude udávat příjem kofeinu v gramech.

```
Sleep <- transform(Sleep, caffeine_intake.g = caffeine_intake / 1000) # nebo
Sleep$caffeine_intake.g <- Sleep$caffeine_intake / 1000</pre>
```

- 10) Prohlédněte si znovu data a zjistěte, zda se vše povedlo.
- 11) Samostatně vytvořte proměnnou screen_time_before_bed.h udávající dobu strávenou u obrazovky před spaním v hodinách.
- 12) Samostatně vytvořte proměnnou adulthood, která bude udávat, kolik let již je osoba plnoletá, tj. adulthood = age 18.

6 Uložení dat

Do datové tabulky Sleep jsme přidali několik nových proměnných (caffeine_intake.g, adulthood, screen_time_before_bed.h). V budoucnu s nimi možná budeme znovu pracovat. Abychom si tyto proměnné nemuseli vytvářet znovu, uložíme si současnou formu datové tabulky Sleep:

1) buď ve formátu csv

2) nebo ve formě R datového formátu (přípona RData)

save(Sleep, file = "data/Sleep.RData") # doporučuji!

7 Konec práce

Než zavřete všechna okna, nezapomeňte si uložit skriptový soubor:

File Save as

nebo klávesovou zkratkou Ctrl+s. (Při standardním zavírání otevřených oken budete tak jako tak dotázáni, zda chcete tak učinit).