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Abstract  

 

Hypoplastic model for clays is developed predicting anisotropy of very small strain 
stiffness. The existing hypoplastic model with explicit formulation of the asymptotic state 
boundary surface is combined with an anisotropic form of the stiffness tensor. Naturally, the 
resultant model predicts correctly the very small strain stiffness anisotropy. It is demonstrated 
that properly are also predicted trends in the anisotropy influence on undrained stress paths. 
The model is evaluated using hollow cylinder apparatus experimental data on London clay taken 
over from literature. 
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Introduction 
 

Anisotropy of sedimentary clays is such a significant feature of their mechanical 
behaviour that it cannot be ignored in boundary value problem simulations. For example, 
Addenbrooke et al. (1997), Gunn (1993), Ng et al. (2004) and Franzius et al. (2005) 
demonstrated that incorporation of stiffness anisotropy improved predictions of tunnelling 
problems. In this Note, we develop a hypoplastic model for clays incorporating very small strain 
stiffness anisotropy. Like the underlining hypoplastic models, the model is capable of predicting 
small strain stiffness non-linearity, recent stress history effects (Atkinson et al. 1990) and 
large-strain asymptotic behaviour (Gudehus and Mašín 2009, Mašín 2012a). The model is based 
on the earlier research by the author, which will only briefly be summarised here due to limitted 
space. For details of hypoplastic modelling, the readers are referred to the cited publications. 



Hypoplasticity is an approach to non-linear constitutive modelling of geomaterials. In its 
general form by (Gudehus 1996) it may be written as  

 

 ̊   (    ̇     ‖ ̇‖)              (1) 

 

where  ̊  and  ̇  represent the objective (Zaremba-Jaumann) stress rate and the Euler 
stretching tensor respectively,   and   are fourth- and second-order constitutive tensors, 
and    and    are two scalar factors. In hypoplasticity, stiffness predicted by the model is 
controlled by the tensor  , while strength (and asymptotic response in general, see Mašín 
(2012a), is governed by a combination of   and  . Earlier hypoplastic models (such as the 
model by Wolffersdorff 1996 and Mašín 2005) did not allow to change the   formulation 
arbitrarily, as any modification of the tensor   undesirably influenced the predicted 
asymptotic states. This hypoplasticity limitation was overcome by Mašín (2012c). He developed 
an approach enabling to specify the asymptotic state boundary surface independently of the 
tensor   and demonstrated it by proposing a simple hypoplastic equivalent of the Modified 
Cam-clay model. Based this approach, Mašín (2012b) developed an advanced hypoplastic model 
for clays. This model will serve as a base model for current developments. 

 

Model formulation 
 

The model presented in this Note combines hypoplastic model from Mašín (2012b) with 
anisotropic form of the tensor   proposed by Mašín and Rott (2013)1. Mašín and Rott (2013) 
adopted general transversely elastic model formulation, which reads (Spencer 1982, Lubarda 
and Chen 2008) 
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where the tensor products represented by " " and " " are defined as  
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where         ;    is a unit vector normal to the plane of symmetry (in sedimentary soils 

this vector typically represents the vertical direction).   to    in Eq. (2) represent five 
material constants. They can be calculated as 
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1 Similar problem has already been discussed by Kopito and Klar (2013), who incorporated transversely isotropic stiffness tensor  into the 
model by Mašín (2012c). 
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where the anisotropy coefficients   ,    and    are defined as  
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    are shear moduli,    are Young moduli and     are Poisson ratios. Subscript "p" denotes 

direction within the plane of isotropy (typically horisontal direction) and subscript "t" denotes 
direction transverse to the plane of isotropy (typically vertical direction). 

When compared to the reference model, incorporation of anisotropic form of   
requires re-evaluation of the factor    from (1). According to Mašín (2012c), this factor may be 
quantified by comparing the isotropic unloading formulation of the hypoplastic model with the 
isotropic unloading line of the pre-defined form  
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The isotropic version of the model is obtained by algebraic manipulations with (1) (for 
formulation of all model components see Appendix A)  
 

 ̇  (
 

  
    

  

 
)

 ̇

   
  (13) 

 
where  
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Comparison of (13) with (12) then yields 
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The proposed model reduces to the reference one2 for           . 
To predict very small strain stiffness and recent stress history effects, the model must be 

combined with the intergranular strain concept by Niemunis and Herle (1997) (see Appendix B 
for its formulation). The very small strain stiffness matrix    then reads 
          (16) 

                                                      
2 Note that additional modification of an exponent appearing in the formulation of    is proposed, which is detailed in Appendix A. 



 
The shear      component of the tensor    is given by (from (2), (14) and (15))  
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In the present work, we consider the following dependency of      on mean stress   (Wroth 

and Houlsby 1985) 
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where    and    are parameters and    is a reference pressure of 1 kPa. Comparison of 

(17) and (18) yields the following expression3 for the variable   .  
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Complete model formulation is given in Appendices. Its finite element implementation is freely 
available on the web Gudehus et al. (2007). 

 

Model calibration 
 

In this section, we focus on calibration of material constants new with respect to the 
original model. For calibration of the parameters parameters   ,  ,    and   , the readers are 
referred to Mašín (2012b). As discussed by Mašín and Rott (2013), complete calibration of 
transversely isotropic elastic models requires five measurements of wave propagation 
velocities:   

 •     (  ) : S-wave velocity propagating in the direction normal to the plane of isotropy.  

 •     (   ): S-wave velocity propagating within the plane of isotropy with in-plane 
polarisation.  

 •    (  ): P-wave velocity propagating in the direction normal to the plane of isotropy.  

 •    (   ): P-wave velocity propagating within the plane of isotropy.  

 •     (   ): P-wave velocity under inclination of 45° with respect to the plane of isotropy.  

The material constants may then be calculated using  
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3 Note that in the original intergranular strain concept formulation,    is considered as a parameter. Contrary, in the formulation proposed 
here,    is a variable calculated on the basis of      expression (18). 



 
where (from Mavko et al. 2009)  
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with    being soil density. 

The above mentioned experiments are not routinely performed in geotechnical 
engineering laboratories. A simpler calibration procedure assumes that at least bender element 
shear velocity measurements on vertically and horziontally oriented samples are available for 
calibration of   .    and    may then be evaluated using empirical correlations proposed by 
Mašín and Rott (2013). Let us define the exponents     and     as 
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Based on evaluation of an extensive experimental database, Mašín and Rott (2013) suggested4 
   =0.8 and      . The remaining parameter     may in this simplified calibration 

procedure be estimated by trial-and-error using large strain shear stiffness measurements. 
 

Evaluation of the model 
 

The proposed model has been evaluated using extensive experimental data set on 
London clay from Imperial College project by Nishimura et al. (2007), Nishimura (2005), 
Gasparre et al. (2007) and Gasparre (2005). They tested undisturbed samples of London clay 
from the excavation at Heathrow, Terminal 5. For the material description and details of the 
experimental procedures the readers are referred to the above cited publications. The 
parameters   ,    and    were calibrated using resonant column appartus tests on London 

clay. Empirical expressions were adopted for    (30) and    (31).     was estimated using 

stress-strain curves of shear tests at large strains. The parameters   ,  
  and   , calibrated 

using data by Gasparre (2005), were taken over from Mašín (2009). The parameter   was 
adjusted so that the soil overconsolidation manifested by the undrained stress paths was 
predicted properly. The initial value of void ratio        was calculated from the specimen 
water content and specific gravity provided by Nishimura et al. (2007). The material parameters 
adopted in all the simulations are in Table 1 and 2. Predictions by the proposed model have 
been compared with predictions by the reference model by Mašín (2005).  

In the evaluation, we used hollow cylinder tests on London clay from the depth of 10.5m 
by Nishimura (2005) and Nishimura et al. (2007). Two sets of experiments have been simulated. 

                                                      
4 Note that the classical Graham and Houlsby (1983) model assumes    =0.5 and       



In the first one, the soil was isotropically consolidated to the  in-situ effective stress of 
     kPa (series "IC" by Nishimura et al. 2007). In the second one, the initial conditions 
represented the estimated anisotropic in-situ stress state of       kPa and        kPa 
(series "AC" by Nishimura et al. 2007). In both cases, the soil was sheared after consolidation 
under undrained conditions with controlled vertical strain. Total stress path was defined by 
constant total mean stress and constant values of variables    and  . These were defined as 
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where   ,    and    are the major, intermediate and minor principal stresses respectively 
and   ,    and     are rectilinear stress components in the specimen frame of reference 
(see Nishimura et al. 2007). The value of   represents the contribution of the intermediate 
principal stress such that in the standard compression experiment in triaxial apparatus    . 
Only simulations with       are presented here for brevity.     represents the principal 
stress inclination revealing soil anisotropy. In the standard triaxial test,        for the 
vertically trimmed specimen and          for the horizontally trimmed specimen. 

Figure 1a demonstrates calibration of the parameter    and predictions of very small 
strain stiffness anisotropy. Figure 1b shows secant stiffness     degradation with shear strain 
    in hollow cylinder test with         and       and as predicted by the model. 

Stress paths of various tests are in the   vs. (     )   stress space plotted in Fig. 2. 
Stress-strain curves (    vs. the principal strain difference      ) are presented in Fig. 3. The 
soil anisotropy is revealed by the deviation of the stress path from vertical (constant  ). The 
proposed model predicts the stress path inclination properly for both isotropically and 
anisotropically consolidated specimens. The stress paths deviate from the experimental after 
the peak of    , but this may be explained by the specimen rupture and strain localisation into 
shear bands (see Nishimura et al. 2007 for indication of the pre-rupture stress path portions). 
Predictions by the model by Mašín (2005) are shown in Figs. 2c and 3e,f for comparison. This 
model predicts some degree of stress-induced anisotropy in the anisotropically consolidated 
specimens, but its degree cannot be controlled by a parameter and in the present case it is 
clearly underestimated. The response of the isotropically consolidated specimens is incorrectly 
predicted as initially isotropic by the Mašín (2005) model.  

 

Summary and conclusions 
  

A new version of clay hypoplasticity model is developed for predicting stiffness 
anisotropy. The model is based on the reference model by Mašín (2012b), in which the stiffness 
tensor   is replaced by an anisotropic elasticity tensor. The model has been evaluated using 
comprehensive data set on London clay, which includes measurements of the influence of 
anisotropy in the hollow cylinder apparatus. It is demonstrated that the proposed model 
predicts not only the influence of anisotropy on the very small strain stiffness, but it also 
improves predictions of undrained stress paths. 
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Notation and conventions 
 

Compression negative sign convention is adopted throughout. 
 

Tensorial operations: 
 

‖ ‖   Euclidean norm √       

      trace operator        

      inner product          

    outer product        

    inner product        

     tensor product 
 

 
(                           ) 

 ̇ rate of   

 ̊  objective (Jaumann) rate of   

 ̂ tensor normalised by its Euclidean norm  ̂     ‖ ‖ 
 

Variables: 
 
   second-order identity tensor 
   Cauchy effective stress tensor 
   mean effective stress 
 ̇   Euler stretching tensor 
   void ratio 
   hypoplasticity fourth-order tensor 
   hypoplasticity second-order tensor 
    barotropy factor of hypoplastic equation 
    pyknotropy factor of hypoplastic equation 
  ,   ,   ,   ,    parameters of transversely isotropic elasticity model 
 ,  ,  ,  ,   parameters of transversely isotropic elasticity model 
  unit vector normal to the plane of symmetry 
  second order tensor          

   ,     shear moduli ("p" in-plane direction, "t" transversal direction) 

  ,    Young moduli ("p" in-plane direction, "t" transversal direction) 

   ,     Poisson ratios ("p" in-plane direction, "t" transversal direction) 

   anisotropy ratio of shear moduli 



   anisotropy ratio of Young moduli 
   anisotropy ratio of Poisson ratios 
   ,     exponents of transversely elastic model formulation 
  hypoplastic model parameter (position of normal compression line) 
   hypoplastic model parameter (slope of normal compression line) 
   hypoplastic model parameter controlling volumetric unloading response 
   critical state friction angle 
   variable in hypoplastic model formulation 
   very small strain stiffness tensor 
   variable controlling very small strain shear modulus 
     shear modulus at very small strain 

   reference stress equal to 1 kPa 
   parameter quantifying the dependency of      on mean stress 

   parameter quantifying the dependency of      on mean stress 

   (  ) S-wave velocity (  is the direction of propagation with respect to the axis of 
symmetry) 
  (  ) P-wave velocity (  is the direction of propagation with respect to the axis of symmetry) 
   soil density 
    principal stress increment inclination in hollow cylinder test 
   Finite increment of   
  ,   ,    principal stresses (major, intermediate, minor) 
  ,    principal strains (major, minor) 
  ,   ,     rectilinear stress components in the specimen frame of reference in hollow 
cylinder apparatus 
  variable quantifying the intermediate principal stress magnitude in hollow cylinder apparatus 
 
Hypoplasticity specific variables (appearing in appendices only): 
 
  
  pyknotropy factor of hypoplastic equation, asymptotic state value 
  fourth-order tensor in hypoplastic model formulation 
   Hvorslev equivalent pressure 
   second-order tensor specifying asymptotic strain rate direction 
  normalised second-order tensor specifying asymptotic strain rate direction 
   hypoplastic variable controlling rate of stiffness decrease, may be considered as a model 

parameter 
   factor of Matsuoka-Nakai yield condition 
  variable controlling asymptotic state boundary surface shape 
  hypoplastic variable controlling peak strength, which may be considered as a model 
parameter 
  ,   ,    stress invariants 
      Lode angle function 
  variable controlling asymptotic strain rate direction 
   variable in hypoplastic model formulation 

 ,     ,   ,   intergranular strain concept parameters 



  stiffness tensor of the intergranular strain concept formulation 
   variable in the intergranular strain concept formulation 
  fourth-order identity tensor 
  intergranular strain tensor 
  normalised intergranular strain tensor magnitude 
  second-order null tensor 

 

Appendix A 
 

The Appendix summaries remaining equations of the proposed hypoplastic model which 
have not been specified in the main text.  
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The exponent    controls irreversibility of the deformation inside the asymptotic state 

boundary surface. In fact, for high values of    the response of the basic model is practically 

reversible inside the asymptotic state boundary surface with     being the stiffness matrix. 
The model predictions then resemble predictions by the critical state elasto-plastic models. In 
the reference model by Mašín (2012b), a fixed value of      has been suggested. Thorough 

evaluation of the model non-linear properties, however, indicated that    value by the Mašín 

(2005) model leads to better predictions. It is thus suggested to use 
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 In fact, if needed,    can be considered as a model parameter controlling non-linear response 

inside the asymptotic state boundary surface in the case     is calibrated rigorously using 

wave velocity measurements. The model assumes parameters   ,   ,   ,   and     and 

state variable   (void ratio).   is controlling peak friction angle, standard value of       
was suggested by Mašín (2012b). If required, the value of   can be modified to control peak 
friction angle, see Mašín (2012b) for details.   ,    and    are parameters controlling 
stiffness anisotropy;    and    may be approximated using empirical formulations. 

 

Appendix B 
 

In this appendix, we summarise the version of the intergranular strain concept used in 
the proposed model. The intergranular strain concept was originally proposed by Niemunis and 
Herle (1997). 
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  ,   ,     ,   ,   are parameters and   is state variable. 
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Tables 

 

Table 1: Parameters of the intergranular strain concept by Niemunis and Herle (1997) adopted 
in combination with different hypoplastic models. 
 

   or           or              

proposed model        1          5 x 10-5 0.08 0.9 

Mašín (2005) model      n/a      5 x 10-5 0.08 0.9 

 
Table 2: Parameters of the hypoplastic models used in simulations. 
 

                    or       

proposed model 21.9º 0.095 0.015 1.19         2 

Mašín (2005) model 21.9º 0.095 0.015 1.19       n/a 

 

Figure captions 

 

Figure  1:  (a)    calibration based on experiments by Nishimura (2005) and Gasparre 
(2005). (b) Secant shear stiffness degradation as measured by Nishimura (2005) in hollow 
cylinder test with         and       and predictions by the proposed model. 
 

Figure  2:  Stress paths in the   vs. (     )   stress space: Experimental data by 
Nishimura et al. (2007), proposed model and Mašín (2005) model predictions. 

   

Figure  3:  The ratio     vs. the principal strain difference       for three simulation 
sets: Experimental data by Nishimura et al. (2007), proposed model and Mašín (2005) model 
predictions. 
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Figure 1: (a) αG calibration based on experiments by Nishimura (2005) and Gasparre (2005).
(b) Secant shear stiffness degradation as measured by Nishimura (2005) in hollow cylinder
test with αdσ = 23◦ and b = 0.5 and predictions by the proposed model.
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Figure 2: Stress paths in the p′ vs. (σz−σθ)/2 stress space: Experimental data by Nishimura
et al. (2007), proposed model and Maš́ın (2005) model predictions.
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Figure 3: The ratio q/p′ vs. the principal strain difference ǫ1 − ǫ3 for three simulation sets:
Experimental data by Nishimura et al. (2007), proposed model and Maš́ın (2005) model
predictions.
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