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ABSTRACT: A particular landslide in the fine-grained soil, Lodalen slide, has been simulated using finite
element method combined with random field theory and Monte Carlo method. Parametersc andϕ of the Mohr-
Coulomb model have been considered as uncorrelated random variables. The calculated probability of failure is
influenced by the correlation lengthθ, a parameter difficult to evaluate from geotechnical site investigation data.
Not considering the spatial variability of soil propertieswould lead to unconservative design. In the presented
case a simpler probabilistic method with infiniteθ and variance reduced due to spatial averaging along the slip
surface may be used succesfully, this result however does not have a general validity.

1 INTRODUCTION
The soil mechanical properties obtained from detailed
geotechnical site investigations show a marked dis-
persion, coming from their inherent spatial variabil-
ity (even in zones which are often regarded as ”ho-
mogeneous” from the deterministic point of view)
and measurement error. Additional uncertainty is in-
troduced by the fact that only limitted number of
measurements is often available, and from subjec-
tive calibration of simple constitutive models, which
are often used in geotechnical analyses. These un-
certainties are in geotechnical engineering commonly
treated using deterministic concept of factors, which
however discourage clearer understanding of the rela-
tive importance of the various factors involved (Singh
and Chung 1991; Phoon and Kulhawy 1999). In this
respect, probabilistic approaches are well suited to
geotechnical engineering. Their rather limitted use in
practical applications is caused by the lack of data
needed for detailed statistical evaluation of mechan-
ical properties.

Considering for the moment the inherent spatial
variability only, it can be decomposed into smoothly
varying trend functiont(z) and a fluctuating compo-
nentw(z) as follows:

ξ(z) = t(z) + w(z) (1)

in which ξ is the in situ soil property andz is the
depth (Phoon and Kulhawy 1999), see Fig. 1. A ra-
tional means of quantifying inherent variability is to
modelw(z) as a homogeneous random field, in which
deviation ofξ(z) from the trend value is characterised
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Figure 1. Characterisation of inherent soil variability (after
Phoon and Kulhawy 1999, modified).

using some suitable statistical distribution, and spa-
tial variability is measured by means of the correla-
tion lengthθ, which describes the distance over which
the spatially random values will tend to be signif-
icantly correlated (Vanmarcke 1983). Evaluation of
the last quantity,θ, is in geotechnical engineering par-
ticularly difficult, as it requires vast amount of data,
which are usually not available. Moreover,θ in hor-
izontal direction (θh) is larger than the vertical (θv)
in the case of horizontally stratified soil deposits. De-
tailed literature reviews on the values of correlation
lengths present Phoon and Kulhawy (1999) and El-
Ramly et al. (2003). It is observed thatθh vary within
the range 10-40 m, whileθv ranges from 0.5 to 3 m.

The aim of this paper is to investigate implications
of uncertainty in the correlation length values on the
probability of failure of a slope computed by means
of a deterministic numerical method combined with
random field theory. A well-documented case history,
namely slide in Lodalen, Norway (Sevaldson 1956),
is used for the purpose of this evaluation.

2 PROBABILISTIC NUMERICAL METHODS
In probabilistic numerical analyses we usually need
to evaluate statistical distribution of a performance



function, based on known statistical characteristics of
input variables. In the following, we will distinguish
two classes of probabilistic methods. Methods of the
first class ignore the random spatial structure of input
variables, in other words they assume infinite correla-
tion lengthθ. Methods of the second class are based
on random field theories and consider spatial variabil-
ity of input variables. Obviously, the first class models
are special cases of the second class models for infi-
nite θ.

A number of methods of the first class have been
used in geotechnical applications. In this class, ap-
proximate analytical solutions, such as the First order
second moment method as a special example of Tay-
lor’s series method (Duncan 2000) or point estimate
methods (Christian and Baecher 1999), are available.
These methods are popular as they require low num-
ber of computer runs. They, however, always con-
sider a number of simplifying assumptions, so care-
full analysis is needed to show wheather these as-
sumptions are justifiable. An alternative to the analyt-
ical methods is the Monte Carlo simulation (or other
advanced probability procedures, such as Latin Hy-
percube sampling), which are fully general, but de-
pending on the problem solved they may require a
significantly large number of realisations and conse-
quently a considerable computational effort. Having
the performance functionY = g(X1,X2, ...Xn) of n
independent random variablesXi, the differenceǫ of
the true mean value ofY and mean value estimated
using the Monte Carlo approach may be for normally
distributedY found from the Chebychev inequality:

P

(

ǫ ≤
σ[Y ]

√

m(1− α)

)

≥ α (2)

whereσ[Y ] is the standard deviation of the perfor-
mance function,m is a number of realisations andα
is a prescribed probability of accuracy of the estimate.

Disadvantage of the first class methods is that they
ignore the spatial variability of soil properties. As
demonstrated by many authors (Popescu et al. 1997,
Haldar and Babu 2007, Hicks and Onisiphorou 2005,
Griffiths and Fenton 2004), the spatial variability (and
consequent concentration of less competent materials
into distinct zones), may lead to a significant increase
of the probability of unsatisfactory performance. This
shortcoming may be overcome by the second class
models. In their case the analytical evaluation is not
possible, so the problem must be solved using it-
erative probabilistic methods, such as Monte Carlo,
Latin Hypercube sampling, etc. The spatial autocorre-
lation of soil properties enters the calculation through
the distance-dependent correlation coefficientρ, de-
scribed commonly by the exponential equation due to

Markov:
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whereτ is absolute distance between two points in a
random field. Eq. 3 may be readily modified forθx 6=
θy:
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whereτx andτy are distances between two points in
horizontal and vertical directions respectively. Ran-
dom fields of input variables may be generated us-
ing one of a number of methods available (see Fenton
(1994) for an overview). In the present contribution, a
simple method based on Cholesky decomposition of
the correlation matrix (e.g., Fenton (1997)) is used.
This method is prone to numerical round-off errors
when the number of points in the field becomes large,
it is however sufficient for the present application.

When the random field models are used in con-
tinuum numerical methods with finite size of mate-
rial domains, the point statistics of random input vari-
ables must be transformed through local spatial aver-
aging about the domain size. In the case of normally
distributed random variables, the mean remains unaf-
fected, the standard deviation is reduced by:

γ =

(

σ[Xi]A
σ[Xi]

)

2

(5)

whereσ[Xi] describes the point statistics of the vari-
ableXi andσ[Xi]A is the standard deviation of the
spatially averaged field. The variance reduction factor
γ is calculated by integration of the Markov function
(Eq. 4), see Vanmarcke (1983).

Some authors (Christian et al. 1994, Schweiger
and Peschl 2005) advocate to use the idea of vari-
ance reduction due to spatial averaging also in com-
bination with the first class models (models with ho-
mogeneous fields of random variables), in a way in
which the standard deviation of the homogeneous
field of random variables is reduced by Eq. (5) due
to spatial averaging along the potential failure sur-
face. This method will be in this paper denoted as
extended first class method. Note that within the ex-
tended first class method it is difficult to handle rig-
orously the anisotropic auto-correlation of soil prop-
erties, the general direction of the failure surface is
usually considered in calculation of approximate cor-
relation length corresponding to that direction.

3 LODALEN SLIDE
Slide in Lodalen marshalling yard near Oslo, Norway
(Sevaldson 1956), has been chosen for the purpose of
the evaluation of probabilistic numerical methods in



this study. The slide is well documented, and it also
served to El-Ramly et al. (2006) for evaluation of a
simpler probabilistic approach to slope stability anal-
ysis, which may be compared with the present results.

The slide occurred in 1954 at the site where the
marshalling yard was enlarged about 30 years ago.
The inclination was approximately 1:2, as shown in
Fig. 2, which depicts the mid-section through the slide
with consecutive excavation steps. The main part of
the slide is formed in comparatively homogeneous
marine clay of sensitivity between 3 and 15 with some
thin silt layers. In order to determine the causes of
the slide, the Norwegian Geotechnical Institute per-
formed a comprehensive series of borings for labora-
tory investigations and pore pressure measurements.
Investigation of the samples allowed to determine
probable location of failure surface, which had a rota-
tional shape.

Figure 2. Mid-section through the Lodalen slide, from Sevaldson
(1956)

The pore pressure measurements are shown in Fig.
3. The measurements show a definite increase of pore
pressure with depth relative to the hydrostatic pres-
sure distribution. There is thus an indication of arte-
sian pressure in the ground, which can be explained
by the rise of the country behind the slope.

Figure 3. Pore pressures measured at the Lodalen site (El-Ramly
et al., 2006; data from Sevaldson,1956)

The values of the effective friction angleϕ and
effective cohesionc have been found by means of
undrained shear tests on different samples. Three or

four undrained tests have been performed in order to
construct each failure envelope. There was no marked
difference between samples within and samples out-
side the slide. The statistical distributions of the mea-
sured parameters together with the gaussian fit are
plotted in Fig. 4.
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Figure 4. Statistical distributions ofϕ andc as measured by Se-
valdson (1956)

4 FINITE ELEMENT SIMULATIONS
The problem has been simulated using determinis-
tic finite element method, combined with the ran-
dom field theory by Vanmarcke (1983). The finite el-
ement mesh, including dimensions, is shown in Fig.
5. The mesh represents the slope at the mid cross-
section through the slide (Fig. 2), which is slightly
steeper (5:9) than the overall slope of the slide (1:2).
The mesh consists of 1123 9-noded isoparametric
square elements, which reduce to triangles or irreg-
ular quadrilateral elements at the slant mesh bound-
ary. Fig. 5 also shows assumed position of the water
table, coming from piesometric measurements. The
artesian pressure (Fig. 5) is modelled by increased
unit weight of water. The slope is loaded by a grad-
ual increase of the gravity acceleration until the fail-
ure occurs, which is indicated by a sudden increase of
the slide mass velocity and impossibility to achieve
convergence through the automatic time-stepping it-
erative procedure.

As indicated in Sec. 2, the random fields of two
soil parameters that enter the calculation (ϕ andc) are
generated by means of Cholesky decomposition tech-
nique. The random field is unconditioned (i.e. it does



Figure 5. Finite element mesh used, with dimensions and as-
sumed position of the ground water table.

not coincide with measurement results at exact mea-
surement locations). The amount of data available is
insufficient to produce a reliable conditioned random
field. The statistical distribution of the output variable
(gravity acceleration at failure) is found by means of
the Monte Carlo method.

The two input random variables (ϕ andc) are de-
scribed by gaussian statistical distributions, as shown
in Fig. 4. As the experimental data show almost no
cross-correlation between the two variables (cross-
correlation coefficient between the two parameters is
-0.0719), the two fields have been simulated as uncor-
related. In the present paper it is assumed that the dis-
tributions in Fig. 4 represent the inherent spatial vari-
ability of soil properties, i.e. error introduced through
inaccurate laboratory procedures and uncertainty due
to insufficient data available are neglected. For dis-
cussion of the latter two aspects, the reader is referred
to Schweiger and Peschl (2005).

c

φ

v

Figure 6. Typical realisation of random fields of uncorrelated
variablesϕ andc for θh = 100 m andθv = 1 m, together with
the velocity field at failure. Lighter areas ofϕ andc are softer.

As discussed in the Introduction, the last parameter

of the random field, correlation lengthθ, is in general
the most difficult to evaluate, and certainly it cannot
be evaluated from the data available from the Lodalen
slide site. For this reason, a parametric study on the
influence of this uncertain parameter has been per-
formed. In all cases, the same correlation length for
both variablesϕ andc is considered. The horizontal
correlation lengthθh took values 1, 10, 20, 50 and
100 m; and the vertical correlation lengthθv 1 and 10
m. Combinationθh = 1 m andθv = 10 m has been
disregarded as unrealistic. Typical realisation of the
random fields ofϕ andc, for θh = 100 m andθv = 1
m, together with the velocity field at failure, is shown
in Fig. 6.

In addition to the second class method calculations,
two more simulations have been performed. One with
the simpler first class method of Sec. 2 (infinite cor-
relation length) and the second one with the extended
first class method. In the latter case, an infinite cor-
relation length is assumed for the random field real-
isation, whereas standard deviations ofϕ and c are
reduced by the factorγ = 0.206 of Eq. (5) that corre-
sponds to the integration of the Markov function (Eq.
(3)) for θ = 10 m along the potential failure surface of
L = 45 m, which comes from the deterministic slope
stability analysis.

5 PROBABILITY OF FAILURE
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Figure 7. Evaluation of the probability of failure and 95.4 %con-
fidence intervals of the Monte Carlo simulation from the statis-
tical distribution of the gravity acceleration at failuregf for the
caseθh = θv = 10 m.

The output variable coming from the Monte Carlo
simulations is the gravity acceleration at failuregf .
Typical statistical distribution of this variable (for the
caseθh = θv = 10 m) is shown in Fig. 7. Clearly, the
distribution ofgf fits closely the gaussian distribution,
it is therefore possible to use the gaussian fit to calcu-
late the probability of failure, which is equal to the
area below the gaussian curve forgf < 1 (as demon-
strated in the nested image in Fig. 7). In this paper, the



probability of failure has always been calculated from
the gaussian fit, rather than from the ratio of the num-
ber of failed slopes to the total number of simulated
slopes. Therefore, the ”nominal”pf is used instead of
the ”calculated” one, in the sense as defined by Wang
and Chiasson (2006).

The fact thatgf follows the gaussian distribution
also enables us to calculate the confidence intervals
of the Monte Carlo outcome using the Chebychev in-
equality (Eq. (2)), as also demonstrated in Fig. 7. For
the used numberm of Monte Carlo realisations (typ-
ically, 500 < m < 1000 in the present work) the un-
certainty in determination of the mean value ofgf is
for 95.4% confidence intervals rather small.

6 RESULTS OF SIMULATIONS
Figure 8 shows the nominal probability of failurepf

as a function of the correlation length, together with
the 95.4% confidence intervals. For the second class
models, there is a clear indication of increasing prob-
ability of failure with decreasing correlation length.
The limit value with an infinite correlation length
(first class model) gives approximately 20 % lowerpf .
This demonstrates that disregarding the spatial cor-
relation structure would lead to unconservative de-
sign. The graph also allows us to evaluate uncertainty
in calculation ofpf as a function of uncertainty in
the particular value ofθ. Inaccurate assumption of
θ, within the realistic bounds (Sec. 1), may lead to
approximately 10% uncertainty in the calculatedpf .
Any realistic guess ofθ is therefore better than appli-
cation of the first class model.
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Figure 8. Probability of failure as a function of the correlation
length. Results by the first class and extended first class methods
included.

Figure 8 also shows results of the extended first
class model forθ = 10 m. Results are within Monte
Carlo confidence intervals with the simulation by the
second class model withθh = θv = 10 m. Incorpo-
ration of spatial averaging into the first class model
thus leads in this case to significant improvement in

predictions. This issue is discussed further in the fol-
lowing section.

7 DISCUSSION
From the nested image in Fig. 7 it is clear that the
probability of failure is increased by both decrease
of the mean valueµ[gf ] and decrease of its standard
deviationσ[gf ]. There are two conceptually different
mechanisms, which induce differences in statistical
distributions ofgf calculated by the first and second
class models:

1. Incorporation of the spatially variable structure
into the numerical simulation may lead to con-
centration of less competent materials into dis-
tinct zones. The failure mechanism than devel-
ops through these zones, which controll the over-
all behaviour of the structure. This mechanism
would induce decrease of theµ[gf ] value.

2. In the case the first mechanism is not applicable
(for example if the failure surface is pre-defined),
the failure surface passes with the same proba-
bility softer and harder regions. The overall be-
haviour of the structure is then approximately
controlled by the average values of the material
parameters along the failure surface. These aver-
age values have lower variance when compared
to the generic statistical distribution of the input
variable, which is the idea employed in the ex-
tended first class models. The probability of fail-
ure is in this case increased by the decrease of
σ[gf ] under constantµ[gf ].

Figure 9 shows statistical distributions ofgf pre-
dicted by the first class, extended first class, and sec-
ond class methods forθ = 10 m. The three methods
predict similarµ[gf ], the first class method predict
significantly higherσ[gf ] than the extended first class
and second class methods. Investigation of Fig. 6 re-
veals that the failure surface has in the present case a
regular shape, which is apparently not influenced by
the spatial distribution of the soil properties. There-
fore, the overall behaviour is in this case dominated
by the second mechanism, which is also revealed in a
good agreement between the extended first class and
the second class models.

The inapplicability of the first mechanism may be
explained by the use of the simple Mohr-Coulomb
constitutive model, withc andϕ asuncorrelatedinput
random variables. As both the parameters influence
the shear strength in a conceptually similar manner,
the use of uncorrelated random fields ofc andϕ does
not produce distingushed areas of lower strength, as
the influence of variation ofc and ϕ is statistically
canceled. This unrealistic situation is caused by the
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class, and second class methods forθ = 10 m.

fact that the parametersϕ and c, found by lineari-
sation of a nonlinear failure envelope, do not repre-
sent sufficiently the soil behaviour. If enough data for
model calibration are available, it is preferable to use
advanced constitutive model, which relates the fail-
ure surface to other state variables (e.g., void ratio),
as done within probabilistic framework by Niemunis
et al. (2005) and Hicks and Onisiphorou (2005). For
example, Hicks and Onisiphorou (2005) used an ad-
vanced constitutive model and showed that presence
of pockets of highly liquifiable soil within the overall
dense sand strata would lead to a significant reduction
of the stability of the slope subject to dynamic load-
ing, they thus demonstrated the importance of the first
mechanism. The results presented in this paper show
that care must be taken when simple constitutive mod-
els are used within advanced methods of numerical
analysis.

8 CONCLUDING REMARKS

A particular slope in a fine-grained soil has been sim-
ulated using finite element method combined with the
random field theory. It has been shown that for the soil
described by the Mohr-Coulomb model with spatially
variable uncorrelated parametersϕ andc the correla-
tion lengthθ influences the calculated probability of
failure pf . Not considering the random spatial struc-
ture would lead to unconservative design.

The influence ofθ onpf is pronounced although the
given model does not allow to simulate concentration
of less competent materials into distinct zones. Spa-
tial averaging along the slip surface is the main factor
dominating the slope behaviour and therefore simpler
probabilistic methods with infiniteθ and reduced vari-
ance may be used to simulate its behaviour. This re-
sult, however, would not be valid if more advanced
material models were used.
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