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Modelling of interfaces in geotechnical engineering is an important issue.
Interfaces between structural elements (e.g. anchors, piles, tunnel-linings)
and soils are widely used in geotechnical engineering. The objective of this
article is to propose an enhanced hypoplastic interface model that incorpo-
rates the in-plane stresses at the interface. To this aim, we develop a gen-
eral approach to convert the existing hypoplastic model with a predefined
limit state surface for sands into an interface model. This is achieved by
adopting reduced stress and stretching vectors and redefining tensorial oper-
ations which can be used in the existing continuum model with few modifi-
cations.The enhanced interface model and the previous model are compared
under constant-load, stiffness and volume conditions. The comparison is
followed by a verification of two the approaches for modelling the different
surface roughness. Subsequently, a validation between available experimental
data from the literature versus simulations is presented. The new enhanced
model gives improved predictions by the incorporation of in-plane stresses
into the model formulation.

Keywords: Hypoplastitcity ; Sand-structure interface; Shear behaviour ;
Roughness

1 INTRODUCTION

The contact between structural elements and granular soils is an important concern but
are often neglected in finite-element analysis in geotechnical engineering. Examples of
the importance of advanced modelling of the interface zone between the soil and the
structure are given for example by Costa D’Aguiar et al. [9], Day and Potts [10] and
Mascarucci et al. [35].
Quantification of the importance of the soil-structure interface was pioneered by Po-
tyondy [40] and Brumund and Leonards [7] through an intensive laboratory study. These
early studies highlighted the importance of the particle mineralogy, moisture content of
the soil, particle mean grain size and normal load on interface strength. Potyondy [40]
tested granular, fine-grained and mixtures of both soils with respect to different struc-
tural materials in a modified direct shear test apparatus; he demonstrated that the type
of soil as well as the structural material is of significant importance to the interface shear
behaviour.
The fundamental research conducted by Potyondy [40] was followed by research con-
cerning the different phenomena observed at the soil-structure interface e.g. Ref. [11,
13, 15, 16, 39, 42, 44, 45, 48]. Fioravante et al. [16] summarized the following important
points that influence soil-structure interface behaviour:

• Roughness of the surface

• Grain size
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• Soil crushability

• Relative density of soil

• Constant normal stiffness K

The constant normal stiffness condition has been highlighted by different researchers
(Ref. [6, 12, 18, 38, 39, 48]). This constant normal stiffness K is defined as:

K =
σ̇n
ε̇n

(1)

where σ̇n and ε̇n are the stress and strain increments normal to the interface. This
constant normal stiffness condition is called the ”confined dilatancy” condition (see Fio-
ravante et al. [16]). The hypothesis is that the soil acts as a constant spring which
confines the interface.
The commonly used framework for soil-structure interface modelling based on the elasto-
plasticity theory was presented by Ref. [3, 6, 8, 15, 17, 18, 53]. Furthermore, various
different modelling frameworks were proposed e.g. damage models Ref. [26, 27], general
plasticity formulations Ref. [31, 32, 33] and disturbed state concept by Ref. [14, 52].
In addition, the hypoplastic framework proposed by Gudehus [22] was used to simu-
late the contact behaviour of granular-solid interface. The hypoplasticity described by
Gudehus [22] is based on the earlier developments from Kolymbas [29] and Wu [50]. The
hypoplastitcity formulation proposed by Wu and Bauer [51] was adapted, for the mod-
elling of an infinite simple-shear condition by Herle and Nübel [25]. This first hypoplastic
interface model was followed, by Gutjahr [23], who developed a 1-D hypoplastic interface
model from the hypoplasticity 3-D model with predefined limit state surface given by
Von Wolffersdorff [49]. The model proposed by Gutjahr [23] was able to simulate dif-
ferent surface roughness conditions. Arnold and Herle [2] reformulated the hypoplastic
model with a predefined limit surface (Von Wolffersdorff [49]) for 2-D interface condi-
tions under the assumption of reduced stress and stretching tensors.
Weißenfels and Wriggers [46] developed a projection method to integrated plasticity
models into a mixed mortar formulation. In opposite to that, the goal of our paper is
the definition of an enhanced hypoplastic interface model, which can be implemented
into existing numerical formulations e.g. Ref.[4, 5, 14, 21].
In the following section we give a brief description of the basic hypoplasticity formu-
lations and tensorial notations. The interface model from Arnold and Herle [2] is in-
troduced with the reduced stress and stretching tensors in section 3. To this purpose,
the reformulation of the tensorial operators is presented in Section 3.1. The reduced
tensors are extended by the in-plane stresses at the interface and an enhanced model
is proposed (Section 4). The new stress and stretching tensors are used with modified
tensorial operators to model the contact behaviour of the interfaces.
In section 5, the enhanced model is validated against the model given by Arnold and
Herle [2]. The different approaches modelling the surface roughness at the interface
proposed by Arnold and Herle [2] and Gutjahr [23] are compared and examined in Sec-
tion 6. The last validation is performed in Section 6.5 to compare the simulations of
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the enhanced model with existing experimental data found in the literature. Finally,
the paper concludes with a short discussion about the benefits and limitations of the
proposed model.

2 GENERAL TENSORIAL AND HYPOPLASTIC
DEFINITIONS

The general form of the hypoplastic model formulation (Gudehus [22]) can be written
as:

Ṫ̇ṪT = fs (LLL : DDD + fdNNN‖DDD‖) (2)

where Ṫ̇ṪT and DDD are the objective stress rate and stretching tensor respectively. NNN
and LLL are the fourth and second-order constitutive tensors. fs is the barotropy factor
controlling the influence of the mean stress and fd is the pyknotropy factor considering
the influence of the relative density.
Von Wolffersdorff [49] extended the basic form of the model by incorporating a predefined
limit state surface after Matsuoka and Nakai [36]. The second order constitutive tensor
LLL is then defined as:

LLL = fs
1

T̂TT : T̂TT

(
F 2III + a2T̂TT ⊗ T̂TT

)
(3)

where T̂TT = TTT/tr TTT is a deviator stress and III is the fourth order unity tensor. The
coefficient a is defined as:

a =

√
3 (3− sinϕc)

2
√

2 sinϕc
(4)

where ϕc is a model parameter. The Matsuoka-Nakai condition is given by the following
scalar coefficient as:

F =

√
1

8
tan2 ψ +

2− tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ (5)

with the Lode angle θ,

cos 3θ = −
√

6
tr
(
T̂̂T̂T ∗ · T̂̂T̂T ∗ · T̂̂T̂T ∗

)
[
T̂̂T̂T ∗ : T̂̂T̂T ∗

]3/2 (6)

where T̂TT
∗

= T̂TT − 1
3
111 is a deviator stresses and tanψ =

√
3‖T̂TT

∗
‖. The fourth-order

constitutive tensor is defined as:

NNN = fsfd
a · F
T̂TT : T̂TT

(
T̂TT + T̂TT

∗)
(7)
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The barotropy factor fs controls the influence of the mean stress and is given as:

fs =
hs
n

(ei
e

)β 1 + ei
ei

(
−tr (TTT )

hs

)1−n

·
[
3 + a2 − a

√
3

(
ei0 − ed0
ec0 − ed0

)α]−1
(8)

The pyknotropy factor fd controls the influence of the relative density, i.e.,

fd =

(
e− ed
ec − ed

)α
(9)

where ed,ec,ei are limiting void ratios. Under increasing mean pressure, they decrease
until the limiting values ed0, ec0, ei0 are reached (see Fig. 1).

ed
ed0

=
ec
ec0

=
ei
ei0

= exp

[
−
(

tr (TTT )

hs

)n]
(10)

The model parameters are ϕc the critical state friction angle, the parameters hs and

p/hs

Figure 1: Relation between ed,ec,ei and p, from Herle and Gudehus [24]

n that control the normal compression lines and the critical state line. Furthermore,
α controls the relative density to peak friction dependency and β controls the relative
density to the soil stiffness dependency. Detailed information about the hypoplastic
model with a predefined limit surface and the parameter determination of the model are
given in Von Wolffersdorff [49] and Herle and Gudehus [24].

2.1 Shear zone thickness

The interface model is defined in a stress-strain space, therefore the displacement at
the interface has to be calculated for a given stretching and vice versa. Arnold and
Herle [2] introduced the dependence of the shear zone thickness ds on the shear strain
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γi to calculate the interface displacement ui (see Figure 2). The shear zone thickness
is correlated with the mean grain size d50. This thickness can vary between 5 to 10
times the mean grain size d50. The experimental evidence of the shear zone thickness for
granular assemblies was studied by Tejchman and Wu [43] using a plane strain device.
Newer results from DeJong and Westgate [12], DeJong et al. [13] and Martinez et al.
[34] confirm these results. The shear strain γi with i ∈ {x; z} is given in terms of the
shear displacement at critical state as:

tan γi =
ui
ds

(11)

ds is influenced by the density, the mean grain size diameter d50 and the surface rough-
ness. The exact choice of ds is a priori difficult to determine. To this reason, ds can be
used from back–calculations as mentioned by Arnold and Herle [2].

g

Soil

Interface

Structure 

ui

ds

Figure 2: Definition of the shear zone thickness and shear strain at critical state modified
from Gutjahr [23]

3 HYPOPLASTIC MODEL FOR THE INTERFACE
BEHAVIOUR

On the basis of the hypoplastic model of Von Wolffersdorff [49], a 2-D hypoplastic
interface model was formulated by Arnold and Herle [2]. With the introduction of
a reduced stress and stretching tensor assuming that the global axis is connected to
the contact plane axis as y‖1, x‖2 and z‖3, as shown in Figure 3. The shear stress
relations are defined as: σ12 = σ21 = τx, σ13 = σ31 = τz. The normal interface stress
is the mean effective stresses in the y-direction σ11 = σn. Both other mean stresses are
assumed to be σ22 = σ33 = σn. The out-of-plane shear stress is assumed to be σ23 = 0.
This assumption is justified for the standard interface boundary condition of one rigid
incompressible surface (e.g. piles, retaining walls or tunnel linings). The stress tensor TTT
is:

TTT f =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⇒ TTT =

σn τx τz
τx σn 0
τz 0 σn

 (12)

where TTT f denotes the full stress tensor and TTT denotes the reduced stress tensor. Consid-
ering the same assumptions as for the stress tensor, the stretching tensor DDDf is defined
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Contact surface

1

2

3

y

x
z

Figure 3: Contact plane and coordinate system proposed by [2]

as:

DDDf =

ε̇11 ε̇12 ε̇13
ε̇21 ε̇22 ε̇23
ε̇31 ε̇32 ε̇33

⇒DDD =

ε̇n γ̇x
2

γ̇z
2

γ̇x
2

ε̇n 0
γ̇z
2

0 ε̇n

 (13)

Arnold and Herle [2] used the reduced stress and stretching tensors to derive the interface
hypoplastic model. Note that here we do not follow Arnold and Herle [2] notation.
Instead, we express their model using notation adopted in this paper.
The first and second entry of the stress vector is the stress normal to the interface σn.
These are assumed to be equal. The shear stresses are σ12 = σ21 = τx and σ13 = σ31 = τy.
Whereas, the third shear stress is σ23 = σ32 = 0. This is not used in the vectorial
notation. The definitions for the reduced stress and stretching vectors are:

TTT =


σn
σn
τx
τz

 (14)

where σn is the stress normal to the interface and τx, τz are the shear stresses. The
stretching vector is written as:

DDD =


ε̇n
ε̇n
γ̇x
2
γ̇z
2

 (15)

where ε̇n is the stretching rate normal to the interface and
γ̇x
2

,
γ̇z
2

are the shear stretch-

ing rates in the x- and z-directions. These tensors are used within modified tensorial
operators given in Section 3.1. The modified tensorial notation is used with the stan-
dard formulation of the hypoplastic model after Von Wolffersdorff [49]. This leads to
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the model proposed by Arnold and Herle [2]. Beside these modifications to the original
model, different terms are used in the interface model by Arnold and Herle [2]. The
influence of these modifications is discussed later. The Lode angle is assumed to be
cos 3θ = 0. The Matsuoka–Nakai stress factor is given by Arnold and Herle [2] as:

F =

√
1− 9

4

(( τx
3σ

)2
+
( τz

3σ

)2)
−
√

3

2

√( τx
3σ

)2
+
( τz

3σ

)2
(16)

In addition, Arnold and Herle [2] proposed a modified coefficient a following the sugges-
tion of Herle and Nübel [25] that the correct behaviour of the interface zone at critical
state can be modelled by:

a = 3

√
1

2 tan2 ψ
− 1

8
−
√

3

2
√

2
(17)

It is assumed that under uni-axial shearing in the x-direction the shear stress τz =

t , gz  zs , e =0p   p

contact surface

s e =0p  p,

t , gx x

sn

1||y

2||x
3||z

ds

Figure 4: Illustration of the enhanced defined reduced stress and stretching tensor at
element level

γ̇z/2 = 0 vanishes.
The hypoplastic interface model proposed by Arnold and Herle [2] has several shortcom-
ings, in particular, the in-plane stress σp and in-plane stretching εp are not incorporated
in the model formulation. The consequence of neglecting the in-plane stresses is the
assumption of an isotropic stress state at the interface.

3.1 General definitions for new operators

The idea of our modelling approach is as follows: we preserve the formulation of the con-
tinuum constitutive models, but redefine the tensorial operators so that in combination
with the reduced stress (Eq.(14)) and stretching vectors (Eq.(15)) the models correctly
simulate the interface behaviour.
The Voigt notation is used to reduce the second order and fourth order tensors into
vectors and matrices. We define the first rank tensors XXX and YYY and the second rank
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tensor S is introduced as:

XXX =


X1

X2

X3

X4

 YYY =


Y1
Y2
Y3
Y4

 S =


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

 (18)

The Euclidean norm of XXX is the written as:

‖XXX‖ =
√
X2

1 + 2X2
2 + 2X2

3 + 2X2
4 (19)

The trace of XXX is defined as:
tr (XXX) = X1 + 2X2 (20)

The determinat from XXX is defined as:

det (XXX) = X1X
2
2 −X2

4X2 −X2
3X2 (21)

The second order unity tensor as used in the vectorial notation is:

111 =


1
1
0
0

 (22)

and the fourth order unity tensor is:

III =


1 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

 (23)

The deviator stress XXX∗ is given as:

X̂XX =
XXX

trXXX
=



X1

X1 + 2X2
X2

X1 + 2X2
X3

X1 + 2X2
X4

X1 + 2X2


(24)

The deviator stress X̂XX
∗

is defined in vectorial notation:

X̂XX
∗

=
XXX

trXXX
− 111

3
=



X1

X1 + 2X2

− 1

3
X2

X1 + 2X2

− 1

3
X3

X1 + 2X2
X4

X1 + 2X2


(25)
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The inner product (·) is formulated as:

XXX · YYY =


X1Y1 +X3Y3 +X4Y4

X2Y2 +X3Y3
X1Y3 +X3Y2
X4Y1 +X2Y4

 (26)

The double inner product (:) between two first-rank tensors is defined as:

XXX : YYY = X1Y1 + 2X2Y2 + 2X3Y3 + 2X4Y4 (27)

The double inner product (:) between second-rank and first-rank tensors is given as:

S : YYY =


S11Y1 + 2S12Y2 + 2S13Y3 + 2S14Y4
S21Y1 + 2S22Y2 + 2S23Y3 + 2S24Y4
S31Y1 + 2S32Y2 + 2S33Y3 + 2S34Y4
S41Y1 + 2S42Y2 + 2S43Y3 + 2S44Y4

 (28)

Also, the outer product (⊗) is defined as:

XXX ⊗ YYY =


X1Y1 X1Y2 X1Y3 X1Y4
X2Y1 X2Y2 X2Y3 X2Y4
X3Y1 X3Y2 X3Y3 X3Y4
X4Y1 X4Y2 X4Y3 X4Y4

 (29)

The redefined tensorial operators are used with the reduced stress and stretching tensors
for the modelling of the interface behaviour. The enhancement of the interface model is
described in the following section.

4 ENHANCEMENT OF THE HYPOPLASTIC
CONTACT MODEL

As outlined in the previous section the hypoplastic interface model by Arnold and Herle
[2] will be enhanced. A study of the model formulation leads to the understanding that
the stress tensor entries σ22 = σ33, assumed to be equal to normal contact stress σn, is
not valid. To improve the model predictions the reduced stress and stretching tensor
are redefined as:

TTT =

σn τx τz
τx σp 0
τz 0 σp

 (30)

where σn is the stress normal to the interface and σp are the in-plane stress components.
The same modification is done with the stretching tensor DDD where the strains ε22 =
ε33 = 0. The modified stretching tensor has the following form:

DDD =

ε̇n γ̇x
2

γ̇z
2

γ̇x
2

0 0
γ̇z
2

0 0

 (31)
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The new defined stress and stretching tensors are shown in Fig. 4. As modification to the
stress vector used in the model by Arnold and Herle [2] the in-plane stress σp = σ22 = σ33
are used. These are assumed to be constant. In vectorial notation the stress tensor are:

TTT =


σn
σp
τx
τz

 (32)

Instead of the assumption from Arnold and Herle [2] the stretching tensor is defined as:

DDD =


ε̇n
0
γ̇x
2
γ̇z
2

 (33)

The modified reduced tensors are used to establish the enhanced model for hypoplastic
granular interfaces. The modification is a consequence of the assumption of an odeomet-
ric condition at the interface under an applied normal load, whereas the original model
by Arnold and Herle [2] assumed an isotropic stress state at the interface. Furthermore,
the in-plane stress σp can develop separately from the normal stress σn under shear con-
ditions. Table 1 shows the equivalent tensor to vector indices for the notation used by
Arnold and Herle [2] (AH model) and the enhanced model (AHE model).
The hypoplastic model with predefined critical state conditions, proposed by Von Wolf-

Table 1: Indices for the full and reduced tensorial notation

Tensor Vector index Vector index Symbolic index
index AH model AHE model AHE model

11 1 1 n

22 / 33 1 2 p

12 / 21 2 3 x

13 / 31 3 4 z

23 / 32 – – –

fersdorff [49] is used with the modified tensorial operators given in Section 3.1 and the
stress (Eq. 32) and stretching (Eq. 33) vectors . The model uses the same hypoplastic
parameters as described in Section 2.
Note that unlike the model from Section 3, the enhanced interface model simulates an
identical response for drained simple shear simulations and oedometric test in compari-
son to the full 3-D hypoplastic model.
In the following, a comparison of different models is conducted. Two different model
formulations without the extended reduced stress and stretching tensors are used. First,
the model proposed by Arnold and Herle [2] and then an enhanced basic model by
Arnold and Herle [2] are defined. The latter uses the following differences compared to
the published model of Arnold and Herle [2]:
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• The Lode angle assumption in the model of Arnold and Herle [2] is corrected, i.e.
cos 3θ 6= 0

• The standard definition of the coefficient a (see Eq. (4)) is used

• The Matsuoka-Nakai stress factor F from the original model from the model of
Von Wolffersdorff [49] is used (Eq. (5))

In the following, the three models are abbreviated as:

• Model proposed by Arnold and Herle [2]: AH

• Model based on the definition of Arnold and Herle [2] enhanced by using cos 3θ, a
and F from the 3-D continuum model: AHE

• Enhanced model with κr = 1.0 proposed in this paper: HvWE

4.1 Remarks on the numerical implementation

The numerical implementation of the enhanced stress assumption is done by the intro-
duction of σp as additional state variable. The in-plane stresses are not used in different
numerical approaches as: zero-thickness interface elements [4], mortar-methods [5] or
thin-layer interface elements [14].

The initialization of the state variable should be done before the first shearing defor-
mation occurs. The expected value for the in-plane stress can be calculated using the
Jaky formula [28].

The Euler stretching tensor is calculated as the symmetric part of velocity gradient,
and the objective Jaumann -Zaremba stress rate as the time-derivative of the stress
tensor corrected for rotations, as standard in continuum mechanics. Their calculation
is a matter of the finite element code where the interface model is to be used and it is
outside the scope of the present paper.

5 EVALUATION OF THE MODELS

The enhanced model (HvWE) proposed in the previous section is compared to the model
from Arnold and Herle [2] (AH) and the slightly modified model (AHE). The validation
is done using the three common boundary conditions for soil-structure interfaces, which
are defined as (see Evgin and Fakharian [15]):

• Constant Volume (CV):
K =∞; σ̇ 6= 0; ε̇ = 0

• Constant Normal Load (CNL) :
K = 0; σ̇ = 0; ε̇ 6= 0

12



• Constant Normal Stiffness (CNS) :
K = constant; σ̇ 6= 0; ε̇ 6= 0

where the stiffness K is introduced by Equation 1. The Constant-Volume and the
Constant-Normal-Load are refereed as the upper and lower limits in interface test-
ing. Detailed information about the difference in the test conditions are given in Costa
D’Aguiar et al. [9]. The constant-normal-stiffness condition refers to the in-situ state for
interface testing. The granular interface models are validated against each other using
these three boundary conditions.
The parameters for the Hostun sand used in the simulation are given in Table 2. The
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Figure 5: τx–γx stress path for the comparison of different models under CV conditions
with 100, 300 and 500 kPa applied normal stress

stress path for the CV tests are shown in Fig. 5 and 6. Our initial void ratio in all CV
simulations is e0 = 0.8. The proposed model (HvWE) gives the lowest shear stress τx
at different normal stress levels. The models have the same trend but the shear stress
obtained varies. The original model (AH) leads to the highest shear stresses. The AHE
and HvWE models show a small difference in their response. At a higher normal stress,
the model responses show significant differences. Similar observations are seem for the
τx–σn results shown in Figure 6. The difference between the HvWE and AHE model is
small compared to the AH model. The predicted normal stresses are higher for the AH
than for the AHE model.

The results from the CNS comparison are given in Fig. 7 and 8. The applied con-
stant normal stiffness is 1000 kPa. The initial void ratio applied in the CNS and CNL
simulations is e0 = 0.65. The applied normal stress varies from 50–150 kPa. The shear
behaviour is similar in all models, see Fig. 7. However, the HvWE model shows the
largest shear stress at all different applied normal stress levels.
Figure 8 shows the behaviour in the σn–τx plane. It can be observed that the resulting
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Figure 6: τx–σn stress path for the comparison of different models under CV conditions
with 100, 300 and 500 kPa applied normal stress

normal stress in the HvWE model differs significantly from the stress paths obtained
using the Arnold and Herle [2] model.

The last model comparison is done under a constant normal load (CNL) condition.
This condition is characterized by σ̇n = 0 and ε̇n 6= 0 . Figure 9 shows the results for
the γx–τx graph. All three models have small differences in their response. Compared to
the CNS stress path (see Figure 7), lower shear stresses develop under CNL conditions.
As a summary, all three models (AH, AHE and HvWE) give different model responses.

5.1 Discussion of model behaviour

The behaviour of the different models differs in several aspects. The first aspect is the
proposed coefficient a, the factor of the Matsuoka–Nakai failure criterion F and the lode
angle cos 3θ = 0 from Arnold and Herle [2] which explains the difference between the AH
and AHE model. The differences between the AH, AHE and the model that we proposed
(HvWE) is associated with the in-plane stress σp. To demonstrate this behaviour, Figure
10 shows the normal stress and in-plane stress development under CNS conditions for
the AH and HvWE models.
Figure 10 highlights the significant effect of the in-plane stresses in the simulations. The

following section introduces and compares the two different approaches to incorporate
the surface roughness into the proposed enhanced interface model.
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Figure 7: γx–τx stress path for the comparison of different models under CNS conditions

Table 2: Parameters for the hypoplastic model (partly from Herle and Gudehus [24])

ϕc (◦) hs (MPa) n ed0 ec0 ei0 α β

Hostun Sand 31 1000 0.29 0.61 0.96 1.09 0.13 2
Toyura Sand 30 2600 0.27 0.61 0.98 1.10 0.25 1
Ticino Sand 31 1000 0.29 0.61 0.96 1.09 0.13 2
Density Sand 32 750 0.25 0.62 0.97 1.06 0.13 1.5

6 MODELLING THE INTERFACE BEHAVIOUR WITH
VARIOUS ROUGHNESSESS

The models introduced in the previous sections 3 and 4 use the assumption of fully
rough conditions. As indicated in Ref. [11, 30, 44], the surface roughness is particularly
important to the interface shear behaviour. Therefore, Gutjahr [23] and Arnold and
Herle [2] introduced different approaches to model the surface roughness.
To demonstrate their differences and equalities the notation is adjusted from the original
publications.

6.1 Surface roughness approach after Gutjahr [23]

Gutjahr [23] used the parameter κr to describe the contact surface roughness. This
parameter κr can be estimated by the empirical formula:

κr = 0.25 logRn + 1.05 ≤ 1 (34)
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where Rn is the normalized roughness. Thus, Rn depends on the surface roughness R
and the mean grain size d50 as introduced by Uesugi and Kishida [44]. Gutjahr [23]
proposed another way of determining the parameter κr as:

κr = tanϕint/ tanϕc ≤ 1.0 (35)

where ϕint is the interface friction angle. This definition describes the relationship be-
tween the soil-soil friction angle and the interface friction angle ϕint. Gutjahr [23] sug-
gested that the existing surface roughness will alter the pyknotropy factor fd and the
critical state friction angle ϕc. The scalar function of a (see Eq. 4) is influenced by ϕc.
Therefore, Gutjahr [23] proposed a new definition of a as:

ar =
1

κrϕc
(36)

Based on their results, Uesugi and Kishida [44], concluded that loose soil on rough
surfaces has the same behaviour as dense soil on smooth surfaces. Thus, Gutjahr [23]
proposed a new pyknotropy factor fd as:

fdr =

(
e− ed
ec − ed

)ακ2r
(37)

followed by a modification of the barotropy factor fs as:

fsr =
hs
n

(ei
e

)β 1 + ei
ei

(
−tr (TTT )

hs

)1−n

·

[
3 + a2r − ar

√
3

(
ei0 − ed0
ec0 − ed0

)ακ2r]−1 (38)
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These modifications are used in the formulation of the LLL-Tensor and the NNN -Tensor by
replacing a, fd and fs by ar, fdr and fsr

6.2 Surface roughness approach after Arnold and Herle [2]

Arnold and Herle[2] proposed a different scheme to model various surface roughnesses
in the hypoplastic interface model. Here, the scalar value a is modified in the same way
as Gutjahr [23]. However, Arnold and Herle [2] adjusted the mobilisation of the shear
stress by introducing the additional coefficient fc as:

fc =
1

κr
(39)

Arnold and Herle [2] stated that this modification leads to better predictions when
compared to experimental results. The additional coefficient fc is a modification of the
barotropy factor and is implemented into the general form of the hypoplastic equation
(Eq. (2)) as:

Ṫ̇ṪT = fsfc (LLL : DDD + fdNNN‖DDD‖) (40)

6.3 Comparison of the surface roughness modelling

In the following section, the two surface roughness approaches from Sections 6.1 and
6.2 are evaluated. The parameters for Toyoura Sand from Table 2 are used in a con-
stant normal load simulation. The results of the γx–τx graph are shown in Figure 11.
Both schemes for modelling the surface roughness are implemented into the enhanced
hypoplastic interface model (HvWE) given in section 4. The CNL simulations are un-
dertaken with an applied normal initial stress of 100 kPa. As expected for κr = 1.0,
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both schemes give identical results. Using lower surface roughness coefficients κr ≤ 1.0,
the approach of Gutjahr [23] shows a softer response compared to that of Arnold and
Herle [2]. Figure 12 shows the shear strain γx –normal strain εn graph. The results
demonstrate that the scheme by Arnold and Herle [2] has less influence on the normal
behaviour, whereas the scheme by Gutjahr [23] for fully rough conditions shows a dila-
tive behaviour. Using κr = 0.45 for a smoother surface, after initial compaction a minor
dilative behaviour is calculated. All simulations use an initial void ratio of e0 = 0.6.

6.4 Modelling of surface roughness compared with experimental
data

The enhanced model (HvWE) is used with the both surface roughness approaches. The
experimental set-up is described in Uesugi and Kishida [44] and Uesugi et al. [45] using
a modified direct shear test. The material tested was Toyorua sand and the parameters
are given in Table 2. The surfaces of the test apparatus were constructed from mild
steel and the predefined surface roughness was measured. Figure 13 shows the shear
displacement ux– friction coefficient τx/σn. Both schemes and the experimental data
give similar responses for smooth interface conditions (κr = 0.21). For intermediate
surface roughness (κr = 0.66), the scheme by Gutjahr [23] shows a slightly better model
response than the scheme by Arnold and Herle [2].
Considering rough surface conditions (κr = 0.98), the simulation and experimental re-
sults differ, with the approach by Gutjahr [23] being able to simulate the peak behaviour.
The surface modelling approach by Arnold and Herle [2] simulates only a small peak
behaviour. After reaching the peak stress, the simulations for both approaches tend to
the same residual stress at critical state. The simulations show a similar shear stress to
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Figure 11: CNL simulation of the two different surface roughness modelling frameworks
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the values obtained values from the experiments (see Figure 13).
As a result of this comparison of the two schemes we recommend the use of the one by
Gutjahr [23] to model surface roughness.

6.5 Advanced verification of the proposed HvWE model

The first verification using experimental data is from a CNL test conducted with Hostun
Sand (parameters are given in table 2). The applied normal stress was 300 kPa and the
experiments were conducted on sand in a dense (e0 = 0.68) and loose (e0 = 0.95) state.
The structural interface in these both experiments were fully rough (κr = 1.0). Figure
14 shows the shear displacement ux– shear stress τx graph. The comparison shows that
neither model matches with the experimental observations. Nevertheless, the proposed
model HvWE gives a more accurate prediction than the AH model.
The next verification is done by using staged shear stress paths. This is defined by
Gómez et al. [19] as stress path with fluctuating normal stress under continuously ap-
plied shear displacement. Gómez et al. [20] show that such a stress path can occur at
the walls of navigation locks. In Fig. 15 a staged shear test is shown. The parameters
used for the comparison are given in Table 2. The initial void ratio is taken according
to the experimental set-up (see Gómez et al. [19]) i.e., e0 = 0.68.The roughness of the
interface is assumed to be fully rough (κr = 1.0)
The experimental data (Gómez et al. [19]) is compared with the AH and HvWE models.
The transition point in Fig. 15 denotes the normal stress change in the test. Initially,
a normal stress of 102 kPa is applied at the interface. When the shear displacement
reaches 0.25 [mm], the applied normal stress is increased to 274 kPa. The HvWE gives
results similar to those of experimental data. The AH model has an identical response
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until the transition point, after which the simulated shear stress no longer coincides with
the experimental results. This comparison highlights the enhanced predictive capability
of the proposed HvWE model when in-plane stresses are considered.
The last verification is done using existing experimental data from Porcino et al. [39].
The parameters used are shown for the Ticino sand in Table 2. The interface used in
the test was a rough aluminium interface, the assumed surface roughness coefficient is
assumed as κr = 0.97. Detailed information of the sand properties and parameters can
be found in Herle and Gudehus [24].
Porcino et al. [39] conducted, CNS-tests in a modified direct-shear apparatus to inves-
tigate different types of sand under changing normal stiffness conditions and varying
interface roughness. The results are shown in Figure 16. The shear behaviour of the
HvWE model shows a similar behaviour to the experimental results. After the peak,
the HvWE model experiences a softening, which was not observed in the experiments.
The AH model also show a strong softening in the model response and the shear stress
at the critical state is underestimated.
The normal behaviour of the models show that the AH model exhibits contractive be-
haviour instead of dilative behaviour. The HvWE model simulates a small contractive
state followed by continued shearing to dilative behaviour. Neither model matches the
experimental observation; however the HvWE model demonstrates a better behaviour
than the AH model.

7 CONCLUSION

An enhanced model for the granular–solid interface is postulated on the basic hypoplastic
3-D continuum model from Von Wolffersdorff [49]. The three different models used in
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the comparison are:

• Basis hypoplastic interface granular model proposed by Arnold and Herle [2] (see
Section 3)

• Basis hypoplastic interface granular model from Arnold and Herle [2] using the
standard components from the 3-D continuum model (see Section 3)

• Enhanced hypoplastic granular interface model developed in this paper (see Section
4)

The enhancement is incorporated by defining new reduced stress and stretching tensors.
These incorporate the in-plane stresses σp and in-plane strains εp = 0. By using the re-
defined tensorial operators given in the section 3.1 and the reduced stress and stretching
tensors the standard tensorial definitions (section 2) give an enhanced model formulation
for the interface.
Two different schemes for modelling the surface roughness are examined using experi-
mental data and their formulations discussed. The enhanced model uses the approach
proposed by Gutjahr [23] for modelling various surface roughnesses. The approach by
Gutjahr [23] seems to give better predictions than the approach of Arnold and Herle [2].
The predictions obtained from the proposed model (HvWE) were better than the model
response from the Arnold and Herle [2] model. This was demonstrated by the compari-
son of the CNL test for loose and dense sand from Shahrour and Rezaie [41], the staged
shear test using the experimental data of Gómez et al. [20] and the CNS test using the
data of Porcino et al. [39].
The new enhanced model will contribute to the possibility of using the constitutive
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framework from the structure to the soil. The benefit is the use of the already cali-
brated model parameters from the surrounding soil and for the interface modelling. In
addition, considering the reduced stress and strain notation is reducing the CPU load.
The limitation of the enhanced model is that only monotonic stress paths can be mod-
elled. The authors expect that better predictions can result from an improved parameter
calibration. The application range of the presented approach is the presumption of a
known contact geometry, in opposite to the method proposed by Weißenfels and Wrig-
gers [47].
Anticipated future work will evaluate the use of the inter-granular strain concept of
Niemunis and Herle [37] using the stress and stretching tensors given in Equations (32)
and (33). This can be conducted on the basis of the work from Arnold [1] which applies
the inter-granular strain concept to model interfaces using hypoplasticity.
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