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Charles University, Prague

ABSTRACT: An existing approach to constitutive modelling of structured soils is in this paper applied to
hypoplastic models. The proposed approach is based on the modification of the state boundary surface in such
a way that the models predict different stress-dilatancy behaviour of structured and reference materials. The
concept is applied to hypoplastic models for both clays and for granular materials. Good predictive capabilities
of the modified model for clays are demonstrated, model for granular materials requires further modifications
in order to take into account different small- to medium- strain behaviour of structured and reference materials.

1 INTRODUCTION
This paper introduces a conceptual framework for ap-
plication of existing approaches to constitutive mod-
elling of structured soils1, developed usually within
the framework of elasto-plasticity, to hypoplastic
models (Kolymbas 1991). The paper discusses gen-
eral aspects of the modelling of structural effects in
hypoplasticity, its intention is neither compilation of
the available experimental evidence regarding the be-
haviour of structured soils, nor thorough evaluation
of predictive capabilities of the proposed constitutive
models.

2 REFERENCE CONSTITUTIVE MODELS
The non-linear tensorial equation of the consid-
ered sub-class of hypoplastic models reads (Gudehus
1996)

T̊ = fsL : D + fsfdN‖D‖ (1)

The models are formulated using two tensor-valued
functions L and N and two scalar factors fs and fd.
The soil state is characterised by the Cauchy stress (T)
and void ratio (e). The scalar functions fs and fd are
named barotropy and pyknotropy factors (Gudehus
1996), which incorporate the influence of the mean
stress and relative density (overconsolidation ratio),
respectively.

The models characterised by Eq. (1) are suitable for
predicting behaviour in the medium- to large-strain

1In the following, the term ’structured soil’ will be used for
soil, which due to different fabric or additional bonding behaves
differently compared to a ’reference’ material. As the reference
material equivalent soil reconstituted under standard conditions
(Burland 1990) is usually considered.

range. In order to predict correctly the high stiffness
in the small strain range, Eq. (1) must be modified, for
example by the intergranular strain concept (Niemu-
nis and Herle 1997). The application of the modified
model is, however, outside the scope of the paper.

2.1 Hypoplastic model for clays
A hypoplastic constitutive model for clays (abbrevi-
ated HC) was developed by Mašı́n (2005a) as a mod-
ification of the hypoplastic model for soils with low
friction angles by Herle and Kolymbas (2004).

The number of parameters of the model and their
physical meaning corresponds to the parameters of
the Modified Cam clay model, the non-linear char-
acter of the model, however, provides a significant
improvement of predictions of the hypoplastic model
with respect to the Modified Cam clay model, as
demonstrated by Mašı́n et al. (2005).

The model makes use of the following five constitu-
tive parameters: ϕc, N , λ∗, κ∗ and r. ϕc is the critical
state friction angle, the isotropic virgin compression
line has the following formulation (Butterfield 1979):

ln(1 + e) = N − λ∗ ln

(

p

pr

)

(2)

with parameters N and λ∗ and the reference stress
pr = 1 kPa. The parameters κ∗ and r may be con-
sidered as factors that control bulk (κ∗) and shear (r)
moduli of overconsolidated specimens.

2.2 Hypoplastic model for granular materials
A model by von Wolffersdorff (1996) (abbreviated
VW) may be seen as a representative example of



hypoplastic models for granular materials developed
at the University of Karlsruhe. Its calibration is de-
scribed in detail in Herle and Gudehus (1999).

Model is in the stress-void ratio space characterised
by three pressure-dependent limit states, describing
the upper and lower bound of void ratio (ei and ed)
and a critical state void ratio (ec) (Fig. 1), defined us-
ing a power-law

ei

ei0

=
ec

ec0

=
ed

ed0

= exp

[

−
(−trT

hs

)n]

(3)

with parameters hs, n, ei0, ec0 and ed0. In addition,
three parameters are needed, namely critical state fric-
tion angle (ϕc) and parameters α and β, which control
the influence of pyknotropy.

Figure 1. Pressure-dependent limit states of the VW model
(Herle and Gudehus 1999)

3 CONCEPTUAL APPROACH FOR INCORPO-
RATING META-STABLE STRUCTURE INTO
CONSTITUTIVE MODELS

A conceptual framework for the behaviour of struc-
tured fine-grained soils was presented, e.g., by Cotec-
chia and Chandler (2000). Behaviour of structured
granular materials, together with the interpretation by
means of a constitutive model, was presented by La-
gioia and Nova (1995).

Cotecchia and Chandler (2000) demonstrated that
the influence of structure in fine-grained soils can be
quantified by the different size of the state bound-
ary surfaces2 of the structured and reference materi-
als (Fig. 2). Assuming a geometric similarity between
the state boundary surfaces appears to be a reasonable
approximation, although strongly anisotropic natural
soils may exhibit SBS which is not symmetric about
the isotropic axis. Similar findings were reported for
granular materials by Lagioia and Nova (1995), who
studied the behaviour of calcarenite. They observed
that the state boundary surface of naturally cemented
material has similar shape as the reconstituted soil,
however SBS of the natural material is bigger and it

2State boundary surface (SBS) is defined as a boundary of all
possible states of a soil element in the stress-void ratio space.

Figure 2. Theoretical framework for structured fine-grained ma-
terials (Cotecchia and Chandler 2000)

is shifted such that the state can access region of ten-
sile stresses (Fig. 3).

Figure 3. Yield points and theoretical interpretation of natural
and uncemented granular material (Lagioia and Nova 1995).

These observations are, in principle, applied in
most of the currently available constitutive models for
structured soils. In general, two additional state vari-
ables describing the effects of structure are needed,
namely the ratio of sizes of SBSs of natural and refer-
ence materials, referred to as ’sensitivity’ (s), and the
shift of the SBS towards the region of tensile stresses
measured along the isotropic axis, denoted by Lagioia
and Nova (1995) pt (with initial value pt0, Fig. 3).

As s and pt represent natural fabric and degree of
bonding between soil particles, they may in the scale
of engineering time only decrease or remain station-
ary. The limit values usually characterise the refer-
ence soil (s = 1 and pt = 0), although higher values
may be reasonable for soils with ’stable’ elements of
structure caused by natural fabric (Baudet and Stalle-
brass 2004). s and pt are usually considered functions
of accumulated plastic strain.



4 STATE BOUNDARY SURFACE IN HY-
POPLASTICITY

State boundary surface is an important feature of
soil behaviour that controls different stress-dilatancy
responses of structured and reconstituted materials
(Sec. 3). Elasto-plastic constitutive models incorpo-
rate state boundary surface, which has a pre-defined
shape, explicitly by definition of a yield (or bound-
ing in the case of advanced models) surface and a
hardening law. On the other hand, hypoplastic mod-
els predict state boundary surface as a consequence
of a particular choice of tensorial functions L and N
and scalar factors fs and fd.

Mašı́n and Herle (2005b) studied the shape of the
state boundary surface predicted by the hypoplastic
model for clays. Using the concept of normalised
incremental response envelopes they demonstrated
that although the model predicts the state boundary
surface, its explicit mathematical formulation is not
available.

The model, however, allows us to derive mathemat-
ical formulation for swept-out-memory (limit) states,
which may be considered as attractors of soil be-
haviour (Gudehus 1995). Limit states (defined by con-

stant ~̊T = T̊/‖T̊‖ and void ratio evolving along nor-
mal compression lines) are achieved asymptotically
after sufficiently long proportional (constant ~D) defor-
mation paths. Mašı́n and Herle (2005b) demonstrated
that in the stress-void ratio space limit states consti-
tute a surface (named swept-out-memory (SOM) sur-
face) and that this surface is a close approximation of
the state boundary surface.

Because at swept-out-memory conditions T̊ ‖ T, it
is possible to introduce a scalar multiplier γ such that

T̊ = γ~T (4)

Eq. (1) therefore, at swept-out-memory conditions,
reduces to

γ~T = fsL : D + fsfdN‖D‖ (5)

The second condition for SOM states (void ratio
evolving along normal compression line) is in con-
sidered hypoplastic models described by

ḟd = 0 (6)

SOM conditions are for a particular hypoplastic
model fully described if we solve Eqs. (4) and (5)
such that for given T and ‖D‖ we find corresponding
γ, ~D and fd. For HC and VW models solution was
derived by Mašı́n and Herle (2005a), only the main
conclusions are reported in the following.

4.1 SOM surface of the hypoplastic model for clays
Solution of Eqs. (4) and (5) for the hypoplastic model
for clays is relatively straightforward, as the multi-
plier γ is independent of void ratio. This follows from
the fact that for the HC model the Eq. (1) is for ḟd = 0
positively homogeneous of degree 1 with respect to T
(the model assumes linear normal compression lines
in the lnp:ln(1+ e) space). Solution for the HC model
reads

fd = ‖fsA
−1 : N‖−1 (7)

~D = − A
−1 : N

‖A−1 : N‖ (8)

with
A = fsL +

1

λ∗

T ⊗ 1 (9)

The HC model assumes the following expression for
the pyknotropy factor fd:

fd =

(

2p

p∗e

)α

(10)

where α is a scalar factor calculated from model pa-
rameters and p∗e is Hvorslev’s equivalent pressure at
the isotropic normal compression line. (2). Therefore
it is possible to calculate the value of p∗

e for given T
(from (10) and (7))

p∗e = − 2

3
trT‖fsA

−1 : N‖1/α (11)

The SOM surface of the HC model may be conve-
niently plotted in the normalised space T/p∗

e.
The shape of the SOM surface of the HC model

for four different sets of material parameters in the
normalised space p/p∗

e:q/p∗e is plotted in Fig. 4, cor-
responding parameters are in Tab. 1 (London clay –
Mašı́n 2005a; Beaucaire marl – Mašı́n et al. 2005;
Bothkennar and Pisa clay – Mašı́n 2005b).
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Figure 4. SOM surface of the hypoplastic model for clays for
four different sets of material parameters.



Table 1. Parameters of the hypoplastic model for clays

soil ϕc [◦] λ∗ κ∗ N r

Lond. c. 22.6 0.11 0.014 1.375 0.4
Beau. m. 33 0.057 0.007 0.85 0.4
Pisa c. 21.9 0.14 0.005 1.56 0.2

Both. c. 35 0.119 0.002 1.344 0.05

Table 2. Parameters of the hypoplastic model for granular mate-
rials for Zbraslav sand (Herle and Gudehus 1999)

ϕc [◦] hs [MPa] n ed0

31 5700 0.25 0.52

ec0 ei0 α β

0.82 0.95 0.13 1.00

4.2 SOM surface of the hypoplastic model for gran-
ular materials

Explicit solution of Eqs. (4) and (5) is not available for
the hypoplastic model for granular materials. In this
case, the pyknotropy factor at SOM conditions reads

fd =



‖B‖2 +

(

‖C‖
(

1+e

e

)

trB
G−

(

1+e

e

)

trC

)2

+
2(B : C)trB

(

1+e

e

)

G−
(

1+e

e

)

trC





−

1

2

(12)
with

B = L
−1 : N (13)

C =
L

−1 : ~T
fs

(14)

G =
n

hs

tr~T
(

3p

hs

)(n−1)

(15)

Eq. (12) is an implicit equation for fd, as the hy-
poplastic model for granular materials assumes

fd =

(

e− ed

ec − ed

)α

(16)

and therefore

e = f
(1/α)
d (ec − ed) + ed (17)

In addition, unlike in the case of the HC model, also
factor fs of the VW model is dependent on e. Eq. (12)
may be, however, solved numerically.

Due to the particular formulation of factor fd (16),
different constant-volume cross-sections through the
SOM surface have different shape (normalisation
with respect to p∗e is not applicable for the VW
model). For Zbraslav sand parameters (Tab. 2) these
cross-sections are shown in Fig. 5.
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Figure 5. Constant-volume cross-sections through the SOM sur-
face of the VW model for Zbraslav sand parameters.

5 META-STABLE STRUCTURE IN HYPOPLAS-
TICITY

As mentioned in Sec. 4, Mašı́n and Herle (2005b)
demonstrated that the swept-out-memory surface is
a close approximation of the state boundary surface.
Therefore, hypoplastic models should, in principle,
allow us to modify the size of the state boundary sur-
face in such a way that the models predict different
stress-dilatancy behaviour of structured and reference
materials, using the approach commonly applied in
elasto-plastic models for structured soils (Sec. 3). The
incorporation of meta-stable structure into two refer-
ence hypoplastic models will be discussed in this sec-
tion.

5.1 Hypoplastic model for clays

Modification of the reference HC model for predic-
tions of structured soils has been proposed by Mašı́n
(2005b).

First, the reference model will be enhanced for pre-
dictions of the behaviour of soil with ”stable” struc-
ture (ṡ = 0, ṗt = 0). A study of the expression for the
SOM surface of the HC model (Sec. 4.1) reveals that
the size of the SOM surface would be increased by
the factor s by a simple replacement of p∗

e in the ex-



pression for fd by sp∗e:

fd =

(

2p

sp∗e

)α

(18)

Effect of this modification on the SBS in the stress-
void ratio space is shown in Fig. 6.
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Figure 6. SBS in the lnp : ln(1 + e) space for s > 1.

Further, the origin on the SOM surface would be
shifted towards negative stresses along the isotropic
axis if the Cauchy stress tensor T was in the constitu-
tive model replaced by the ”transformed stress tensor”
Tt (introduced already by Bauer and Wu (1994) who
modified the early hypoplastic model considering T
the only state variable)

Tt = T − pt1 (19)

Note that this is the most simple modification (con-
stant pt, pt < 0), which implies that the SOM surface
than does not have a unique image in the normalised
space T/p∗e. Effect of the two modifications on the
constant volume cross-section through the SOM sur-
face of the HC model is demonstrated in Fig. 7.
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Figure 7. Constant-volume cross-sections through the SOM sur-
face of the HC model with stable structure (reference parameters
for London clay).

Second, the meta-stable structure will be incor-
porated into the constitutive model by defining the
evolution equations for additional state variables and
by modifying the barotropy factor fs. For simplicity
only one additional state variable s will be consid-
ered (pt = 0). Evolution equation for s may read (after
Baudet and Stallebrass 2004)

ṡ = − k

λ∗

(s− sf )ε̇
d (20)

where sf is the ultimate value of s (typically for
bonded materials sf = 1), k is a parameter controlling
the rate of structure degradation and ε̇d is a ”damage“
strain rate with formulation (Mašı́n 2005b)

ε̇d =

√

(ε̇v)
2 +

A

1−A
(ε̇s)

2 (21)

ε̇v and ε̇s are rates of the volumetric and shear strains
respectively3 and A is a non-dimensional scaling pa-
rameter that controls their relative contribution to the
structure degradation.

The barotropy factor fs needs to be modified in or-
der to ensure consistency in model predictions and the
pre-defined structure degradation law (20). Formula-
tion of the HC model for the isotropic compression
from the isotropic normally compressed state reads

ṗ = −
[

1

3 (1 + e)
fs

(

3 + a2 − 2αa
√

3
)

]

ė (22)

The isotropic normal compression line of the model
incorporating structure is given by (see Fig. 6)

ln(1 + e) = N + λ∗ ln s− λ∗ ln

(

p

pr

)

(23)

Time differentiation of (23) results in

ė

1 + e
= λ∗

(

ṡ

s
− ṗ

p

)

(24)

The isotropic formulation of the structure degradation
law (20-21) is

ṡ =
k

λ∗

(s− sf )
ė

1 + e
(25)

Combination of (24) and (25) yields

ṗ

p
= −

[

s− k(s− sf )

λ∗s

]

ė

1 + e
(26)

3In hypoplasticity, Eq. (21) is defined in terms of total, in-
stead of plastic strain rates. The difference between the two def-
initions is in the large-strain range insignificant, as high ”truly”
elastic stiffness causes the elastic part of the total strain incre-
ment to be negligible with respect to the plastic part.



which may be compared with (22) to find an expres-
sion for the barotropy factor fs of the new hypoplastic
model:

fs =
3p

λ∗s
[s− k(s− sf )]

(

3 + a2 − 2αa
√

3
)

−1

(27)

The influence of parameter k on predictions of an
isotropic compression test is shown in Fig. 8, evalua-
tion of model predictions in Sec. 6.
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Figure 8. Prediction of an isotropic compression test by the struc-
tured HC model, influence of parameter k (parameters for Pisa
clay).

5.2 Hypoplastic model for granular materials
Hypoplastic model for granular materials may be
modified to incorporate the effects of inter-particle
bonding in a similar way as the HC model. It is, how-
ever, worth noting that bonding in granular materi-
als influences the small-strain behaviour more signif-
icantly than structure effects in clays (by significant
enlargement of the elastic range – see, e.g., Coop and
Atkinson 1993). Therefore, the VW model for struc-
tured soils will in its basic version necessarily per-
forms poorly in the small- to medium-strain range and
additional measures (e.g. on the basis of the intergran-
ular strain concept) are needed to ensure its practical
applicability.

It follows from Sec. 4.2 that the size of the SBS of
the VW model may be increased by modifying the
characteristic void ratios ei0, ec0 and ed0. Their in-
crease by a factor se in the form

ex0s = ex0 + se (28)

where x stands for i, c, d and ex0s are characteristic
void ratios of a structured soil at p = 0 kPa, would
have the influence on the size of the SBS as demon-
strated in Fig. 9.

Characteristic void ratios eis, eds and ecs are now
calculated by

exs = (ex0 + se) exp

[

−
(−trT

hs

)n]

(29)
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Figure 9. Constant-volume cross-sections through the SOM sur-
face of the VW model for reference (se = 0) and structured
(se = 0.1) soil (reference parameters for Zbraslav sand).

where exs comes in place of ex in the expression of
factors fd and fs. Note that exs are not the state limits
of the structured soil, as the evolution equation for se

is a natural component of the modified constitutive
equation. Similarly to the HC model, the SBS may be
further shifted by introducing the transformed stress
tensor Tt.

The evolution equation for se may read (similarly
to the structured HC model)

ṡe = −ke(se − se
f )ε̇

d (30)

where typically se
f = 0 for bonded material, ε̇d may

be calculated according to (21), ke controls the rate of
the structure degradation.

Finally, the factor fs must be modified to ensure
that the consistency condition at the isotropic nor-
mally compressed state is not violated. Formulation
of the VW model for the isotropic compression from
the isotropic normally compressed state is given by

ṗ =
−fs

3 (1 + e)

[

3 + a2 − a
√

3

(

ei0 − ed0

ec0 − ed0

)α]

ė (31)

The isotropic normal compression line of the model



incorporating structure reads

e = (ei0 + se) exp

[

−
(−trT

hs

)n]

(32)

Time differentiation of (32) results in

ė

e
=

ṡe

ei0 + se
− n

3ṗ

hs

(

3p

hs

)n−1

(33)

The isotropic formulation of the structure degradation
law (30) and (21) is

ṡe = ke(se − se
f )

ė

1 + e
(34)

Combination of (33) and (34) yields

n
3ṗ

hs

(

3p

hs

)n−1

=

[

ke(se − se
f )

(1 + e) (ei0 + se)
− 1

e

]

ė (35)

The factor fs of the structured VW hypoplastic model
follows from the comparison of (31) and (35) and un-
like the factor fs of the HC model, it contains also the
pyknotropy component (eis/e)

β (for details see Gude-
hus 1996).

fs =
(eis

e

)β
[

1 + eis

eis

−
ke
(

se − se
f

)

ei0 + se

]

hs

n

(

3p

hs

)1−n [

3 + a2 − a
√

3

(

ei0 − ed0

ec0 − ed0

)α]−1

(36)

6 EVALUATION
Thorough evaluation of the structured HC model is
given in Mašı́n (2005b). In Figs. 10, 11 and 12 are
shown predictions of the experiments on natural Pisa
clay reported by Callisto and Calabresi (1998). All the
parameters of the structured HC model except the pa-
rameters that quantify the effects of structure (k, A
and sf ) were calibrated solely on the basis of exper-
iments on reconstituted clay. Only two experiments
(A0 and A90, for normalised stress path see Fig. 10)
were used for calibration of parameters k, A and sf .
Although the model was calibrated using a simple
procedure with a minimal number of laboratory ex-
periments required, its predictions are satisfactory in
the entire range of stress paths directions. Parameters
of the structured HC model for natural Pisa clay are
in Tab. 3.

7 CONCLUSIONS
The paper presented a conceptual framework for in-
corporation of meta-stable structure into hypoplastic
constitutive models. The approach is based on the

Table 3. Parameters of the structured HC model for natural Pisa
clay

ϕc λ∗ κ∗ N r k A sf

21.9◦ 0.14 0.005 1.56 0.2 0.4 0.1 1
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Figure 10. Normalised stress paths of the natural and reconsti-
tuted Pisa clay (data from Callisto and Calabresi 1998) and pre-
dictions by the structured HC model (from Mašı́n 2005b).

modification of the state boundary surface predicted
by the models. By increasing the size of the state
boundary surface it is possible to take into account
different stress-dilatancy behaviour of structured and
reference soils.

The approach is equivalently applicable to the two
reference hypoplastic models. Predictive capabilities
of the structured hypoplastic model for clays were
demonstrated, structured hypoplastic model for gran-
ular materials, however, requires further modification
in order to take into account the large quasi-elastic
range caused by inter-particle bonding.
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2005b).

REFERENCES
Baudet, B. A. and S. E. Stallebrass (2004). A constitutive

model for structured clays. Géotechnique 54(4), 269–
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