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Abstract

Three probabilistic methods of different complexity for slope stability calculations are in the

paper evaluated with respect to a well-documented case study of slope failure in Lodalen, Norway.

A finite element method considering spatial random fields of uncorrelated parameters c (cohesion)

and ϕ (friction angle) is taken as a reference for comparison with two simpler methods based on

Taylor series expansion, known as first-order-second-moment (FOSM) methods. It is shown that

the FOSM method enhanced by a reduction of variance of input parameters due to spatial

averaging along the potential failure surface (extended FOSM method) leads to a significant

improvement in predictions as compared to the basic FOSM method. This method is

computationally inexpensive and can be used in combination with any existing finite element

code, it is thus a useful approximate probabilistic method for geotechnical practice. Several

limitations of the extended FOSM method for calculating probability of a slope failure are

identified.

Keywords: probabilistic methods; slope stability; random fields; first-order-second-moment

method

1 Introduction

The soil mechanical properties obtained from detailed geotechnical site investigations show a

marked dispersion, coming from their inherent spatial variability (even in zones which are often

regarded as ”homogeneous” from the deterministic point of view) and measurement error.

Additional uncertainty is introduced by the fact that only limitted number of measurements is

often available, and from subjective calibration of simple constitutive models, which are often

used in geotechnical analyses. These uncertainties are in geotechnical engineering commonly

accounted for using deterministic concepts, for example by scaling the uncertain values of

material parameters by various factors of safety. This approach, however, discourage clearer

understanding of the relative importance of different uncertainties involved in simulations

[35, 30, 12]. In this respect, probabilistic approaches are well suited to geotechnical engineering.

Their rather limitted use in practical applications is mainly caused by the lack of data needed for

detailed statistical evaluation of mechanical properties (in fact, only few studies with proper

evaluation of geotechnical variability are available, see [2, 39, 15, 22]). Consequently, probabilistic

methods are not incorporated in most commercial finite element codes, and they are thus not
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used even in projects where their application would be desirable.

From the mentioned uncertainties in soil mechanical properties, we will in this paper focus on

inherent spatial variability. A rational means of its quantification is to model the distribution of

soil mechanical properties as a random field, in which deviation of a given property from the

trend value is characterised using some suitable statistical distribution. Spatial variability is

measured by means of the correlation length θ, which describes the distance over which the

spatially random values will tend to be significantly correlated [37]. Evaluation of the quantity θ

is in geotechnical engineering sometimes difficult due to large amount of data needed. Detailed

literature reviews on the values of correlation lengths are presented in Phoon and Kulhawy [30],

El-Ramly et al. [9] and Hicks and Samy [24]. It is observed that depending on the geological

history and composition of the soil deposit θ in the horizontal direction vary within the range

10-40 m, while θ in the vertical direction ranges from 0.5 to 3 m.

Slope stability analysis is a popular field of geotechnical engineering for application of

probabilistic methods. The approaches adopted by different authors vary significantly in the level

of complexity and sophistication. The first applications [7, 5] combined classical limit equilibrium

methods with approximate analytical probabilistic methods based on Taylor series expansion (see

Sec. 2.1 for details). These methods consider statistical distribution of strength parameters, but

they do not incorporate their spatial correlation structure. As demonstrated in terms of slope

stability analysis for example by Griffiths et al. [20], this simplification may significantly affect

the calculated probability of failure. Though the spatial correlation structure of input variables

may be treated within limit-equilibrium methods based on the pre-defined shape of the failure

surface, as studied by El-Ramly et al. [8, 9, 11, 10], its full potential is exploited by considering

random field theories in combination with numerical methods for boundary value problems. In

typical applications finite element method in 2D [19, 22, 24] or 3D [23] is used, but they can be

combined with other methods, such as discrete element method [25].

In the present paper, finite element method is combined with three different probabilistic

methods, starting with a simple Taylor series expansion method (Sec. 2.1) and ending with more

sophisticated methods based on random field theory (Sec. 2.2). Merits and shortcomings of

different approaches are evaluated using data from a well-documented case history, namely slide

in Lodalen in Norway [34].
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2 Probabilistic numerical methods

Probabilistic numerical analyses are usually used to evaluate statistical distribution of a

performance function Y = g(X1, X2, ...Xn), based on known statistical characteristics of input

variables Xi. In the paper, we will distinguish the following probabilistic methods:

• Methods which do not consider the random spatial structure of input variables, in other

words they assume infinite correlation length θ.

• Methods based on random field theories, which consider spatial variability of input variables.

• ”Hybrid methods” that use analyses with spatially invariable fields of input variables, but

consider spatial variability indirectly by appropriate reduction of variances of input

variables (spatial averaging).

The methods are described in more detail below.

2.1 Methods neglecting spatial variability

A number of methods of this class have been used in geotechnical applications. Typically,

approximate analytical solutions based on Taylor series expansion [7] or point estimate methods

[4] are used. Possibly the most popular method is the Taylor series method. It is based on a

Taylor series expansion of the performance function about the expected (mean) values of random

variables. In most applications only first-order (linear) terms of the series are retained and only

first two moments (mean and standard deviation) are considered, the method is therefore named

the first-order, second-moment (FOSM) method [6]. Having the performance function

Y = g(X1, X2, ...Xn), where Xi are independent random variables, the mean value of Y is

obtained by evaluating the function at the mean values of the random variables

µ[Y ] = g(µ[X1], µ[X2], ...µ[Xn]) (1)

The standard deviation of Y is in the case of uncorrelated random variables given by

σ[Y ] =

√

√

√

√

n
∑

i=1

(

∂Y

∂Xi
σ[Xi]

)2

(2)
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with the partial derivatives taken at the µ[Xi] point. There are two ways of calculating (2). First,

the model (g) can be differentiated analytically to give a closed-form expression for σ[Y ].

However, in most practical cases the computation of the closed-form derivatives is inconvenient or

impossible, and so finite differences are used as approximations to the partial derivatives [5].

Although the derivative at the point is most precisely evaluated using a very small increment of

Xi, evaluating the derivative over a range of ±σ[Xi] may better capture some of the non-linear

behaviour of the function over a range of likely values [40]. Thus, we have

∂Y

∂Xi
=
g (µ[Xi] + σ[Xi]) − g (µ[Xi] − σ[Xi])

2σ[Xi]
(3)

The FOSM method is based on approximating PDFs of variables Xi by Gaussian distributions. It

becomes inaccurate if the distribution functions of Xi cannot be approximated by a Gaussian

distribution, and if the performance function g(Xi) is highly non-linear in Xi [1]. Still, the FOSM

method is popular in geotechnical applications, as it may be used in combination with existing

deterministic numerical tools without need for any modifications, and in standard situations it

provides results of a reasonable accuracy. For typical applications of this methods in geotechnical

engineering, see [7, 3, 5]. In the present paper, it will be denoted as ”basic FOSM” method.

2.2 Methods considering spatial variability

Disadvantage of the methods from Sec. 2.1 is that they ignore the spatial variability of soil

properties. As demonstrated by many authors [31, 21, 22, 19, 26, 20, 18, 27, 29], the spatial

variability (and consequent concentration of less competent materials into distinct zones), may

lead to a significant increase of the probability of unsatisfactory performance.

In methods based on random field theories, the spatial autocorrelation of soil properties enters

the calculation through the distance-dependent correlation coefficient ρ, described commonly by

the exponential equation due to Markov [37]:

ρ = exp

(

−2τ

θ

)

(4)

where τ is absolute distance between two points in a random field and θ is the correlation length.

Random fields of input variables may be generated using one of a number of methods available

(see Fenton [13] for an overview). In the present contribution, a method based on Cholesky
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decomposition of the correlation matrix (e.g., [14]) is used. This method is not suitable when the

number of points in the field becomes large, it is however sufficient for the present application.

When the random field models are used in continuum numerical methods with material domains

of finite size, the point statistics of random input variables must be transformed through spatial

averaging over the local domain size (element size in the case of the finite element method). In

the case of normally distributed random variables, the mean remains unaffected, and the standard

deviation is reduced by:

γ =

(

σ[Xi]A
σ[Xi]

)2

(5)

where σ[Xi] describes the point statistics of the variable Xi and σ[Xi]A is the standard deviation

of the spatially averaged field. The variance reduction factor γ is calculated by integration of the

Markov function (Eq. (4)), see Vanmarcke [37]. For 2D square elements, which are used in this

study, we have [19]:

γ =
4

(αθ)4

∫ αθ

0

∫ αθ

0

exp

(

−
2

θ

√

x2 + y2

)

(αθ − x)(αθ − y)dxdy (6)

where x, y are spatial coordinates, θ is the correlation length and α = a/θ is the element size

factor, with a being the size of the square element.

In the case of random field models, the analytical evaluation such as the Taylor series method is

not possible, so the problem must be solved using iterative probabilistic methods, such as basic

Monte Carlo method or some of the stratified sampling techniques, which reduce the required

number of realisations (e.g., Latin Hypercube sampling [36, 28]). These methods are fully general,

but depending on the problem solved they may require a significantly large number of realisations

and consequently a considerable computational effort. Having the performance function

Y = g(X1, X2, ...Xn) of n independent random variables Xi, the difference ǫ of the exact mean

value of Y and mean value estimated using the Monte Carlo approach may be for normally

distributed Y found from the Chebychev inequality:

P

(

ǫ ≤
σ[Y ]

√

m(1 − αp)

)

≥ αp (7)

where σ[Y ] is the standard deviation of the performance function, m is a number of realisations

and αp is a prescribed probability of the accuracy of the estimate.

In the present paper, the random field theory will be used in combination with the finite element
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method, abbreviated as RFEM [19].

2.3 Hybrid methods

As the basic FOSM method does not incorporate spatial correlation structure of soil properties, it

predicts remarkably different statistical distribution of the output variable Y as compared to the

more sophisticated RFEM method, as demonstrated for example by Griffiths and Fenton [20].

However, as suggested, e.g., by Christian et al. [5], Schweiger and Peschl [33] and El-Ramly et al.

[8], the spatial correlation may be considered even within FOSM method by incorporating the

idea of variance reduction due to spatial averaging, similar to the one from Eqs. (5) and (6). The

problem is still solved using spatially invariable field of input variables, but their spatial

correlation structure is included by reduction of variances of the input variables.

In addition to the correlation length θ, it is necessary to specify the size of a domain that

effectively controlls the overall performance of the structure analysed. This method is thus

suitable for some plasticity problems, such as slope stability, where it may be possible to

determine in advance an approximate length l of the failure surface (for example by means of

deterministic analysis). The physical explanation of the variance reduction is as follows: If the

slip surface length l is not negligible in comparison with the correlation length θ, it passes

through areas of different mechanical properties Xi (e.g., cohesion c). The equivalent cohesion for

analysis with spatially invariable field of soil properties (i.e. with θa → ∞, where θa is a

correlation length used for generation of random field, as opposed to θ, which is a true correlation

length of soil properties) is then more likely to be closer to the mean value µ[c] than would be

described by the original statistical distribution with σ[c]. Thus, the standard deviation of c for

spatially invariable field analysis, which needs to be equivalent to the corresponding random field

analysis, should be reduced.

Similarly to local averaging in random field models with finite size of material domains, the

spatial averaging of normally distributed soil properties does not affect their mean values and the

standard deviation is reduced using the factor γ from Eq. (5), which is calculated by integration

of the Markov function in 1D (failure surface is in 2D analysis considered as a 1D entity):

γ =
2

(αθ)2

∫ αθ

0

exp

(

−
2x

θ

)

(αθ − x)dx (8)

where α = l/θ is the failure surface length factor, with l being the length of the failure surface.
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Note that the hybrid methods are incapable of predicting the change of the mean value µ[Y ] of

the performance function caused by the fact that the failure mechanism develops through weaker

zones. It can, however, describe reduction of σ[Y ] due to reduction of variance of material

properties, which has significant effect on the calculated probability of failure pf . One of the aims

of the present paper is to study whether this method can lead to a reasonable estimate of the

statistical distribution of Y and consequently of pf . The ”hybrid” method will be in this paper

combined with the FOSM method of Sec. 2.1 within the framework of finite element analysis. It

will be denoted as ”extended FOSM” method.

The advantage of the extended FOSM method in comparison with the RFEM method from the

point of view of practical applications is clear. The RFEM method combined with Monte Carlo

approach requires at least several hundreds of simulations and implementation of a random field

generator, which cannot be easily combined with most commercial FE codes. On the other hand,

the extended FOSM method needs only 2n+ 1 simulations (where n is a number of input

variables considered as random), and it can be used in combination with any FE program.

3 Lodalen slide

The slide in the Lodalen marshalling yard near Oslo, Norway [34], was chosen for the purpose of

the evaluation of probabilistic numerical methods in this study.

(a)

(b)

Figure 1: (a) Mid-section through the Lodalen slide, from Sevaldson [34]; (b) Pore pressures mea-
sured at the Lodalen site (from El-Ramly et al. [11]; data from Sevaldson [34])

The slide occurred in 1954 at the site where the marshalling yard had been enlarged about 30

years before the slope failed. Mid-section through the slide and the slope geometry in different
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time periods is shown in Fig. 1a. The inclination of the slope before failure was approximately

1:2. The main part of the slide formed in a comparatively homogeneous marine clay of sensitivity

between 3 and 15 with some thin silt layers. In order to determine the causes of the slide, the

Norwegian Geotechnical Institute performed a comprehensive series of borings for laboratory

investigations and pore pressure measurements. Investigation of the samples led to determining

the probable location of the failure surface, which had a rotational shape. The pore pressure

measurements are shown in Fig. 1b. The measurements showed a definite increase of pore

pressure with depth relative to the hydrostatic pressure distribution. There was thus an

indication of artesian pressure in the ground, which could be explained by the rise of the country

behind the slope.

The values of the effective friction angle ϕ and effective cohesion c were found by means of

undrained shear tests on different samples. Three or four undrained tests were performed in order

to construct each failure envelope; altogether 10 envelopes were available for statistical evaluation.

There was no marked difference between samples within and samples outside the slide. The

statistical distributions of the measured parameters together with the Gaussian fit are plotted in

Fig. 2, characteristic values (means and standard deviations) are summarised in Tab. 1.

Table 1: Characteristic values (means and standard deviations) of statistical distributions of c and
ϕ.

mean standard deviation

φ 27.1◦ 1.63◦

c 10.0 kPa 2.10 kPa
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Figure 2: Statistical distributions of ϕ and c, experimental data by Sevaldson [34].
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The same case history as studied in this paper was analysed by El-Ramly et al. [11]. They used

different approach to slope stability analysis based on limit equilibrium methods (Bishop method

of slices). They utilised random field theory by Vanmarcke [37] and approximated spatial

variability of soil properties along the slip surface by a 1D stationary random field. The results

from this paper may be used for comparison of the two approaches.

4 Finite element simulations

All the three methods studied (basic FOSM, extended FOSM and RFEM) were used within the

framework of the finite element method. Simulations were performed using commercial finite

element package Tochnog Professional [32]. The finite element mesh, including dimensions, is

shown in Fig. 3. The inclination of the slope is 1:2. The mesh consists of 840 9-noded

isoparametric square elements, which reduce to triangles or irregular quadrilateral elements at the

sloping mesh boundary. The geometry represents the mid cross-section through the slide. Fig. 3

also shows the assumed position of the water table as evaluated in [9] based on piesometric

measurements. The artesian pressure was modelled by increased unit weight of water (γw = 13.1

kN/m3).

GWL

Figure 3: Finite element mesh used, with dimensions and assumed position of the ground water
table.

In all cases, the slope was loaded by a gradual increase of the gravity acceleration from zero stress

state (i.e. as in geotechnical centrifuge) until the failure occurred, which was indicated by a

sudden increase of the slide mass velocity and impossibility to achieve convergence through the

automatic time-stepping iterative procedure. The gravity acceleration at failure multiplier t

(t = 1 corresponds to g = 9.81 m/s2) was thus the output performance function Y from Sec. 2.

Soil was described by a Mohr-Coulomb constitutive model with constant values of parameters E
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(Young modulus), ν (Poisson ratio) and ψ (angle of dilatancy) (E = 10 MPa, ν = 0.4 and ψ = 0◦)

and statistical distributions of ϕ and c from Tab. 1. The soil had a total unit weight of γ = 18.6

kN/m3. The analyses were the effective stress analyses and the loading was drained.

The two input random variables (ϕ and c) were described by Gaussian statistical distributions, as

shown in Fig. 2. As the experimental data showed almost no cross-correlation between the two

variables (cross-correlation coefficient between the two parameters was -0.0719), the two fields

were simulated as uncorrelated. It was assumed that the distributions in Fig. 2 represented an

inherent spatial variability of soil properties, i.e. errors introduced through inaccurate laboratory

procedures and uncertainty due to insufficient data available were not treated separately.

The extended FOSM method requires to determine an approximate length l of the failure surface.

It was found by means of a deterministic ϕ− c reduction analysis. This analysis gave l = 45 m

with the factor of safety based on the mean values of the material properties being FS = 1.01.

Already the deterministic analysis therefore showed that the failure of the slope was imminent.

As discussed in the Introduction, the last parameter of the random field, correlation length θ, is

in general the most difficult to evaluate; the data available from the Lodalen slide site do not

provide enough information to evaluate θ. For this reason, a parametric study on the influence of

this parameter was performed. In all cases, the same correlation length for both variables ϕ and c

was considered. Following Fenton and Griffiths [16], it seems reasonable to assume that if the

spatial correlation structure is caused by changes in the constitutive nature of the soil over space,

then both ϕ and c should have the same θ. The considered values of the correlation length θ were

5, 10, 20, 50 and 100 m. Typical realisations of random fields of the RFEM method are shown in

Fig. 4. Monte-Carlo procedure with number of realisation depending on the achieved σ[t] was

used. The number of realisations m was increased with increasing σ[t] such that the error

calculated using (7) was for all simulations approximately the same. Depending on σ[t], 250 to

2000 realisations were performed.

4.1 Determination of the probability of failure

The output variable coming from the Monte Carlo simulations is the gravity acceleration at

failure multiplier t. A typical statistical distribution of this variable (for the case θ = 10 m) is

shown in Fig. 5. The distribution of t fits the Gaussian distribution. The Gaussian fit can be

used to calculate the probability of failure, which is equal to the area below the Gaussian curve
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φ

c

velocity

(b)

(a)

(c)

Figure 4: Typical realisation of random fields of uncorrelated variables ϕ (a) and c (b) for θ = 10
m, together with a deformed mesh and the velocity field at failure (c). Lighter areas of ϕ and c are
softer.

for t < tl, where tl = 1 is a limit value of t separating stable (t ≥ tl) and unstable (t < tl)

conditions. In this paper, the probability of failure pf was always calculated from the Gaussian

fit, rather than from the ratio of the number of failed slopes and the total number of simulated

slopes. Therefore, the ”nominal” pf is used instead of the ”calculated” one, in the sense defined

by Wang and Chiasson [38].

The fact that t follows the Gaussian distribution also enables us to calculate the confidence

intervals for the estimation of pf using the Chebychev inequality (Eq. (7)). This is also

demonstrated in Fig. 5 for αp = 68.3 % confidence interval, used in evaluation of results in this

paper. Eq. (7) gives us an error ǫ[t] in estimation of µ[t] based on the value of σ[t] and known

number of Monte-Carlo realisations m. Based on ǫ[t], upper and lower bound probability density

functions (PDF) of t can be constructed (see Fig. 5). Upper and lower bound values of pf can

then be calculated from pf = P (t < tl).
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Figure 5: Evaluation of the probability of failure for θ = 10 m based on results of 250 Monte-Carlo
realisations.

5 Results of simulations

5.1 The influence of the correlation length

Statistical distribution of the output variable t: Figure 6a shows the influence of the

correlation length on the mean value of the gravity acceleration at failure multiplier t. From the

definition, both FOSM methods predict the same value of µ[t] independent of θ. On the other

hand, the RFEM method predicts (for the present case and for the range of θ studied) a decrease

of the µ[t] value with decreasing θ. Figure 6b shows the influence of the correlation length on the

standard deviation of t. The RFEM method predicts the decrease of σ[t] with decreasing θ. This

decrease is relatively correctly captured also by the extended FOSM method. The basic FOSM

method predicts constant value of σ[t] independent of θ. It may also be seen that the results of

the extended FOSM method and RFEM method converge towards the results by the basic FOSM

method for large values of θ. Note, however, that the agreement between the methods for high

values of θ is not perfect, partly due to finite number of Monte-Carlo realisations and partly due

to simplifications involved in the definition of the FOSM method itself.

To discuss the results obtained, two notions will be introduced: equivalent strength and equivalent

statistical distribution. The explanation will be based on an example with only one parameter

treated as random (e.g., c), it may be however generalised for two or more random variables. For

each realisation of the Monte-Carlo process with the RFEM method, a corresponding analysis
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with spatially invariable field of strength ce may be found which gives the same gravity multiplier

at failure t as the corresponding RFEM analysis. The strength ce of the spatially invariable field

analysis will be denoted as equivalent strength to the corresponding RFEM analysis. Equivalent

strengths ce from multiple realisations of the Monte-Carlo process follow a statistical distribution

denoted as equivalent statistical distribution, characterised by a mean value µ[ce] and standard

deviation σ[ce].

The difference between original and equivalent statistical distributions of c (and thus

discrepancies between predictions by the RFEM and basic FOSM method due to spatial

variability) are caused by two phenomena (see [33]):

1. If a spatially variable structure of soil properties is considered, the shear zone follows areas

of lower strength (to an extent allowed by the model geometry and geometry and size of

material zones). Therefore, the high-strength portion of the original statistical distribution

of c may not contribute to the strength of material in the shear zone, which leads to a

decrease of µ[ce] with respect to µ[c].

2. In an analysis with spatially variable field of soil properties, the shear zone is (regardless

item No. 1 described above) forced to pass areas with different strengths. Therefore, the

equivalent strength ce will more likely be closer to the mean value of ce than in analyses

with spatially invariable field of c. In other words, standard deviation σ[ce] will be lower

than σ[c].

Note that the phenomenon No. 2 is applicable for all correlation lengths θ, whereas the

phenomenon No. 1 is not valid for very low values of θ [21, 27, 24]. For very low values of θ

(according to [27] less than 1 meter, but it depends on the problem analysed and on the nature of

the spatial variability), the rapid fluctuations in soil properties are averaged out and the soil

behaves as if it was homogeneous. This is caused by the fact that for low values of θ the shear

zone may be wider than the material zones, it therefore does not have enough freedom to follow

the zones of lower strength. Such low values of θ are not studied in the present paper. The whole

range of θ was in terms of probabilistic slope stability analyses studied by Hicks and Samy [24].

The basic FOSM method does not consider the decrease of µ[ce] and σ[ce] with θ, it thus gives

constant statistical distributions of the output variable t. Local averaging utilised in the extended

FOSM method leads to a reasonable approximation of σ[ce], this method is however not capable

of predicting the decrease of µ[ce] with θ. Therefore, the extended FOSM method reasonably
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approximates the decrease of the standard deviation of the output variable t, but the predicted

mean value µ[t] is constant with θ. The decrease of µ[t] with θ is predicted by the RFEM method

only.

Similar conclusions were obtained by Schweiger and Peschl [33] by using the extended FOSM

method in simulating a slope in a spatially variable soil characterised by an undrained shear

strength cu. The corresponding RFEM predictions were taken over from Griffiths and Fenton

[17]. Results of simulations from this paper demonstrate that these effects are applicable also in a

spatially variable soil with two uncorrelated strength parameters (c, ϕ) treated as random. In the

following, we will study how the predictions of µ[t] and σ[t] affect the calculated probability of

failure.

 0.95
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Figure 6: The influence of the correlation length θ on the mean value (a) and standard deviation (b)
of the gravity acceleration at failure multiplier t. Vertical lines for RFEM results in (a) represent
confidence intervals calculated from (7) as described in Sec. 4.1.

Probability of failure: Figure 7 shows probability of failure predicted by the three methods,

evaluated from the statistical distribution of the gravity multiplier at failure t using an approach

described in Sec. 4.1. The RFEM method predicts an increase of pf with decreasing correlation

length (for the range of θ studied), caused by a decrease of both µ[t] and σ[t]. The basic FOSM

method indeed predicts pf independent of θ. Perhaps surprisingly, results by the extended FOSM

method show an opposite trend than the RFEM method, with a decrease of pf with decreasing θ.

The discrepancy can be explained as follows. Fig. 5 demonstrates that decreasing σ[t] (which is

linked to the decrease of θ in the present case) with constant µ[t] leads to an increase of pf if

µ[t] < tl, decrease of pf if µ[t] > tl and constant pf = 0.5 if µ[t] = tl. The RFEM method predicts

µ[t] < tl for lower correlation lengths (θ < 30 m), it thus predicts for θ < 30 m an increase of pf
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with decreasing θ. The extended FOSM method predicts µ[t] > tl, it therefore predicts a decrease

of pf with decreasing θ.

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0  20  40  60  80  100  120

p f
[t l

=
1]

 [-
]

θ [m]

RFEM
basic FOSM

extended FOSM

Figure 7: Probability of failure as a function of correlation lengths θ for tl = 1. Vertical lines for
RFEM results represent confidence intervals.

Therefore, the RFEM and extended FOSM methods differ qualitatively in predicting pf due the

fact that the RFEM predicts µ[t] slightly lower than tl, whereas the extended FOSM methods

predicts µ[t] slightly higher than tl. However, as µ[t] values predicted by the two methods

actually do not differ significantly (see Fig. 6), the analysed problem may not be considered as

typical. In most applications, µ[t] values predicted by both methods would be either higher than

tl, or lower than tl.

To study the applicability of the methods for predicting pf in more detail, pf is evaluated also for

two different (unphysical) values of tl, namely for tl = 0.8 and tl = 1.2. Fig. 8 shows that in cases

where µ[t] is significantly different to tl the extended FOSM method predicts pf in a reasonable

agreement with the RFEM method. Therefore, a change of σ[t] with θ (predicted by both

extended FOSM and RFEM methods) has more significant influence on pf than the decrease of

µ[t] with decreasing θ (predicted by the RFEM method only).

5.2 The influence of statistical distribution of material properties

In order to study whether results from Sec. 5.1 may be considered as valid in general, or they are

just related to the given statistical distributions of parameters ϕ and c, additional simulations

with various distributions of ϕ and c were performed. The correlation length θ = 10 m as well as

mean values of ϕ and c were kept constant, equal to their original values. In one set of

simulations the standard deviation of c was varied, while σ[ϕ] was equal to its original value. In
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Figure 8: Probability of failure as a function of correlation lengths θ for tl = 0.8 (a) and tl = 1.2
(b). Vertical lines for RFEM results represent confidence intervals.

the second set of analyses σ[c] was constant, whereas σ[ϕ] was varied.

Figure 9 shows the influence of variation of σ[c] and σ[ϕ] on the calculated µ[t]. The standard

deviations of c and ϕ used in respective analyses are found by multiplying the original standard

deviations by a ”multiplier” (horizontal axis in Fig. 9). The difference between µt predicted by

the RFEM method and FOSM methods increases with increasing σ[c] and σ[ϕ]. This is to be

expected, as increasing σ[c] and σ[ϕ] increases the difference between the strength of the zones of

weaker and stronger materials (recall item No. 1. from Sec. 5.1).
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Figure 9: The influence of standard deviations of c and ϕ on µ[t] for θ = 10 m. Vertical lines for
RFEM results represent confidence intervals.

Increasing σ[c] and σ[ϕ] also increases standard deviation of the output variable t (Fig. 10). This

increase is predicted by the RFEM method, as well as by both FOSM methods. The basic FOSM

method, however, overpredicts σ[t], as it does not consider reduction of variances of c and ϕ due

to spatial averaging. Fig. 10 shows that apart from large standard deviations of c and ϕ
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(4σ[ϕ]orig and 2σ[c]orig), the extended FOSM method predicts σ[t] with a good accuracy.
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Figure 10: The influence of standard deviations of c and ϕ on σ[t] for θ = 10 m.

6 Discussion and concluding remarks

Three probabilistic methods for calculation of slope stability were in the paper compared using a

well-documented case study of the slope failure in the Lodalen, Norway. The calculated

probability of failure using the RFEM method for θ = 10 m is 55.7 %. The probability of failure

is somewhat lower than that obtained by El-Ramly et al. [11] using different approach based on

limit equilibrium method (69.4 %), but both the methods show that the slope was in meta-stable

conditions and the failure was imminent.

As expected, we have shown that the FOSM method in its basic version leads for lower correlation

lengths to different values of probability of failure pf as compared to the RFEM method. We have

shown that this is caused by the fact that the equivalent statistical distributions of soil properties,

which effectively control the stability of a slope, are significantly different as compared to the

original statistical distributions, which are used as an input into the basic FOSM simulations.

The FOSM method can be, however, modified in a simple way to incorporate spatial variation

through averaging of soil properties along the potential failure surface [33, 5], as described in Sec.

2.3. Though the modification is straightforward and the method is computationally inexpensive,

it leads to a significant improvement in predictions. Spatial averaging leads to a reasonable

estimate of the standard deviation of the equivalent strength (and consequently standard

deviation of the output variable t). This method still does not predict a change of the mean value

of the output variable with θ. As a result, the accuracy of estimation of pf by the so-called
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extended FOSM method decrease with

• increasing variance (standard deviation) of material properties and

• decreasing correlation length θ.

Note that very low correlation lengths were not considered in the present paper. For low

correlation lengths, the mechanism controlling the influence of statistics of the input variables on

the calculated probability of slope failure changes and the results of this study are not applicable.

Apart from these limitations, we have demonstrated that the extended FOSM method may

provide a good estimate of the probability of slope failure. This method can be used in

combination of any existing FE code, it may thus be considered as a useful approximate

probabilistic method for geotechnical practice.
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[23] M. A. Hicks, C. Onisiphorou, K. Samy, and W. A. Spencer. Implications of soil variability

for geo-computations. In Proc. 13th ACME conference, University of Scheffield, 2005.

[24] M. A. Hicks and K. Samy. Influence of heterogeneity on undrained clay slope stability.

Quarterly Journal of Engineering Geology, 35:41–49, 2002.

[25] S.-C. Hsu and P. P. Nelson. Material spatial variability and slope stability of weak rock

masses. Journal of Geotechnical and Geoenvironmental Engineering, 132(2):183–193, 2006.

[26] K. Kasama, Z. K., and A. J. Whittle. Effects of spatial variability of cement-treated soil on

undrained bearing capacity. In Proc. Int. Conference on Numerical Simulation of

Construction Processes in Geotechnical Engineering for Urban Environment, pages 305–313.

Bochum, Germany, 2006.

[27] H. Niandou and D. Breysse. Reliability analysis of a piled raft accounting for soil horizontal

variability. Computers and Geotechnics, 34:71–80, 2007.

[28] A. Niemunis, T. Wichtmann, Y. Petryna, and T. Triantafyllidis. Stochastic modelling of

settlements due to cyclic loading for soil-structure interaction. In G. Augusti, G. Schuëller,
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