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A hypoplastic constitutive model for clays
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128 43 Prague 2, Czech Republic

SUMMARY

This paper presents a new constitutive model for clays. The model is developed on the basis of
generalised hypoplasticity principles, which are combined with traditional critical state soil mechanics.
The positions of the isotropic normal compression line and the critical state line correspond to the
Modified Cam clay model, the Matsuoka–Nakai failure surface is taken as the limit stress criterion and
the nonlinear behaviour of soils with different overconsolidation ratios is governed by the generalised
hypoplastic formulation.

The model requires five constitutive parameters, which correspond to the parameters of the Modified
Cam clay model and are simple to calibrate on the basis of standard laboratory experiments. This
makes the model particularly suitable for practical applications. The basic model may be simply
enhanced by the intergranular strain concept, which allows reproducing the behaviour at very small
strains. The model is evaluated on the basis of high quality laboratory experiments on reconstituted
London clay. Contrary to a reference hypoplastic relation, the proposed model may be applied to
highly overconsolidated clays. Improvement of predictions in the small strain range at different stress
levels is also demonstrated. Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the past years many constitutive models based on the theory of hypoplasticity [21] have
been developed for granular materials. This research, traced in Sec. 2.1, has led to constitutive
equations that can take into account the nonlinearity of the soil behaviour, the influence of
barotropy and pyknotropy and also the behaviour at small to very small strains with the
influence of the recent history of deformation [32].

The research into hypoplasticity, based at the University of Karlsruhe, was mainly focused
on the development of constitutive models for granular materials, such as sands or gravels. An
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important example is the model by von Wolffersdorff [43] (referred to in the following text “VW
model”), which can be considered as a synthesis of the research work carried out in Karlsruhe†

on this subject. Only a few attempts however have been made to apply hypoplastic principles to
fine grained soils. A notable example are the visco–hypoplastic models by Niemunis [30, 33, 31].
These models assume logarithmic compression law [2] and, in line with the critical state soil
mechanics [37], the lower limit for the void ratio e is equal to 0. Their formulation however
concentrates on prediction of viscous effects and, since they arise from the model by von
Wolffersdorff [43], it is not possible to specify the shear stiffness independently of the bulk
stiffness and, as discussed by Herle and Kolymbas [14], the shear stiffness is significantly
underpredicted.

A modification of the VW model, which allows for an independent calibration of the shear
and bulk stiffnesses, was proposed by Herle and Kolymbas [14] (referred to in the following as
the “HK model”). In the HK model, Herle and Kolymbas modified the hypoelastic tensor L

(Sec. 2.1), which was responsible for the too low shear stiffness predicted by the VW model for
soils with low friction angles, and introduced an additional model parameter r controlling the
ratio of shear and bulk moduli. This model however assumes the influence of the barotropy
and pyknotropy identical to the VW model, which is not suitable for clays. Moreover, the
modification of the tensor L must vanish as the stress approaches the limit state, which
leads to incorrect predictions of the shear stiffness for anisotropic stress states (for further
discussion see Sec. 3). The lack of a suitable hypoplastic formulation for fine grained soils led
to the development of the model proposed in this paper.

In the following, the usual sign convention of solid mechanics (compression negative) is
adopted throughout, except Roscoe’s variables p, q, εv and εs (e.g. [29]), which are defined
positive in compression. In line with the Terzaghi principle of effective stress, all stresses are
effective stresses. Second–order tensors are denoted with bold letters (e.g., T, m) and fourth–
order tensors with calligraphic bold letters (e.g., L). Different types of tensorial multiplication
are used: T ⊗D = TijDkl, T : D = TijDij , L : D = LijklDkl, T · D = TijDjk . The quantity

‖X‖ =
√

X : X denotes the Euclidean norm of X, the operator arrow is defined as ~X = X/‖X‖
and trace by trX = X : 1. 1 is a second–order unity tensor and I is a fourth order unity tensor
with components Iijkl = 1

2
(1ik1jl + 1il1jk).

2. HYPOPLASTICITY

2.1. General aspects

The hypoplastic constitutive equations are usually described by a simple non–linear tensorial
equation that relates the objective (Jaumann) stress rate T̊ with the Euler’s stretching tensor
D.

The early hypoplastic models were developed by trial and error, by choosing suitable
candidate functions (Kolymbas [19]) from the most general form of isotropic tensor–valued
functions of two tensorial arguments (representation theorem due to Wang [42]). The suitable

†There is also the second school of thought in the research on incrementally nonlinear models, Grenoble (e.g.,
[6]). This article however focuses on the developments of the German school.
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A HYPOPLASTIC CONSTITUTIVE MODEL FOR CLAYS 3

candidate functions were combined automatically using a computer program that tested the
capability of the constitutive model to predict the most important aspects of the soil behaviour
[20]. The research led to a practically useful equation with four parameters proposed by Wu
[45] and Wu and Bauer [46].

As proven in [23], the hypoplastic equation may be written in its general form as

T̊ = L : D + N‖D‖, (1)

where L and N are fourth and second–order constitutive tensors respectively that are functions
of the Cauchy stress T only in the case of early hypoplastic models.

An important step forward in developing the hypoplastic model was the implementation
of the critical state concept. Gudehus [13] proposed a modification of Eq. (1) to include the
influence of the stress level (barotropy) and the influence of density (pyknotropy). The modified
equation reads

T̊ = fsL : D + fsfdN‖D‖. (2)

Here fs and fd are scalar factors expressing the influence of barotropy and pyknotropy. The
model [13] was later refined by von Wolffersdorff [43] to incorporate Matsuoka–Nakai critical
state stress condition.

A successful modification of the VW model is not straightforward due to the fact that the
constitutive tensors L and N are interrelated – they act together as a hypoplastic flow rule
and limit stress condition. To overcome this problem, it is convenient to introduce the tensorial
function

B = L
−1 : N, (3)

which has been already used in the development of both Karlsruhe hypoplastic models [20]
and CLoE hypoplastic models [6]. The Eq. (2) may be re–written,

T̊ = fsL : (D + fdB‖D‖) . (4)

The critical state condition can be found by substituting T̊ = 0 and fd = 1 into (4). It follows

that T̊ = 0 is satisfied trivially by D = 0 and for D 6= 0 by

~D = −B. (5)

Eq. (5) imposes a condition on stress, which can be revealed by elimination of ~D from (5).
Taking the norm of both sides of (5) we obtain for the critical state

f = ‖B‖ − 1 = 0. (6)

The stress function f may be seen as a counterpart of the critical state stress criterion in
elasto–plasticity [19]. A hypoplastic flow rule is then given by Eq. (5).

Using these transformations, Niemunis [31] proposed a simple rearrangement of the basic
hypoplastic equation (2), which allows definition of the flow rule, critical state stress condition
and tensor L independently. Such a rearrangement is useful for model development and will
also be used in this work.

The second–order tensor N is now calculated by

N = L :

(

−Y m

‖m‖

)

. (7)
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Here the scalar quantity Y = f + 1 (named the degree of nonlinearity [31]) stands for a
limit stress condition, m is a second–order tensor denoted hypoplastic flow rule and L is a
fourth–order hypoelastic tensor from Eq. (2).

Eqs. (2) and (7) can be combined to get

T̊ = fsL :

(

D − fdY
m

‖m‖‖D‖
)

. (8)

Eqs. (2) and (7), or Eq. (8), define the general stress–strain relationship of the model
proposed. Following [31], this formulation is named “generalised hypoplasticity”.

2.2. Reference constitutive model

The HK model, introduced in Sec. 1, is taken as a reference model for the present research and
its mathematical formulation is summarised in Appendix A. The tensor L of the VW model
is modified by introducing two scalar factors c1 and c2,

L =
1

T̂ : T̂

(

c1F
2
I + c2a

2T̂⊗ T̂
)

, (9)

where quantities T̂, F and a are defined in Appendix A. The expression for the factor c1 is
derived in order to ensure that the additional model parameter r specifies the ratio of the bulk
and shear moduli at isotropic stress state (details are given in Sec. 4.6) and factor c2 follows
from the requirement that the isotropic formulations of both the HK and VW models merge,

c1 =

(

1 + 1

3
a2 − 1√

3
a

1.5r

)ξ

, c2 = 1 + (1 − c1)
3

a2
. (10)

Because the HK model does not make use of the generalised hypoplasticity formulation (Sec.
2.1), the influence of fators c1 and c2 must vanish as the stress approaches Matsuoka–Nakai
critical state stress criterion. For this reason, a scalar factor ξ is introduced in the formulation
of the factor c1 (Eq. (10)), which reads

ξ =

〈

sinϕc − sinϕmob

sinϕc

〉

, where sinϕmob =
T1 − T3

T1 + T3

. (11)

T1 and T3 are the maximal and minimal principal stresses, ϕmob is a mobilized friction angle
and 〈〉 are Macauley brackets: 〈x〉 = (x + |x|)/2.

2.3. Intergranular strain concept

The hypoplastic models discussed in previous sections are capable of predicting the soil
behavior upon monotonic loading at medium to large strain levels. In order to prevent excessive
ratcheting upon cyclic loading and to improve model performance in the small–strain range,
the mathematical formulation has been enhanced by the intergranular strain concept [32].

The rate formulation of the enhanced model is given by

T̊ = M : D, (12)

where M is the fourth–order tangent stiffness tensor of the material. The formulation
introduces the additional state variable δ, which is a symmetric second order tensor called
intergranular strain.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.

Preprint: Accepted for publication



A HYPOPLASTIC CONSTITUTIVE MODEL FOR CLAYS 5

In the formulation described above, the total strain can be thought of as the sum of a
component related to the deformation of interface layers at integranular contacts, quantified
by δ, and a component related to the rearrangement of the soil skeleton. For reverse loading
conditions (δ̂ : D < 0, where δ̂ is defined in Appendix B) and neutral loading conditions

(δ̂ : D = 0), the observed overall strain is related only to the deformation of the intergranular
interface layer and the soil behaviour is hypoelastic, whereas in continuous loading conditions
(δ̂ : D > 0) the observed overall response is also affected by particle rearrangement in the
soil skeleton. From the mathematical standpoint, the response of the model is determined by
interpolating between the following three special cases:

T̊ = mRfsL : D, for δ̂ : D = −1 and δ = 0;

T̊ = mT fsL : D, for δ̂ : D = 0;

T̊ = fsL : D + fsfdN‖D‖, for δ̂ : D = 1.

(13)

Full details of the mathematical structure of the model are provided in Appendix B. The model,
which incorporates the intergranular strain concept is in the paper denoted as “enhanced”,
the model without this modification as “basic”.

3. LIMITATIONS OF THE REFERENCE MODEL

As pointed out in the introduction, although the HK model improved predictions of the clay
behaviour significantly, several shortcomings may still be identified. The most important are:

• Measurements of the shear stiffness at very small strains (G0), by means of propagation
of shear waves, allows investigation of the dependence of G0 on the stress level. For
clays such studies were performed for example in [41, 17, 40, 4]. It was shown that for
stresses inside the limit state surface G0 depends on the mean stress p but the influence
of the deviatoric stress q is not significant (both for triaxial compression and extension).
The HK model with intergranular strains however predicts significant decrease of the
hypoelastic shear modulus G0 with the ratio η = q/p, as discussed in Sec. 5 (Figs. 3 and
4).

• The HK model assumes a non–zero, pressure–dependent lower limit of void ratio, ed.
While this approach is suitable for granular materials, for clays it is reasonable to consider
the lower limit of void ratio of e = 0, according to the critical state soil mechanics [37],
supported by experimental studies on the shape of the state boundary surface of fine–
grained soils (e.g., [7, 8, 9]). Taking the pyknotropy factor fd a function of relative density
re calculated by

re =
e− ed

ec − ed
, (14)

with ec being void ratio at the critical state line at current mean stress, leads to incorrect
predictions of the stress–dilatancy behaviour by the HK model (for details see Sec. 5,
Fig. 6), also for the case when lower limit of void ratio e = 0 is prescribed (ed0 = 0).

• The HK model adopts exponential expressions for the isotropic normal compression
and critical state lines [1]. Compared to the logarithmic expression, the exponential
expression has the advantage of having limits for p → 0 and p → ∞. For clays however
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6 D. MAŠÍN

the logarithmic expression is more accurate in the stress range applicable in geotechnical
engineering [2], with the further advantage of having one material parameter less.

• Taking into account the desired simplicity of the calibration of the proposed model, the
parameter defining the position of the critical state line in the e : p plane (ec0) may be
regarded as superfluous. For clays the position of the critical state line calculated using
the state boundary surface of the Modified Cam clay model [36] is sufficiently accurate,
as shown recently for different clays in [7, 8, 9].

• The HK model does not allow specifying directly the swelling index, κ∗. The slope of
the isotropic unloading line is governed by two parameters, α and β. Direct evaluation
of these parameters from isotropic unloading test is complicated and the calibration is
usually performed by means of a parametric study.

The proposed hypoplastic model for clays aims at overcoming the outlined shortcomings of
the HK model and achieving maximal simplicity of the calibration of the new model, which is
desired in practical applications.

4. PROPOSED CONSTITUTIVE MODEL

4.1. Tensor L

The tensor L (Eq. (9)) determines, in the model enhanced by the intergranular strain concept
(Sec. 2.3), the initial hypoelastic stiffness and causes the HK model to predict a decrease of the
initial shear modulus G0 with the stress ratio η, which is not in agreement with experiment
(see Sec. 3). The influence of η on G0 is caused by the factor 1/(T̂ : T̂) (where T̂ = T/trT),
the decrease of the scalar quantity ξ as the stress approaches limit state and the factor F ,
which increases the compressibility for Lode angles different than π/6.

The influence of the first two factors is studied using the concept of incremental response
envelopes [39]. This concept follows directly from the concept of rate response envelope [12],

with rates replaced by finite–size increments with constant direction of stretching ~D (for
brevity, incremental response envelopes are referred to as response envelopes in this work).
Response envelopes are plotted for ∆t‖D‖ = 0.0015, where t is pseudo–time used for time
integration of the model response. The HK model enhanced by the intergranular strain concept
is used in the simulations, modified by either keeping 1/(T̂ : T̂) = const. = 3 or η = const. = 1
(Fig. 1). The initial value of the intergranular strain tensor δ is equal to 0.

It may be seen From Fig. 1 (left) that the influence of the stress quantity 1/(T̂ : T̂) is not
significant. In the VW model this quantity was introduced in order to emphasize that the
overall compressibility of sand is larger at higher stress ratios. For clays it is well known that
the normal compression lines are approximately parallel for different radial stress paths (as
isotropic and K0 normal compression lines and critical state line). Following Niemunis [31],

the factor 1/(T̂ : T̂) may be disregarded and in the present model it is replaced by its isotropic
value equal to 3.

Fig. 1 (right) shows that the influence of the factor ξ, which in the HK model must decrease
with ϕmob in order to ensure that the model predicts correctly the critical state (Sec. 2.2), is
very significant. The response envelopes become narrower as the stress approaches the critical
state and the initial shear modulus G0 decreases significantly. The proposed model therefore
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Figure 1. The influence of the stress factor 1/(T̂ : T̂) (left) and the scalar quantity ξ (right) in the
expression for L on the size and shape of response envelopes.

does not make use of the quantity ξ and so constant values of scalar factors c1 and c2 (Sec. 2.2)
are assumed. This modification is enabled by adopting the generalised hypoplastic formulation
(Sec. 2.1).

In the VW model the factor F had to enter the expression for L to ensure that the function
B conforms with the Matsuoka–Nakai failure criterion. As quoted in Sec. 3, according to
experiments on fine–grained soils, G0 is independent of η in both triaxial compression and
extension [41]. Therefore, the factor F should be in the expression for L omitted.

We assume the following formulation of the hypoelastic tensor L:

L = 3
(

c1I + c2a
2T̂ ⊗ T̂

)

. (15)

The calculation of scalar factors c1 and c2, which follows [14], is described in Sec. 4.6. The
scalar factor a is a function of material parameter ϕc and follows from VW model,

a =

√
3 (3 − sinϕc)

2
√

2 sinϕc

. (16)

4.2. Limit stress condition Y

As shown, for example, in [18, 3, 35] the Drucker–Prager critical state stress criterion, which is
assumed also by the Modified Cam clay model, is not suitable for clays. The actual critical state
stress criterion circumscribes the Mohr–Coulomb criterion with approximately equal friction
angles in triaxial compression and extension.

Therefore, the Matsuoka–Nakai [24] criterion assumed by the VW hypoplastic model is
applicable also for clays. It is described by the equation

f = − I1I2
I3

− 9 − sin2 ϕc

1 − sin2 ϕc

≤ 0, (17)

with the stress invariants

I1 = trT, I2 =
1

2

[

T : T − (I1)
2
]

, I3 = detT. (18)

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.

Preprint: Accepted for publication



8 D. MAŠÍN

As pointed out by Niemunis [31], the quantity Y should have a minimum value at the isotropic
axis (maximum Y = 1 at the critical state stress criterion). Direct linear interpolation between
the isotropic value Y = Yi and limit state value Y = 1 is assumed in the proposed model,
following [31].

Using the fact that I1I2/I3 = −9 at the hydrostatic stress state, the linear interpolation
reads

Y = (1 − Yi)









− I1I2
I3

− 9

9 − sin2 ϕc

1 − sin2 ϕc

− 9









+ Yi, (19)

with Yi being equal to the isotropic value of the function ‖B‖ of the VW (HK) model,

Yi =

√
3a

3 + a2
. (20)

4.3. Hypoplastic flow rule (tensorial quantity m)

~m = m/‖m‖ is a tensorial function that should have purely volumetric direction at isotropic
stress state and purely deviatoric direction (tr m = 0) at Matsuoka–Nakai states,

{

~m = −T̂
∗
/‖T̂∗‖, for Y = 1;

~m = − 1√
3
1, for Y = Yi,

(21)

where the stress quantity T̂
∗

is defined as T̂
∗

= T̂− 1/3. A suitable candidate is the function
−B of the VW hypoplastic model [43],

m = − a

F

[

T̂ + T̂
∗ − T̂

3

(

6 T̂ : T̂ − 1

(F/a)
2
+ T̂ : T̂

)]

, (22)

with factor F defined by

F =

√

1

8
tan2 ψ +

2 − tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ, (23)

where

tanψ =
√

3‖T̂∗‖, cos 3θ = −
√

6
tr
(

T̂
∗ · T̂∗ · T̂∗)

[

T̂
∗

: T̂
∗]3/2

. (24)

Note that the adopted formulation of the function m implies radial strain increments in
octahedral plane at the critical state. For fine–grained soils this choice is supported by the
experimental evidence given by Kirkgard and Lade [18].

4.4. Barotropy factor fs

The aim of the barotropy factor fs is to incorporate the influence of the mean stress
p = −trT/3. The calculation of the factor fs is based on the formulation of the pre–defined
isotropic normal compression line.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.
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The proposed model assumes isotropic normal compression line linear in the ln(1 + e) : ln p
space, which is suitable for clays [2]. Its position is governed by the parameter N and its slope
by the parameter λ∗,

ln(1 + e) = N − λ∗ ln p. (25)

Time differentiation of (25) results in

ė

1 + e
= − λ∗

p
ṗ. (26)

The already defined quantities L, m and Y , together with the yet unknown values of
pyknotropy factor fd at the isotropic normally compressed state (fdi) and the factors c1 and
c2, may be used to derive the form of the Eq. (7) for isotropic stress state. With the use of

ṗ = − 1

3
trT̊, D =

ė

3 (1 + e)
1, and ‖D‖ =

|ė|
3 (1 + e)

√
3, (27)

we find

ṗ = − fs

3 (1 + e)

(

3c1 + a2c2
)

[

ė+ fdi
a
√

3

3 + a2
|ė|
]

. (28)

As discussed in Sec. 2.2, calculation of the scalar factor c2, introduced in [14], ensures that
the modification of the tensor L does not influence the isotropic formulation of the model.
Therefore it follows from (28) that

3c1 + a2c2 = 3 + a2. (29)

Eq. (28) may be therefore simplified to

ṗ = − 1

3 (1 + e)
fs

[

(

3 + a2
)

ė+ fdia
√

3|ė|
]

, (30)

and for isotropic compression with ė < 0

ṗ = −
[

1

3 (1 + e)
fs

(

3 + a2 − fdia
√

3
)

]

ė. (31)

Comparing (26) with (31) we derive the expression for the barotropy factor fs,

fs = − trT

λ∗

(

3 + a2 − fdia
√

3
)−1

. (32)

4.5. Pyknotropy factor fd

The pyknotropy factor fd was introduced in [13] in order to incorporate the influence of density
(overconsolidation ratio) on the soil behaviour. If we assume, following discussion in Sec. 3,
that the lower limit of void ratio is e = 0 for clays, the pyknotropy factor fd has the following
properties:

• fd = 0 for p = 0;
• fd = 1 at the critical state;
• fd = const. > 1 at isotropic normally compressed states.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.

Preprint: Accepted for publication



10 D. MAŠÍN

Moreover, the pyknotropy factor fd should have constant value along any other normal
compression line (reasons for this choice are demonstrated in [26]). Taking into account the
outlined properties of the factor fd, we propose a simple expression

fd =

(

p

pcr

)α

, (33)

where pcr is the mean stress at the critical state line at the current void ratio (Fig. 2).
As discussed in Section 3, the position of the critical state line in ln(1 + e) : ln p space

does not need to be controlled by an additional parameter, since for clays this position is
sufficiently accurately defined by the state boundary surface of the Modified Cam clay model.
The expression for the critical state line reads

ln(1 + e) = N − λ∗ ln 2
pcr

pr
, (34)

where pr is the reference stress 1 kPa. Therefore,

fd =

[

− 2trT

3pr
exp

(

ln (1 + e) −N

λ∗

)]α

. (35)

The scalar quantity α is calculated to allow for a direct calibration of the swelling index κ∗,
defined as the slope of the isotropic unloading line in the ln(1 + e) : ln p space. This line has
the expression

ln(1 + e) = const. − κ∗ ln p, (36)

which leads after time differentiation to

ė

1 + e
= − κ∗

p
ṗ. (37)

For isotropic unloading from the isotropic normally compressed state the proposed model has
the form (from Eq. (30))

ṗ = −
[

1

3 (1 + e)
fs

(

3 + a2 + fdia
√

3
)

]

ė. (38)

Having defined the barotropy factor fs (32) and the pyknotropy factor for the isotropic
normally compressed state fdi (from Eqs. (35) and (25)),

fdi = 2α, (39)

we may rewrite Eq. (38) to get

ṗ = −
[

p

λ∗ (1 + e)

(

3 + a2 + 2αa
√

3

3 + a2 − 2αa
√

3

)]

ė. (40)

Comparing (40) with (37) we derive the expression for the scalar quantity α,

α =
1

ln 2
ln

[

λ∗ − κ∗

λ∗ + κ∗

(

3 + a2

a
√

3

)]

. (41)

The meaning of the model parameters N , λ∗ and κ∗ is demonstrated in Fig. 2.
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Figure 2. Definition of parameters N , λ∗ and κ∗ and quantities pcr and p∗
e (from Sec. 5).

4.6. Scalar factors c1 and c2

Calculation of the factor c2 is based on Eq. (29) and follows [14],

c2 = 1 + (1 − c1)
3

a2
. (42)

For the calculation of the factor c1, we define the constitutive parameter r as the ratio of the
bulk modulus in isotropic compression (Ki) and the shear modulus in undrained shear (Gi) for
tests starting from the isotropic normally compressed state. Manipulation with the proposed
model leads to expressions for Ki and Gi,

Ki =
fs

3

(

3 + a2 − 2αa
√

3
)

, (43)

Gi =
3

2
fsc1. (44)

Because r = Ki/Gi, we find

c1 =
2
(

3 + a2 − 2αa
√

3
)

9r
. (45)

Having obtained factors c1 and c2, the mathematical formulation of the proposed model is
complete. It is summarized in Appendix C. The model requires five constitutive parameters:
ϕc, λ

∗, κ∗, N and r.

5. INSPECTION INTO PROPERTIES OF THE MODEL

5.1. Shear moduli

A significant shortcoming of the HK model is the underprediction of the initial shear stiffness
G0 for tests starting from anisotropic stress states. This deficiency is very important for
practical applications, since the stress state in the field is often anisotropic.
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Figure 3. Influence of the stress ratio η on the hypoelastic shear modulus G∗
0 calculated by the HK

(left) and proposed (right) models with intergranular strains.
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predictions by the proposed model with intergranular strains (right).

Using the intergranular strain concept (Sec. 2.3), the quasi–elastic behaviour is controlled
by the equation

T̊ = mRfsL : D. (46)

In the following, we restrict our attention only to axisymmetric conditions, as we want to
examine possibility of calibration of model parameters, not to provide a full analysis of model
performance. We may define the shear modulus G∗ using Roscoe’s variables p, q, εv and εs
(e.g., [29]) as follows [11]:

[

ṗ
q̇

]

=

[

K∗ J
J 3G∗

][

ε̇v
ε̇s

]

. (47)

Because the hypoelastic stiffness tensor L is not isotropic, G∗ is equal to the equivalent shear
modulus defined by G = q̇/(3ε̇s) only for undrained conditions.
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Combining (46) and (47) we find that

G∗
0

=
mRfs

3

[

L1111 − 2L2211 +
1

2
(L2222 + L2233)

]

. (48)

Substituting expressions for L (15) and fs (32) we get

G∗
0 =

mRp

3λ∗
(

3 + a2 − 2αa
√

3
)

[

27

2
c1 +

c2a
2

p2

(

T 2

11 − 2T22T11 +
1

2
T 2

22 +
1

2
T22T33

)]

, (49)

and therefore

G∗
0 =

mRp

3λ∗
(

3 + a2 − 2αa
√

3
)

(

27

2
c1 + c2a

2η2

)

. (50)

Eq. (50) shows that the modulus G∗
0 predicted by the proposed model depends both on the

mean stress p and stress ratio η. The second term in parenthesis in (50) is however significantly
smaller, than the first term (for parameters derived in Sec. 6 and η = 0.5 the first term is 13.2
times larger). Therefore, contrary to the HK model, the influence of η on G∗

0
is not significant.

This observation is shown in Fig. 3 (right), with predictions by the HK model in Fig. 3 (left)
for comparison. This drawback of the formulation of HK model is also demonstrated in Fig.
4 (left). The initial stiffness for the stress path, which starts at anisotropic stress state and
passes isotropic stress state, is underpredicted and the model predicts unrealistic increase of
the tangent stiffness at isotropic conditions. The improved prediction by the proposed model
is in Fig. 4 (right).

As follows from Fig. 3 (right), for stress states with lower stress ratios η we can neglect the
second term in (50) and write

G∗
0
' 9mRc1

2λ∗
(

3 + a2 − 2αa
√

3
)p, (51)

and after substituting the expression for c1 (45) we get the final simple form

G∗
0 ' mR

rλ∗
p. (52)

The shear modulus G∗
0 may be measured by means of an undrained shear test‡ in a triaxial

apparatus equipped with high–accuracy local strain transducers (e.g., LVDT transducers [10]).
However, because accurate quasi–static measurements of the shear stiffness are problematic, it
is useful to derive an expression for the out–of–axis shear modulus Gvh

0 [38, 22, 5, 23] (upper
index v stands for vertical and h for horizontal direction), which can be measured by dynamic
stiffness measurements (e.g., bender element tests [16]). Because

Gvh
0 =

mRfs

2
L1212, (53)

we find, after substituting expressions for L (15), fs (32) and c1 (45), that

Gvh
0

=
mR

rλ∗
p. (54)

‡In the context of this paper, the term “shear tests” is used for various types of axisymmetric loading tests
performed in a triaxial cell, not in simple or torsional shear apparatuses.
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Figure 5. Response envelopes of the proposed model (left) and HK model (right) with and without
intergranular strains for isotropic stress states and for ϕmob = 18◦ (with ϕc = 22.6◦) in triaxial

compression and extension.

Therefore, at axisymmetric conditions the proposed model predicts a linear dependency of the
initial shear modulus Gvh

0 on the mean stress p, which is approximately correct (e.g. [44, 41]).
Eq. (54) is valuable for the calibration of the parameter mR, as discussed in Sec. 6.

In the previous paragraph we demonstrated that the initial shear stiffness in the “quasi–
elastic” range of the proposed model is practically independent of the stress ratio η.
Nevertheless, the shear stiffness for intergranular swept–out–memory states [32] (and the shear
stiffness of the basic model without intergranular strain concept) must vanish as the stress
approaches Matsuoka–Nakai states. This property of the proposed model can be studied using
response envelopes (Fig. 5 (left)). It is evident that the response envelopes of the model with
intergranular strain are centered about the reference stress point. On the other hand, for
larger ϕmob the response envelopes of the basic model are significantly translated (ultimately,
at Matsuoka–Nakai limit state they touch the reference stress point). It is also worth noting
that the response envelopes do not change their shape substantially as the stress approaches
the critical state. This is not the case for the HK model (Fig. 5 (right)), where the response
envelopes for larger ϕmob become narrower. Note that also the VW hypoplastic model for
granular materials retains similar shapes§ of response envelopes for different ϕmob.

5.2. Stress–dilatancy behaviour

In this section we will study the influence of the novel expression for the pyknotropy factor fd.
Since a detailed study on the shape of the state boundary surface of the proposed constitutive
model, defined as a boundary of all admissible states in the stress–porosity space, is presented in
a forthcoming paper [26], we will restrict our attention to the shape of stress paths normalized

§Only the size of response envelopes decreases slightly, due to the factor 1/(T̂ : T̂) in the expression for L

(Sec. 4.1).
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Figure 6. Normalized stress paths of drained shear tests calculated by the HK (a) and proposed (b)
models, with critical states indicated by points. Experimental results by Rampello and Callisto [35]
on natural Pisa clay for qualitative comparison (c). Simulations were performed with e = const.,

q = 0 kPa and varying p.

by the equivalent pressure at the isotropic normal compression line p∗e [15] (Fig. 2), defined by

p∗e = exp

{

N − ln(1 + e)

λ∗

}

. (55)

They are shown for drained triaxial tests in Fig. 6 (b), experimental results on natural Pisa clay
[35] are given in Fig. 6 (c) for qualitative comparison. The proposed model predicts correctly
dilatant/contractant behaviour for a wide range of overconsolidation ratios, down to p = 0. The
increase in the peak friction angle for states dry of critical (defined by p < pcr or p/p∗e < 0.5)
is also evident.

Predictions by the HK model are shown for comparison in Fig. 6 (a). This figure reveals
another shortcoming of the HK (VW) model, discussed by Niemunis et al. [34]. This model
allows the lower limit of void ratio ed to be surpassed. The parts of the stress paths, which pass
inadmissible state e < ed, are plotted using dotted lines in Fig. 6 (a)¶. It is clear that unlike the
proposed model the HK model is not suitable for modelling clays with higher overconsolidation

¶Note that the factor fd of the HK model is a complex number for e < ed. In order to perform analyses, fd = 0
for e < ed was prescribed, so predictions were for these states hypoelastic.
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ratios.

5.3. Limitations of the proposed model

After sumarising the main advantages of the proposed model, let us now point out its
limitations.

A particular form of barotropy and pyknotropy factors fs and fd prescribe constant shape
and size of the state boundary surface (see [26] for detailed explanation). Therefore, the model
is suitable for modeling reconstituted clays and natural clays with “stable” structure (constant
sensitivity, in a sense defined in [9]). Its application to soft natural clays requires further
development.

The aim of the work is to provide a practical engineering model with a minimal number of
parameters, which may be evaluated on the basis of standard laboratory experiments. This
fact certainly restricts freedom for calibration, which may be found to be limiting for certain
non–standard geotechnical applications. In such a case, the proposed model may be used as a
basis for further modifications.

6. DETERMINATION OF PARAMETERS

The model is evaluated on the basis of laboratory tests on reconstituted London clay (Maš́ın
[25, 27]). These were performed in computer controlled triaxial apparatuses. In addition to
the standard equipment, three local submersible LVDT transducers RDP D5/200 [10] and a
pair of bender elements [16] were used in order to study also the behaviour in the small strain
range.

Parameters N , λ∗ and κ∗: These parameters were calibrated on the basis of a single
isotropic loading/unloading test (Fig. 7 left). Isotropic loading must exceed preconsolidation
pressure in order to find the position and the slope of the normal compression line. Parameter
κ∗ should be calibrated from the slope of the isotropic unloading line close to the normally
compressed state‖.

Parameter ϕc: The critical state friction angle was found using a linear regression through
the critical state points of all shear tests available.

Parameter r: Parameter r may be evaluated directly, using the definition (Sec. 4.6), as
a ratio of the bulk and shear moduli for tests starting from isotropic normally compressed
stress state. However, since the model predicts gradual degradation of the shear stiffness, it
is advisable to find an appropriate value of the parameter r by a parametric study. This
approach is acceptable because there is no interrelation with other model parameters, which
would require parametric study for calibration.

‖Note that the proposed model is formulated in such a way that the slope of the predicted isotropic unloading
line in ln(1 + e) : ln p space is exactly equal to parameter κ∗ only for unloading from normally compressed
state.
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test. Unlike the experiment, simulation started from normally compressed state (left). Calibration of

parameter r using a parametric study (right).

Table I. Summary of parameters of the basic version of the proposed model (left) and of the
intergranular strain extension (right) for London clay. Standard values may be assumed for parameters

in parenthesis

ϕc [◦] λ∗ κ∗ N r

22.6 0.11 0.016 1.375 0.4

mR (mT ) (R) (βr) (χ)

4.5 (4.5) (10−4) (0.2) (6)

The parameter r was calibrated on the basis of the stress–strain curve of the shear test with
constant mean pressure on K0 overconsolidated specimen (PhM19), Fig. 7 (right).

Parameters for the small strain range (intergranular strain concept): Intergranular
strain concept (Sec. 2.3) requires five additional model parameters. Their calibration is
described in the original paper [32]. Experience however shows that three of these parameters
have similar values for a broad range of different soils and without suitable laboratory
experiments we can assume “standard” values: R = 10−4, βr = 0.2 and χ = 6. Due to
the lack of suitable laboratory experiments we also assume mT = mR.

The parameter mR may be conveniently calibrated on the basis of the shear stiffness
measurements with bender elements using Eq. (54). Knowing the values of parameters λ∗

and r we use a linear regression in Gvh
0 : p space and from the slope calculate the value of

parameter mR, as shown in Figure 8.

Derived parameters of the proposed model for London clay are given in Table I.

6.1. Calibration of the HK model

The HK model was calibrated on the basis of the same laboratory tests as the proposed model
to compare their predictions. Parameters hs, n and ei0, which define the position and the
shape of the isotropic normal compression line, were calibrated using isotropic compression
test depicted in Fig. 7 (left). An isotropic unloading test was used to calibrate parameters α
and β. Because a direct calibration is difficult, parameters α and β were derived by means of
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Table II. Summary of parameters of the basic version of the HK model for London clay.

φc [◦] hs [kPa] n ed0 ec0 ei0 α β r

22.6 659 0.214 2.6 2.8 3.23 0.45 2 0.6

a parametric study. It may be seen from Fig. 7 (left) that correctly chosen parameters allow
similar predictions of the isotropic test by both the HK and the proposed model (in the chosen
stress range). The advantage of the proposed model is the smaller number of parameters, which
all have a well defined physical meaning.

The parameter ec0 was calibrated by fitting the position of the critical state line in p : e space.
The calculation of the parameter ed0 from the water content at the plastic limit, as suggested
in [14], leads to incorrect predictions of dilatant/contractant behaviour of overconsolidated
specimens. The calibration of ed0 was therefore based on the correct predictions of dilatant
behaviour of an overconsolidated specimen (PhM19). Finally, the parameter r was evaluated
using a parametric study on a stress–strain curve of the test PhM19. The numerical value of the
parameter r is different compared to the proposed model, due to slightly different expressions
for scalar factor c1, see Appendixes A and C∗∗. The HK model does not allow direct evaluation
of the parameter mR using G0 : p curve. Small strain parameters of the proposed model were
therefore assumed also for the HK model. Parameters of the HK model are summarized in
Table II.

∗∗In the formulation of the HK model, the expression for fdi is omitted in the calculation of the scalar factor
c1
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Figure 9. Stress–strain curves of three different compression tests. Experimental (left) and simulated
(right). Simulation by the basic versions of the HK and proposed model.

7. MODEL PREDICTIONS

An extensive evaluation of the predictions by the proposed model, compared with different
elasto–plastic and hypoplastic models, is presented in a forthcoming paper [28]. In this work, we
simulate laboratory experiments, which were not used to calibrate the constitutive model††,
in order to demonstrate the capability of the model to predict different aspects of the clay
behaviour. The basic version of the model is mostly used, the intergranular strain concept is
adopted only when the behaviour at small strains is important.

Two other shear tests in addition to the test PhM19 were simulated. An undrained
compression test on a nearly normally compressed specimen (PhM21) and a constant p′

extension test on a K0 overconsolidated specimen (PhM17). The experimental and simulated
stress–strain curves are shown in Fig. 9. To assess volumetric changes in drained tests and
development of pore pressures in undrained tests, it is useful to study the shape of stress paths
normalized with respect to the equivalent pressure p∗e , shown in Fig. 10.

Comparisons of predictions by the HK and proposed model in Figs. 9 and 10 indicate that
for soils with medium overconsolidation ratios the predictions of the shear behaviour at large
strains are similar. In this case the proposed model has the advantage of a simpler calibration.
For higher overconsolidation ratios however, large–strain predictions by both models differ
significantly due to the different formulation of the pyknotropy factor fd (Fig. 6).

Since stiffness at small strains was measured by means of local LVDT transducers, we can
study also the capability of the models to predict degradation of the shear stiffness in the
small strain range, Fig. 11. The proposed model (Fig. 11 (b)) predicts correctly initial shear
modulus and degradation of stiffness for tests PhM17 and PhM19, although the test PhM17
started from an anisotropic stress state (Fig. 10). The initial stiffness of the test PhM21 is
slightly overpredicted. This comes from the fact that the test PhM21 was performed at a
larger mean stress (450 kPa) than the stress range used for calibration of the parameter mR

(Fig. 8). Predictions by the HK model (Fig. 11 (a)) are comparable with predictions by the

††Except for parameter ϕc
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Figure 10. Normalised stress paths of three shear tests. Simulation by the HK and proposed models,
both extended with the intergranular strain concept.
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Figure 11. Degradation of the tangent shear stiffness at small strains. Simulation by the HK (a) and
proposed (b) model, both enhanced by the intergranular strain concept, and experimental results (c).
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Figure 12. Variation of bulk modulus in the isotropic unloading test with different degrees of strain
path rotation. Experiment and simulation by the proposed model with intergranular strains.

proposed model only for the test PhM21, which started from the nearly isotropic stress state.
The initial stiffness of the test PhM17, with the anisotropic initial stress state, is significantly
underpredicted and the HK model simulates an incorrect increase of the shear stiffness at
larger shear strains.

One isotropic loading/unloading test was performed with two different degrees of strain
path rotation (0◦ and 180◦) starting from the same mean stress and overconsolidation ratio.
Experimental variation of the bulk moduli and simulations by the proposed model are shown
in Fig. 12. The experimental data show a marked scatter and the model predicts correctly the
trend. Satisfactory predictions were achieved although the parameter mR was calibrated only
on the basis of dynamic measurements of the shear stiffness.

8. CONCLUSIONS

This paper has presented a new hypoplastic constitutive model for clays. The model uses
a formulation of the generalised hypoplasticity [31], which allows independent treatment of
different aspects of soil behaviour. In this way it was possible to develop a model particularly
suitable for fine–grained soils.

The proposed model combines hypoplasticity principles with the traditional critical state soil
mechanics. Parameters required by the model correspond to the parameters of the Modified
Cam clay model and are simple to calibrate on the basis of standard laboratory tests, which
makes the model particularly suitable for practical applications.

The model has been developed to predict soil behaviour at larger strains. However, it may be
enhanced simply by the intergranular strain concept [32] to allow predictions to also be made
at small to very small strains. The calibration of additional parameters, which are related to
the parameters of the basic model, have also been discussed briefly in the paper.

The model is evaluated on the basis of high quality laboratory measurements on
reconstituted specimens of London clay. It is demonstrated that with a minimal number of
parameters the model is capable of predicting a wide range of aspects of fine grained soils
behaviour. Apart from the advantage of simpler calibration, the proposed model significantly
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improves predictions of the HK model [14] for clays with higher overconsolidation ratios and
predictions of the behaviour in the small–strain range at anisotropic stress states.
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APPENDIX A

This appendix summarizes mathematical formulation of a hypoplastic model for soils with low
friction angles by Herle and Kolymbas [14].

The model assumes the following stress–strain relation:

T̊ = fsL : D + fsfdN‖D‖, (56)

with

L =
1

T̂ : T̂

(

c1F
2
I + c2a

2T̂⊗ T̂
)

, (57)

N =
Fa

T̂ : T̂

(

T̂ + T̂
∗)
, (58)

where 1 is a second–order unity tensor, Iijkl = 1

2
(1ik1jl + 1il1jk) is a fourth-order unity tensor

and

trT = T : 1, T̂ = T/trT, T̂
∗

= T̂ − 1/3, (59)

a =

√
3 (3 − sinϕc)

2
√

2 sinϕc

, F =

√

1

8
tan2 ψ +

2 − tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ, (60)

with

tanψ =
√

3‖T̂∗‖, cos 3θ = −
√

6,
tr
(

T̂
∗ · T̂∗ · T̂∗)

[

T̂
∗

: T̂
∗]3/2

. (61)

The scalar factors fs and fd take into account the influence of mean pressure and density,

fs =
hs

n

(ei

e

)β 1 + ei

e

(−trT

hs

)1−n [

3c1 + a2c2 − a
√

3

(

ei0 − ed0

ec0 − ed0

)α]−1

, (62)

fd =

(

e− ed

ec − ed

)α

. (63)
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The characteristic void ratios – ei, ec and ed decrease with the mean pressure according to the
relation

ei

ei0
=

ec

ec0
=

ed

ed0

= exp

[

−
(−trT

hs

)n]

. (64)

The scalar factors c1 and c2 are calculated using

c1 =

(

1 + 1

3
a2 − 1√

3
a

1.5r

)ξ

, (65)

c2 = 1 + (1 − c1)
3

a2
, (66)

ξ =

〈

sinϕc − sinϕmob

sinϕc

〉

, where sinϕmob =
T1 − T3

T1 + T3

. (67)

T1 and T3 are the maximal and minimal principal stresses, ϕmob is a mobilized friction angle
and 〈〉 are Macauley brackets: 〈x〉 = (x + |x|)/2.

The model requires 9 parameters: φc, hs, n, ed0, ec0, ei0, α, β and r.

APPENDIX B

To capture correctly behaviour in the small to very small strain range the hypoplastic model
must be enhanced by the intergranular strain concept [32].

In the extended hypoplastic model the strain is considered as a result of deformation of the
intergranular interface layer and of rearrangement of the skeleton. The interface deformation
is called intergranular strain δ and is considered as a new tensorial state variable (δ is a
symmetric second–order tensor). It is convenient to denote the normalized magnitude of δ as

ρ =
‖δ‖
R
, (68)

and the direction δ̂ of the intergranular strain as

δ̂ =

{

δ/‖δ‖, for δ 6= 0;
0, for δ = 0.

(69)

The general stress–strain relation is now written as

T̊ = M : D. (70)

The fourth-order tensor M represents stiffness and is calculated from the hypoplastic tensors
L and N and a function of the intergranular strain using the following interpolation:

M = [ρχmT + (1 − ρχ)mR] fsL+

{

ρχ (1 −mT ) fsL : δ̂ ⊗ δ̂ + ρχfsfdNδ̂, for δ̂ : D > 0;

ρχ (mR −mT ) fsL : δ̂ ⊗ δ̂, for δ̂ : D ≤ 0.
(71)

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.

Preprint: Accepted for publication



24 D. MAŠÍN

The evolution equation for the intergranular strain tensor δ is governed by

δ̊ =

{
(

I − δ̂ ⊗ δ̂ρβr

)

: D, for δ̂ : D > 0;

D, for δ̂ : D ≤ 0.
(72)

where δ̊ is the objective rate of intergranular strain. The hypoplastic model with intergranular
strains requires five additional model parameters: R, mR, mT , βr and χ.

APPENDIX C

Mathematical formulation of the proposed hypoplastic constitutive model for clays:
The general stress–strain relation reads

T̊ = fsL : D + fsfdN‖D‖, (73)

with

N = L :

(

−Y m

‖m‖

)

. (74)

The hypoelastic tensor L is

L = 3
(

c1I + c2a
2T̂ ⊗ T̂

)

, (75)

where 1 is a second–order unity tensor, Iijkl = 1

2
(1ik1jl + 1il1jk) is a fourth-order unity tensor

and

trT = T : 1, T̂ = T/trT, T̂
∗

= T̂ − 1/3, (76)

a =

√
3 (3 − sinϕc)

2
√

2 sinϕc

. (77)

The degree of nonlinearity Y , with the limit value Y = 1 at Matsuoka–Nakai failure surface,
is calculated by

Y =

( √
3a

3 + a2
− 1

)

(I1I2 + 9I3)
(

1 − sin2 ϕc

)

8I3 sin2 ϕc

+

√
3a

3 + a2
, (78)

with stress invariants I1, I2 and I3,

I1 = trT, I2 =
1

2

[

T : T − (I1)
2

]

, I3 = detT. (79)

The tensorial quantity m defining the hypoplastic flow rule has the following formulation:

m = − a

F

[

T̂ + T̂
∗ − T̂

3

(

6 T̂ : T̂ − 1

(F/a)
2
+ T̂ : T̂

)]

, (80)

with factor F given by

F =

√

1

8
tan2 ψ +

2 − tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ, (81)
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where

tanψ =
√

3‖T̂∗‖, cos 3θ = −
√

6
tr
(

T̂
∗ · T̂∗ · T̂∗)

[

T̂
∗

: T̂
∗]3/2

. (82)

Barotropy and pyknotropy factors fs and fd read

fs = − trT

λ∗

(

3 + a2 − 2αa
√

3
)−1

, fd =

[

− 2trT

3pr
exp

(

ln (1 + e) −N

λ∗

)]α

, (83)

where pr is the reference stress 1 kPa and the scalar quantity α is calculated by

α =
1

ln 2
ln

[

λ∗ − κ∗

λ∗ + κ∗

(

3 + a2

a
√

3

)]

. (84)

Finally, factors c1 and c2 are calculated as follows:

c1 =
2
(

3 + a2 − 2αa
√

3
)

9r
, c2 = 1 + (1 − c1)

3

a2
. (85)

The model requires five constitutive parameters: ϕc, λ
∗, κ∗, N and r.
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