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1. INTRODUCTION

The modelling of interfaces is a challenging topic in geotechnical engineering. Advanced and specialised consti-
tutive interface models should be used to realistically simulate soil-structure contact behaviour [1, 2]. There are few
numerical and constitutive models that adequately consider interface behaviour.
From the late seventies to nowadays, numerical techniques for interface modelling various [3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15] have been developed. To properly represent the interface, it is essential to use a suitable constitu-
tive model. The simplified constitutive Mohr-Coulomb frictional model is often used. Various soil-structure interface
models from non-linear elasticity [16, 17], elasto-plastic models [18, 19, 20, 21, 22], state-dependent plasticity mod-
els [23, 24, 25, 26], models using damage mechanics [27], and disturbed state concept models [28, 29, 30] have been
proposed. There is only a limited number of 3D interface constitutive interface models [31, 20, 32, 27, 33, 34, 35, 36].
The method proposed in this paper will overcome the problem of availability and implementation using a simple and
robust approach. Recently published hypoplastic interface models [35, 37] have been implemented using the new ap-
proach. Weißenfels and Wriggers [9] developed a projection method to integrate plasticity models into a mixed mortar
formulation. In contrast, the goal of our method is to define an approach that can be adapted to constitutive interface
modelling with the mortar method using existing 3D constitutive soil models.
In order to make such advanced models available, the whole constitutive model (here UMAT subroutine in ABAQUS
[38]) is used, and the 3D model is modified so that surface roughness is accounted for. The necessary tensor entries
are provided by the frictional subroutine (FRIC keyword in ABAQUS) to call the user-defined material subroutine
(UMAT). This approach minimises the effort required to implement an adequate constitutive interface model.
The theoretical rationale is the hypothesis that the soil in the interface has the same deformation behaviour as the soil
continuum surrounding the interface [39, 40]. This hypothesis was also used when developing the enhanced hypoplas-
tic interface models proposed by Stutz et al. [35, 37, 41].
After briefly introducing the hypoplastic interface models, the stress and strain rate tensor assumptions are explained,
and the implementation approach is introduced. This is followed by a verification of the finite element analysis with
Gauss point calculation [35, 37]. The new model is is used to simulate a large interface shear device [42] and compared
to the results of the experimental data.

2. HYPOPLASTIC INTERFACE MODELS

The hypoplastic interface models has already been applied to fine-grained soils [37], and the enhanced hypoplastic
model has been applied to granular soil structure interfaces [35]. The underlying assumptions are introduced below.
The interface model formulations are based on the clay hypoplastic model [43] and the granular hypoplastic model
[44], which can be found in Appendix B and Appendix C.

2.1. Reduced stress and strain rate tensors

The original hypoplastic models can be used without modifying the tensorial equations [35, 37]. The mathematical
operators will be modified so that the model can be used with a reduced stress tensor in the Voigt notation as:

σσσh =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⇒
σn τx τy

τx σp 0
τy 0 σp

 (1)

where σσσh denotes the whole stress tensor, and the degenerated vectorial form σσσ is:

σσσ =


σn

σp

τx

τy

 (2)
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A brief comment for the in-plane stress σp: at the start of each simulation, the stress initialization is done by σp = σn.
After the initialization, the normal and in-plane stresses are developed independently of each other.
The strain rate tensor ε̇εε is defined as:

ε̇̇ε̇εh =

ε̇11 ε̇12 ε̇13
ε̇21 ε̇22 ε̇23
ε̇31 ε̇32 ε̇33

⇒

ε̇n

γ̇x
2

γ̇y

2
γ̇x
2 0 0
γ̇y

2 0 0

 (3)

where, ε̇̇ε̇εh denotes the hole strain rate tensor, ε̇n the normal strain rate and
γ̇x

2
,
γ̇y

2
the shear strain rate in the x and y

direction, respectively. The vectorial form ε̇̇ε̇ε is defined as:

ε̇̇ε̇ε =


ε̇t

0
γ̇x
2
γ̇y

2

 (4)

The in-plane components of the strain rate tensor are εp = 0. For the use of the in-plane strain, ε̇p = 0, and for
the in-plane stress, σp , 0. Using these modified stress and strain tensors will lead to simple shear stress and strain
conditions at the interface [45, 46]. These stress and strain tensors will lead to odeometric stress and strain assumption
at the interface. More information about the initialization of σp are given in Stutz and Mašı́n [37]. These reduced
versions are used in conjunction with the mathematical operators defined in Appendix A.

2.2. Fine-grained hypoplastic interface model

The fine-grained hypoplastic interface model is based on the hypoplastic soil model with explicit defined asymp-
totic states of Mašı́n [43]. The general form of the hypoplastic model [47] is:

σ̇̇σ̇σ = fs (LLL : ε̇̇ε̇ε + fdNNN‖ε̇̇ε̇ε‖) , (5)

where ε̇̇ε̇ε and σ̇̇σ̇σ are the strain and stress rate tensors, respectively. LLL and NNN are the fourth- and second-order constitutive
tensors, fs is a factor that controls the influence of the mean stress (barotropy) and fd is a factor for the influence of the
relative density (pyknotropy). Mašı́n [48] proposed an alternative expression for the hypoplastic clay model developed
from the general form of the hypoplastic constitutive formula [47]:

σ̇̇σ̇σ = fsLLL : ε̇̇ε̇ε −
fd
f A
d

AAA : ddd‖ε̇̇ε̇ε‖, (6)

where ddd is the asymptotic strain rate direction and f A
d describes the value of fd at the asymptotic state boundary

surface. AAA is defined as:
AAA = fsLLL +

σσσ

λ∗
⊗ 111, (7)

where λ∗ is a model parameter. Equation (6) enables the use and incorporation of an appropriate arbitrary shape for
the asymptotic shape boundary surface. This is done by specification of f A

d in dependence of the void and stress ratio
[48]. The formulation of the full model is given in Appendix C.

2.3. Granular hypoplastic interface model

Von Wolffersdorff [44] extended the basic formula of the hypoplastic model [47] by incorporating a predefined
limit state surface from Matsuoka and Nakai [49]. The constitutive stress-strain equation is defined as:

σ̇̇σ̇σ = fs (LLL : ε̇̇ε̇ε + fdNNN‖ε̇̇ε̇ε‖) , (8)

The model is briefly described in Appendix B.
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3. INNOVATIVE APPROACH FOR INTERFACE MODELLING

The model was implemented using the software package ABAQUS FEA [38]. However, the method proposed is
not limited to a specific software package. It can thus be used in different codes and numerical techniques with simple
modifications [4, 5].
Using ABAQUS, it is possible to define a user constitutive model for frictional behaviour (FRIC). This subroutine
is implemented by the use of a mortar method that is a segment-to-segment approach defining a master and slave
surfaces [50].
For clarification, the UMAT subroutine can be used for: “User subroutine to define the mechanical behaviour of a
material”. The FRIC subroutine can be used for:” User subroutine to define frictional behaviour for contact surfaces
”. Additional information about both subroutines is provided in the ABAQUS documentation [50].
In the finite element method, interface models are generally implemented with the primary state variables stress and
the strain rate normal to the interface (σn, ε̇n) and shear components (τx,τy,γ̇x,γ̇y). To incorporate the in-plane σp

stress into the formulation as an additional state variable together with the void ratio e must be considered. This is
done by an algorithm that will be introduced below. With respect to the use of a stretching tensor DDD, the spin tensor
WWW can be neglected because rigid body rotations are assumed.

Implementation scheme
The reduced tensor notation (Section 2) will be used in the FRIC subroutine. The tensor entries are transformed and

transferred to the 3D UMAT implementation available from the soilmodel.info project [51]. The innovative approach
is presented in Figure 1. In the actual time increment, the FRIC subroutine is invoked. The input of all necessary
parameters, stresses and displacements are supplemented from the ABAQUS calculation kernel. The relative shear
displacements u are transformed by the virtual shear zone thickness to shear strains εx; εy .
The input from the FRIC routine is formatted to match the UMAT input format and transferred to the UMAT subrou-
tine, taking into consideration a normal strain rate of ε̇n = 0 for the first iteration. To ensure a volumetric behaviour
according to the simple shear conditions, the normal contact stress rate σ̇Press

n is used to find the appropriate normal
strain rate ε̇n. This is done by using a Newton-Raphson iteration scheme. The interface contact stress rate is derived
according to the normal deformation that must be chosen according to the stress contact rate σ̇Press

n . After the UMAT
call, the relative error “err.” is compared to the tolerance (TOL). If the tolerance TOL is smaller than the error, a new
value of the ε̇n+1

n must be approximated using the Newton-Raphson algorithm until the condition of err ≤ TOL is ful-
filled. The stressesσσσUMAT are transformed back to the stress definition by the FRIC subroutineσσσFRIC . This procedure
is used for each increment when the FRIC routine is used.
The scheme can be used with any kind of 3D constitutive model. Here, the hypoplastic fine-grained and granular
interface models are used. This innovative approach can be used with different constitutive models by adapting the
scheme. The Newton-Raphson method used to derive the normal strain rate and the virtual thickness approach is
defined below.

Newton-Raphson method
The Newton-Raphson method (Figure 1) implemented to find the necessary normal contact strain in dependence

of the normal stress rate, which is supplemented into the FRIC user subroutine from the ABAQUS kernel. The formula
for the Newton-Raphson iteration is:

x1 = x0 −
f (x0)
f ′(x0)

, (9)

where x1 is the new value of the desired value, x0 is the initial estimate for the obtained value, f is the function used
with x0 and f ′ is the first derivative of the function with x0 for the initial estimate.
This is repeated with the formula as:

xn+1 = xn −
f (xn)
f ′(xn)

, (10)

until a certain error tolerance TOL is reached. The stability and efficiency of the method proposed for the given normal
contact strain rate is demonstrated (Section 4). In the new approach, the following equation is used:

ε̇n+1
n = ε̇n

n −
f (ε̇n

n)
f ′(ε̇n

n)
, (11)
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where f is the UMAT function call. In the UMAT, the first derivative is defined by the Jacobian matrix ∂σn
∂εn

(Figure 1).

Virtual thickness approach

As mentioned by Gutjahr [52], the shear zone thickness is dependent on the shear strain and shear displacement.
Arnold [53] discussed the possibility of using a virtual shear zone thickness to scale the relative displacements in
the interface. Using this approach, it is possible to calibrate the shear stress evolution for experimental data. Similar
approaches are used in other finite element packages. The shear strains in the asymptotic state [34, 35, 52] are defined
by:

tan γ̇i =
ui

dv
s
; (12)

When using the real shear zone thickness, the increments must be small because otherwise the shear strain will
dramatically increase. To prevent this, the virtual shear zone approach [54] is used. The product of the specific length
of the contact face (CHRLENTGH) and the artificial multiplier ti as a virtual shear zone thickness ds is applied to
overcome this problem.
The shear-zone thickness is introduced as the virtual shear zone thickness dv

s:

dv
s = ti · CHRLENGTH, (13)

where CHRLENGTH is the ABAQUS keyword for the specific length of the contact face. The true shear zone thick-
ness can be used but will be accompanied by the use of small increments and an increase in the computational time
needed.The coarse and fine-grained models are verified below.

4. VERIFICATION OF IMPLEMENTATION

The approach proposed in Section 3 was verified using the parameter sets given in Table 1. Different aspects were
studied:

• Comparison of Gauss-point simulations used a simple Euler forward integration with the finite element imple-
mentation using the new approach

• Study of the mesh sensitivity

Table 1: Parameters for the evaluation of HCC and HCE contact models

Hypoplastic granular model [55] Hypoplastic clay model [43]
Parameters Value Parameters Value

ϕc 31 λ∗ 0.095
hs [kPa] 1 · 106 κ∗ 0.015

n 0.29 ν 0.1
ed0 0.61 ϕc 21.9
ec0 0.96 N 1.19
ei0 1.09 κr 1.0
α 0.13
β 2

The interface shear test model used for verification is described below.

6



Figure 2: Geometry for direct shear verification simulation model adapted from Weißenfels et al. [8]

4.1. Description of the numerical direct shear interface test

The interface shear test model was introduced by Weißenfels et al. [8]. This model was modified to verify the
approach described here. The model consist of: the soil and the continuum (Figure 2).
The soil sample have a dimension of 25 x 25 x 5 cm (Figure 2). The soil sample with the interface is applied over a
structural part with the dimensions of 35 x 25 x 5 cm. The initial stress applied is pn, and ut is the shear displacement.
This displacement was applied to all nodes of the structural part to model a homogeneous displacement field in the
interface. The steel block was modelled as a linear elastic material with the following material constants: Young’s
modulus of 1 · 1016 and Poisson’s ratio of ν = 0.25. The element type used was a linear interpolation of eight noded
elements (Abaqus keyword: C3D8). The thick line indicates the interface that was modelled by a mortar method using
the master and slave concept as described in the ABAQUS documentation [50]. The contact in the shear direction was
modelled as described in Section 2. The normal contact was modelled with the augmented Lagrange technique [50].
These simulations were compared with the standard Mohr-Coulomb tangential contact formulation.
A geostatic stress field was applied (Step 1), a body force was applied to activate the unit weight of the soil sample
(Step 2), and the shearing was initialised (Step 3). The applied final shear displacement is ut = 5 cm.
First, the mesh size sensitivity was analysed. The Gauss point simulation and the finite element implementation were
then verified.

4.2. Mesh sensitivity analysis

The three different meshes (Figure 3) were used together with the boundary value problem described above. The
parameters from Table 1 were used to calculate the stress deformation behaviour of the interface test using different
mesh-sizes.
The meshes consisted of different numbers of elements:

• coarse mesh size: 1 element

• intermediate mesh size: 128 elements

• fine mesh size: 507 elements

These different meshes were used to show that the behaviour and the response of the model will not be influenced by
the subroutine and the results only differed slightly when different mesh sizes were used.
The normal pressure pn was 200 kPa, and the interface was assumed to be completely rough (κr = 1.0). The results

of this mesh sensitivity analysis are given for sand (Figure 4a). The results for the coarse mesh with one soil element
under-predicted the peak behaviour. The intermediate and fine mesh showed similar results with small differences
in the model response. For all different mesh sizes the same asymptotic shear stresses were reached under the final
displacement of ut = 5cm.
The clay mesh sensitivity analysis (Figure 4b) was assumed to be completely rough (κr = 1.0). The normal stress (pn)
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Figure 3: Three different mesh sizes from coarse, intermediate and fine mesh size used to simulate mesh sensitivity
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Figure 4: Shear displacement ux to shear stress τx graphs for mesh sensitivity analysis for (a) sand and (b) clay
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Figure 5: Comparison between the Gauss point algorithm and the finite element implementation of the constitutive interface models for sand

was 100 kPa in all three simulations. The coarse mesh simulated slightly smaller shear stress around the peak than the
intermediate and fine mesh. The different mesh sizes tend to show the same asymptotic shear stress behaviour. The
two different mesh sensitivity analyses indicate that the mesh size did not influence the behaviour of the shear stress
development. Subsequent analyses were therefore conducted with an intermediate mesh size. The verification based
on the Gauss-point code and the ABAQUS results is described below.

4.3. Verification of coarse-grained soil-structure interface model
The implementation procedure and the accuracy in modelling with a granular enhanced hypoplastic interface

model were verified for the different applied normal stresses (pn) of 100, 200 and 300 kPa (Figure 5). The virtual
shear zone thickness dv

s was 1.0.
In all three different stresses, the finite element implementation slightly overpredicted the results compared with
the Gauss point algorithm because of the numerical integration scheme used in the finite element implementation.
However, the Gauss point solution can be treated as quasi-analytical solution with a tolerance of 0.0%. The soil
sample overlaying the steel surface was also modelled with the hypoplastic 3D constitutive model of Von Wolffersdorff
[44]. Because of the compression of the soil sample, vertical displacements led to the small differences in the shear
stress evolution. When comparing of the results for the normal strain εn, the agreement between both solutions was
sufficient. The slightly smaller strain can be explained by the normal soil deformation over the interface. In general,
the agreement between both solutions was satisfactory.

4.4. Verification of fine-grained soil-structure interface model
The fine-grained interface model was verified using a normal stress (pn) of 50, 100, 200 kPa. dv

s was 1.0, and a
completely rough interface (κr = 1.0) was assumed (Figure 6).
The same shear behaviour trend as for the granular interface model was observed. Compared with the Gauss point
simulation, there was a slight overprediction of the finite element solution. The only exception was the slight under-
prediction of the shear stress for the simulation with a pressure of pn = 50 kPa, which was detectable after a shear
deformation of ut = 3 cm. This was because of the number of maximum steps for the Newton-Raphson iteration
scheme. At ut = 3 cm, the iteration scheme reach the maximum number of iterations. This led to an disagreement
between the calculated stress rate and the normal stress rate provided by the FRIC subroutine. There was also a small
difference for the direct interface shear simulation.
The behaviour of the volumetric normal strain εn is shown in Figure 6b. The trend for all different models was com-
parable, but the simulations done with the finite element method showed a contractive behaviour because the soil
behaviour above the interface was modelled by the hypoplastic fine-grained soil model. This led to an inhomoge-
neous stress at the interface when comparing in both solutions. The semi-analytical solution used a constant stress.

9



0

50

100

150

200

0 0.01 0.02 0.03 0.04 0.05

FEMGauss

τ x
[k
P
a]

ux [m]

50kPa
100kPa
200kPa

50kPa
100kPa
200kPa

(a) ux-τx

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

0 0.01 0.02 0.03 0.04 0.05

FEMGauss

ε n
[-
]

ux [m]

50kPa
100kPa
200kPa

50kPa
100kPa
200kPa

(b) ux-εn

Figure 6: Comparison between the Gauss point algorithm and the finite element implementation of the constitutive interface models for clay

In the finite element calculation, the overlaying soil acted as a spring stiffness [56, 57]. Below, the standard built-in
Mohr-Coulomb model will be compared with the enhanced hypoplastic granular interface model.

4.5. Comparison of Mohr-Coulomb and hypoplastic constitutive interface model
For demonstration purpose, the two completely rough granular interface simulations are compared using the

boundary value problem of the direct interface shear test (Section 4.1). The first simulation was conducted with
the Mohr-Coulomb friction model that was a default model for simulations, taking into consideration interfaces. The
second simulation used the hypoplastic model [44] with the new approach for the interface. In both simulations, the
soil was modelled by the hypoplastic model [44] with the parameter for Hostun sand (Table 1).
The Mohr-Coulomb default model needs only the friction coefficient, which was set to µ = 1.0 for completely rough
conditions. Both the shear stress τx to the shear displacement ux were simulated (Figure 7).
The shear stress that developed in the soil mass was 2–3 times smaller for the enhanced hypoplastic interface model
than for the Mohr-Coulomb model. Applying the enhanced hypoplastic interface model led to the continuous devel-
opment of shear stresses along the interface in contrast to the Mohr-Coulomb model.
This explains that the overall behaviour is not really different as expected from the comparison of the shear stress

field (Figure 8). According to the shear stress development at the interface, the perfect plastic yield condition was
used to calculate the shear stresses. The results indicated a better prediction by the use of the enhanced hypoplastic
model. The fact that model did not require any special parameter calibration procedures is an additional advantage.
This homogeneous stress field in the soil continuum using the new approach with the hypoplastic model is preferable
because this high localisation in such a test device is not observed in experimental studies [58, 46]. Rotta Loria et al.
[2] also found that higher pile-soil strength properties lead to higher yield stresses in the soil mass.

5. MODELLING OF LARGE SCALE INTERFACE SHEAR DEVICE

This section emphasises the possibilities of using the new approach in larger boundary value problems. The large
interface shear device developed at the Karlsruhe Institute of Technology is introduced and was modelled with the
granular enhanced form of the interface constitutive model [35] using the new approach. In addition to the shearing, the
filling of the test device was modelled to capture the correct initial stress and deformation field of the large soil sample.

5.1. Modelling large shear device
The large shear device (Figure 9) developed at Karlsruhe Institute of Technology is described by Vogelsang et al.

[42] and Rebstock [59]. The main goal of the interface shear device was to designate reliable test data as benchmarks
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(a) Mohr-Coulomb

(b) Hypoplastic

Figure 7: Comparison of the shear stress results for the 100 kPa direct interface shear test using the Mohr-Coulomb and hypoplastic interface
models
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Table 2: Hypoplastic parameters for Karlsruhe sand [55]

ϕc hs[kPa] n ed0 ec0 ei0 α β

31 1 · 106 0.29 0.61 0.96 1.09 0.13 2

(a) Side view (b) Top view

Figure 9: Side and top view of the large scale interface shear device from Vogelsang et al. [42]

for numerical models [60]. This data was used in the simulations.
The device can model the installation for various geotechnical engineering structures. It can thus be used as an inter-
face device, to estimate the tip resistance, and for 2D cavity expansion tests. These different problems are important
when considering holistic modelling and design in geotechnical engineering.
The soil was modelled with the hypoplasticity model of Von Wolffersdorff [44] using the parameters summarized

in Table 2. These parameters were supplement by Vogelsang et al. [60] and differ from the parameters of Karlsruhe
Sand [55]. The contact normal behaviour was modelled with an augmented Lagrange approach, which tends to be
more stable than a penalty approach [61, 62]. The rough segment was modelled using a completely rough frictional
value of κr = 1.0 in the Mohr-Coulomb model µ = 1.0 and a roughness value for the hypoplastic model using the new
approach for interface modelling considering taken into consideration 3D soil models.
The stepwise procedure for modelling the filling of the test device was adapted from Vogelsang et al. [60]. The exper-
imental results used for comparison are given by Vogelsang et al. [63].
The procedure described by Vogelsang et al. [60] was important to simulate the initial test stress and deformation

state in the device. This modelling technique was able to model filling of the test device. The set-up that was modelled
had a soil sample height of 1.50 m. The relative density was ID = 0.65 and the initial void ratio was e0 = 0.75 as
indicated by Vogelsang et al. [63]. The filling process was modelled with 10 layers [60].
The modelling procedure (Figure 10) consist out of three steps:

1. A body force that is x times smaller than the normal gravity is applied to the soil sample. This step is necessary
to achieve equilibrium with minimal displacements. (Geostatic)

2. The gravity is applied stepwise until the final layer n, thereby modelling the filling of the test device. (Filling)
3. After the final layer is deposited, the displacement to the wall panels is applied. (Shearing)

Figure 11a shows the results of the filling simulation with the Mohr-Coulomb contact model before the shearing. The
results of the hypoplastic contact modelling are shown in Figure 11b. The PTE1 and PTE2 sensor positions are shown
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in Figure 9. The evolution of vertical stresses is dependent on the filling state. Compared with the hypoplastic model,
the Mohr-Coulomb model showed a better agreement for the evolution of the vertical stress σz. The relation of the
height γhsand and the soil weight is linear. Up to a height of 0.5 m, the earth pressure follows a nearly linear behaviour.
After exceeding the filling height of 0.5 m, a non-linear behaviour was observed. The better model behaviour of the
enhanced hypoplastic granular interface model can be explained by its more advanced non-linear formulation com-
pared with the simple Mohr-Coulomb model.
The horizontal stress evolution was also given after the complete filling of the device (Figure 12a). The earth pressure
distribution for a K0 value of 0.37, [60] can be used as approximation. The results of the fill modelling using the en-
hanced hypoplastic contact model yield a slightly better prediction than the Mohr-Coulomb interface model. However,
both models slightly overpredicted the horizontal stress at the bottom of the box. Vogelsang et al. [60] mentioned that
such a discrepancy can happen because of the low stresses inside the model device. This was in contrast to the higher
stresses used to calibrate the hypoplastic model parameters for the Karlsruhe sand [55].
The experimental data showed small jumps in the horizontal stress distribution. These were caused by the transition
gap from one segment to another segment and the earth pressure measurement system [60]. In the finite element sim-
ulations with a Mohr-Coulomb or enhanced hypoplastic interface constitutive models, these jumps did not exist. This
can be justified by the fact that a smooth earth pressure distribution along the wall is expected.
After the fill modelling, the shear phase was simulated (Figure 12b). The model using the Mohr-Coulomb frictional
model showed an underprediction compared with the experimental data from Vogelsang et al. [63]. The use of the
hypoplastic contact model yielded a better agreement (Figure 12b). The asymptotic value was identical to the exper-
imental value. The general behaviour with the hypoplasticity contact routine was similar to the experimental data.
However, a slight difference around the small peak in the experimental data was observed. After the peak point, a
small increase of the shear force could be observed. This was not the case for the hypoplastic interface model. This
can have various reasons; the initial horizontal stress condition was higher than in the experimental data (Figure 12a).
However, the hypoplastic interface model was better than the Mohr-Coulomb model and is preferable. The shear stress
by the Mohr-Coulomb model tend to a lower shear stress mobilization then before (Figure 12b). The Mohr-Coulomb
model (Figure 13) led to more localised mobilized shear stress zone than an enhanced hypoplastic interface model.
In summary, the a more advanced constitutive model for frictional behaviour taking into consideration the volumetric
response of the interface led to better predictions. This was shown by fill modelling of the device and shear simulation
with the enhanced hypoplastic model. The overburden pressure in the soil sample is smaller than real geotechnical
structures (e.g. piles, anchors, and retaining walls).
Comparing the results of the shearing phase (Table 3) it can be seen that under a high shear displacement (−50 mm),
the difference in percentage from the experimental to the simulation results is high. In addition to the absolute force
values, the volumetric behaviour at the interface is important as indicated by experimental research e.g. [64, 65].

5.2. Remarks and practical implications
Using the new concept for modelling interfaces is an advantage (Figure 7). Taken into consideration the stress

field for the direct shear test, a more homogeneous stress field with a less localised response is preferable because a
homogeneous mobilisation of the shear stress into the soil mass is expected and has been confirmed [45, 46].

Figure 10: Illustration of the applied calculation process: Modelling filling and shearing of the interface shear device [60]
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Table 3: Differences between computed to experimental results for the shearing phase

Shear displacement uz [mm] Experimental Fz Mohr-Coulomb Fz [kPa / % ] Hypoplastic Fz [kPa / % ]

-10 -3.3 -0.55 / -17.9 -0.27 / -8.18
-30 -3.8 -1.05 / -27.6 +0.25 / +7.8
-50 -4.2 -1.45 / -34.5 +0.09 / +2.3
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Figure 13: Results for the shear stress σzy after 60mm shearing. Left side is the Mohr-Coulomb contact and on the right hand side the hypoplastic
contact model

With respect to the large interface shear test device, the results (filling of the box) were not improved by using the
new concept. However, a better description of the shearing behaviour could be observed. The parameters were not
calibrated for the low-stress condition [60]. In addition, the test set-up only takes into consideration one completely
rough segment, whereas all other segments are smooth. This is different for full-scale applications.
There are numerous practical implications. The most important is that using the new approach, every constitutive
model can be used as an interface model. For a holistic soil-structure interaction simulation, this is possible if the
soil and interface use the same model theory. Having achieved this more advanced models for interface modelling,
which do not require specialised interface tests in the initial step, can be used. This will allow for the use of advanced
interface models for Class-A predictions. Griffiths [66, 67] highlighted that the use of interface modelling techniques
as well as special interface constitutive models is important for reliable simulation results, which are readily achieved
using the new concept.

6. CONCLUSION

A new approach to modelling interfaces by applying a 3D soil model is presented. The 3D soil model (UMAT) is
used as a constitutive driver using reduced tensors for simple shear conditions. These conditions are taken into consid-
eration in the case of reduced stress and strain tensor assuming a simple shear deformation pattern. This reduced stress
and strain rate vector is expressed in Voigt notation. The frictional contact is modelled with the FRIC subroutine, and
the UMAT can be used as a constitutive driver to eliminate the need for additional models. An additional benefit of
the method is that only the code interfaces between the two different subroutines must be ensured; a complete code
must not be written. The scheme is explained and can be easily modified for other models or numerical techniques. To
overcome the limitations of the surface-to-surface approach for the normal volumetric modelling, a Newton-Raphson
scheme is used. The Newton-Raphson algorithm is a stable and robust solution for achieving the correct volumetric
behaviour.
The new implementation approach is used to model the constitutive interface models by developed Stutz et al. [35, 37].
The algorithm used in the approach was tested against the Gauss-point algorithm with the simple Euler forward in-
tegration results of Stutz et al. [35, 37]. When verifying these models, it was shown that the mesh size has only a
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small influence. The approach proposed affords excellent prediction capability. The results were better than expected,
but can be explained by the combination of the Newton-Raphson (FRIC) and Runge-Kutta (UMAT) schemes imple-
mented by the user defined subroutines.
Comparing the hypoplastic and Mohr-Coulomb interface model showed that a more realistic stress field was modelled
with the hypoplastic models. Finally, a boundary value problem was modelled using the hypoplastic model [44] with
the new concept and the Mohr-Coulomb model for interface behaviour. The soil in the boundary value problem is
modelled with the hypoplastic model of Von Wolffersdorff [44]. The comparison between the enhanced hypoplastic
and Mohr-Coulomb interface model shows a better prediction with the enhanced hypoplastic model. This was ex-
pected and is indicated by Said et al. [1] and Rotta Loria et al. [2].
The conclusion from the different boundary value problems shows that the new approach is stable when using the
user-defined material subroutine (UMAT) and the user defined frictional constitutive model (FRIC) in the software
package ABAQUS. In general, the implementation concept can be applied to other numerical techniques such as
zero-thickness [4, 7] or thin-layer interface elements [68]. This could lead to a modification of the approach, but it
is possible with major changes to the concept. For example, the node-deformations could be used for normal con-
tact strain calculation, thereby eliminating the need for the Newton-Raphson iteration. Although recently proposed
methods [8, 9, 62, 69] are more widely applicable, but the effort for our approach is smaller, and the application more
simpler than specialised finite element techniques or technologies. The availability and user-friendly implementation
in a suitable finite element software will lead to the use of more advanced interface models.
One of the major advantages of the new implementation concept over specialized interface models is the use of the
same parametrisation as the surrounding soil. This enables the use of advanced interface models in Class-A predic-
tions [70]. The only additional parameter that must be estimated or assumed is the roughness coefficient κr.
Future work should focus on a continuous detailed verification and validation in addition to the implementation of the
method in other numerical techniques.
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Appendix A. Redefined mathematical operators by [35]

The modelling approach was introduced by Stutz et al. [35]. By preserving the continuum constitutive models, the
redefined tensorial operators in combination with the reduced stress Equations (2) and strain rate vectors Equations
(4) used, to simulate the interface behaviour.
The Voigt notation is used to reduce the second order and fourth order tensors into vectors and matrices. The first rank
tensors XXX and YYY and the second rank tensor S are defined as:

XXX =


X1
X2
X3
X4

 YYY =


Y1
Y2
Y3
Y4

 S =


S 11 S 12 S 13 S 14
S 21 S 22 S 23 S 24
S 31 S 32 S 33 S 34
S 41 S 42 S 43 S 44

 (A.1)

The trace of XXX is defined as:
tr (XXX) = X1 + 2X2 (A.2)
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The Euclidean norm XXX is:
‖XXX‖ =

√
XXX : XXX (A.3)

The determinant of XXX is defined as:

det (XXX) = 111 : XXX = X1X2
2 − X2

4 X2 − X2
3 X2 (A.4)

The second-order unity tensor is defined as:

111 =


1
1
0
0

 (A.5)

The fourth order unity tensor is:

III =


1 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

 (A.6)

The deviator from XXX is written as:

XXX∗ = XXX + 111
(
−trXXX

3

)
=



2
3

X1 −
2
3

X2

X2

3
−

X1

3
X3
X4


(A.7)

The normalized deviator from XXX is defined as:

X̂XX
∗

=
XXX

trXXX
−

111
3

=



X1

X1 + 2X2
−

1
3

X2

X1 + 2X2
−

1
3

X3

X1 + 2X2
X4

X1 + 2X2


(A.8)

The inner product (·) is defined as:

XXX · YYY =


X1Y1 + X3Y3 + X4Y4

X2Y2 + X3Y3
X1Y3 + X3Y2
X4Y1 + X2Y4

 (A.9)

The double inner product (:) between the two first-rank tensors is:

XXX : YYY = X1Y1 + 2X2Y2 + 2X3Y3 + 2X4Y4 (A.10)

The double inner product (:) between second-rank and first-rank tensors reads:

S : YYY =


S 11Y1 + 2S 12Y2 + 2S 13Y3 + 2S 14Y4
S 21Y1 + 2S 22Y2 + 2S 23Y3 + 2S 24Y4
S 31Y1 + 2S 32Y2 + 2S 33Y3 + 2S 34Y4
S 41Y1 + 2S 42Y2 + 2S 43Y3 + 2S 44Y4

 (A.11)

Finally, the outer product (⊗) is:

XXX ⊗ YYY =


X1Y1 X1Y2 X1Y3 X1Y4
X2Y1 X2Y2 X2Y3 X2Y4
X3Y1 X3Y2 X3Y3 X3Y4
X4Y1 X4Y2 X4Y3 X4Y4

 (A.12)
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Appendix B. Hypoplastic granular model of Von Wolffersdorff [44]

The general form of the hypoplastic model formulation [47] can be written as:

Ṫ̇ṪT = fs (LLL : DDD + fdNNN‖DDD‖) (B.1)

where Ṫ̇ṪT and DDD are the objective stress rate and stretching tensor, respectively. NNN and LLL are the fourth- and second-order
constitutive tensors. fs is the barotropy factor controlling the influence of the mean stress, and fd is the pyknotropy
factor taking into consideration the influence of the relative density.
Von Wolffersdorff [44] extended the basic form of the model by incorporating a predefined limit state surface according
to Matsuoka and Nakai [49]. The second order constitutive tensor LLL is then defined as:

LLL = fs
1

T̂TT : T̂TT

(
F2III + a2T̂TT ⊗ T̂TT

)
(B.2)

where T̂TT = TTT/tr TTT is a deviator stress and III is the fourth order unity tensor. The coefficient a is defined as:

a =

√
3 (3 − sinϕc)

2
√

2 sinϕc
(B.3)

where φc is a model parameter. The Matsuoka-Nakai condition is given by the following scalar coefficient as:

F =

√
1
8

tan2 ψ +
2 − tan2 ψ

2 +
√

2 tanψ cos 3θ
−

1

2
√

2
tanψ (B.4)

with the Lode angle θ,

cos 3θ = −
√

6
tr

(
T̂̂T̂T ∗ · T̂̂T̂T ∗ · T̂̂T̂T ∗

)
[
T̂̂T̂T ∗ : T̂̂T̂T ∗

]3/2 (B.5)

where T̂TT
∗

= T̂TT − 1
3111 is a deviator stresses and tanψ =

√
3‖T̂TT

∗
‖. The fourth-order constitutive tensor is defined as:

NNN = fs fd
a · F

T̂TT : T̂TT

(
T̂TT + T̂TT

∗
)

(B.6)

The barotropy factor fs controls the influence of the mean stress and is given as:

fs =
hs

n

(ei

e

)β 1 + ei

ei

(
−tr (TTT )

hs

)1−n

·

[
3 + a2 − a

√
3
(

ei0 − ed0

ec0 − ed0

)α]−1 (B.7)

The pyknotropy factor fd controls the influence of the relative density, i.e.,

fd =

(
e − ed

ec − ed

)α
(B.8)

where ed,ec,ei are limiting void ratios. Under increasing mean pressure, they decrease until the limiting values ed0, ec0,
ei0 are reached [71].

ed

ed0
=

ec

ec0
=

ei

ei0
= exp

[
−

(
tr (TTT )

hs

)n]
(B.9)
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Appendix C. Fine-grained hypoplastic model by Mašı́n [43]

Based on the clay hypoplasticity model given in Mašı́n [72] with explicitly defined asymptotic states [43], the
corresponding interface model is derived by using the reduced stress and strain tensors as shown in Equation (2) and
Equation (4). The model uses the general formulation of hypoplasticity with explicitly defined asymptotic states [43]
(Equation (6)), f A

d describes the value of fd at the asymptotic state boundary surface (ASBS) and ddd is the asymptotic
strain rate direction. Here, AAA is

AAA = fsLLL +
σσσ

λ∗
⊗ 111 (C.1)

where λ∗ is a model parameter. Equation (6) enables the use and incorporation of any appropriate arbitrary shape of
the asymptotic shape boundary surface by specifying the dependence of f A

d on the void and stress ratio [73]. The
barotropy factor fs is calculated using:

fs =
3p
2

(
1
λ∗

+
1
κ∗

)
1 − 2ν
1 + ν

(C.2)

Equation (C.1) is used to further establish the hypoplastic fine-grained interface models. The LLL tensor which represents
isotropic elasticity, is given by

LLL = III +
ν

1 − 2ν
111 ⊗ 111 (C.3)

fd =

(
2p
pe

)α f

(C.4)

The exponent α f controls the irreversible deformation inside the ASBS. Mašı́n suggests using α f [72, 74], which
leads to a better prediction of the model response. Additionally, α f can be treated as an independent parameter [72] to
control the non-linear response inside the ASBS.

α f =

ln

λ∗ − κ∗λ∗ + κ∗

3 + a2
f

a f
√

3


ln (2)

(C.5)

where a f is

a f =

√
3 (3 − sin φc)

2
√

2 sin φc
(C.6)

The factor f A
d is the limiting value of fd at the ASBS i.e.

f A
d = 2α f (1 − Fm)α f /ω (C.7)

The Matsuoka-Nakai factor Fm [49] is:

Fm =
9I3 + I1I2

I3 + I1I2
(C.8)

using the following invariants:

I1 = trσσσ I2 =
1
2

[
σσσ : σσσ − (I1)2

]
I3 = detσσσ (C.9)

ω = −
ln

(
cos2 φc

)
ln (2)

+ a f

(
Fm − sin2 φc

)
(C.10)

with the Lode angle θ,

cos 3θ = −
√

6
tr (σ̂̂σ̂σ∗ · σ̂̂σ̂σ∗ · σ̂̂σ̂σ∗)

[σ̂̂σ̂σ∗ : σ̂̂σ̂σ∗]3/2 (C.11)

The asymptotic strain rate direction ddd is given as:

ddd =
dddA

‖dddA‖
(C.12)
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where dddA is written as:

dddA = −σ̂̂σ̂σ∗ + 111
[
2
3
−

1
4

F1/4
m

]
Fξ/2

m − sinξ φc

1 − sinξ φc
(C.13)

The factor ξ controls the ratio of volumetric to shear strain; this factor was obtained using an optimisation procedure
to ensure that the strain rate direction satisfies the Jaky formula [75]:

ξ = 1.7 + 3.9 sin2 φc (C.14)
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