Rekonstrukce objektů z bodových množin. α -shapes. Crust. Power Crust.

Tomáš Bayer | bayertom@natur.cuni.cz

Katedra aplikované geoinformatiky a kartografie. Přírodovědecká fakulta UK.

Tomáš Bayer | bayertom@natur.cuni.cz (Kate Rekonstrukce objektů z bodových množin.

4 D K 4 B K 4 B K 4 B K

Obsah přednášky

- 🕽 Ukázka použití
 - Formulace problému
 - $\alpha-$ shapes
 - α -complexes
 - Vztah S_{α} a C_{α}
 - Konstrukce α -shapes
- Orust

3

Princip konstrukce

Power Crust

- Power Diagram
- Princip konstrukce

1. Rekonstrukce oblasti z bodů

э

2. Formulace problému

Dáno:	Množina bodů $P = \{p_1, p_2,, p_n\}$ v \mathbb{R}^2 .
Hledáme:	<i>S</i> (<i>P</i>).

Významná geometrická struktura, zobecnění konvexní obálky. Uzavřená, nekonvexní oblast, může obsahovat díry. Chápána jako "hranice" množiny. Tvořena úsečkami/rovinami.

S lze zobecnit do vyšších dimenzí. V \mathbb{R}^2 polygon (uzavřený). V \mathbb{R}^3 polyedr/surface (uzavřený).

Široké použití:

Počítačová grafika, architektura, medicína, stavebnictví, geoinformatika, DPZ. Rekonstrukce oblastí, ploch, povrchů z bodových množin (LIDAR). DMT/DMR, 2D/3D objekty, autonomní vozidla... Kartografie: regionalizace.

3. Ukázka regionalizace

4. Ukázka regionalizace

5. Digitální modely terénu

Tomáš Bayer | bayertom@natur.cuni.cz (Kate Rekonstrukce objektů z bodových množin.

6. Rekonstrukce objektů

7. Architektura

・ロト ・ 理 ト ・ モ ト ・ モ ト

8. Hodnocení kvality

9. Metody rekonstrukce

Klasifikace do dvou skupin:

 Parametrické metody: Model tvořen lokálními modely různých tvarů, vzájemně navázané. Parametry modelů lokálně optimalizovány. Výsledkem spojitý model. Nevýhodou složité modely, nižší efektivita. Příliš se nepoužívají pro LIDAR data.

 Metody založené na triangulaci/meshování: Vstupem 2D/3D point cloud.
 Přidány další geometrické podmínky.
 Efektivní i pro velmi složité nekonvexní modely.
 Některá neumí duté objekty.
 Často používány pro bodová mračna.
 Zástupci: α-shapes, Power Crust, Poisson Reconstruction.

3D rekonstrukce:

Často nutná znalost průběhu normál v bodech. Použití SVD.

10. Přehled rekonstrukčních metod

Method	Point Cloud Artifacts				Input Requirements				Shape Class	Reconstruction Output	
	nonuniform sampling	noise	outliers	misalignment	missing data	unoriented normals	oriented normals	scanner information	RGB image		
Surface Smoothness Tangent Planes [HDD*92]	0	0								general	implicit field
RBF [CBC*01]	õ	-			0		1			general	implicit field
MLS [ABCO*03]	0	0			~	· ·	,			general	point set
Poisson (KBH06)	No.		0	0	8					general	implicit field
Graph Cut [HK06]	ŏ	ŏ	õ	õ	õ		•			general	volumetric segmentation
Unoriented Indicator [ACSTD07]	õ	ĕ	õ	ŏ	õ	1				general	implicit field
LOP [LCOLTE07]	•	ē	ō	õ						general	point set
Dictionary Learning [XZZ*14]	•	•	٠	0						general	mesh
Visibility											
VRIP [CL96]	0	•	-	-	0			1		general	implicit field
TVL1-VRIP [ZPB0/]	0		0	0	0			1		general	implicit field
Cone Carving [SSZCO10]	8		•		-		1	4		general	implicit field
Multi-Scale Scan Merge [FG11]	ě	-					•	-		general	implicit field
Volumetric smoothness	-	-						•	-	general	implicit lield
ROSA [TZC009]	0	0			•		1		-	organic	skeleton curve
Arterial Snakes [LLZM10]	ŏ	ŏ			ě		1			man-made	skeleton curve
VASE [TOZ*11]	0	0			٠			1		general	implicit field
l ₁ Skeleton [HWCO*13]	0	0			•					organic	skeleton curve
Geometric Primitives											
Primitive Completion [SDK09]	0	0	0		•		1			CAD	volumetric segmentation
Volume Primitives [XF12]	0	0	0	-	•			×.		indoor environment	interior volume
Point Restructuring [LA13]	0	0	0	0	0	1		1		general	volumetric segmentation
Clobal Regularity	0	0	0		0	-		~		urban environment	volumetric segmentation
Symmetry (PMW*08)	0	0				1				architactural	point eat
Nonlocal Consolidation [75W*10]		0	0		-	1				architectural	point set
2D-3D Facades [LZS*11]	ŏ	õ	0						1	architectural	point set
Globfit [LWC*11]	ĕ	ĕ	0	•	-	1				man-made	primitive relations
RAPter [MMBM15]	•	•	ō	•	0					indoor environment	primitive relations
Data-driven											
Completion by Example [PMG*05]	0	0			٠		~			general	point set
Semantic Modeling [SXZ*12]	0	0			•	1			1	indoor scene objects	deformed model
Shape Variability [KMYG12]	0	0			•	· ·				indoor scene objects	deformed model
Part Composition [SPCH12]	0	0			•	-			~	man-made	deformed model parts
Interactive	-				-				_		incuti sia di stat
Smarthoyes [NSZ*10]		8	0			1				general	nimplicit neta
O-Snap [ASF* 13]		ŏ	õ							architectural	primitive shapes
Morfit [YHZ* 14]	ŏ	õ	0							general	skeleton + mesh
	<u> </u>	~			_						

11. Klíčové faktory

Klíčové faktory ovlivňující rekonstrukci:

- Nízké prostorové rozlišení.
- Nerovnoměrná hustota.
- Existence "děr".
- Vliv šumu.

Častý problém vegetace, zástavby, vodstva, zakrytých míst. Obtížné stanovení vstupních parametrů metod.

Výstupní požadavky na S:

- Watertight.
- Topologická korektnost.
- Minimalizace odchylek.
- Spojitost.

Hodnotící kritéria:

- Topologická korektnost.
- Odolnost proti šumu.
- Zachování ostrých hran.
- Doba běhu.

12. Požadavky na rekonstrukci

Spojitost vs. spojitost po částech. Aproximace vs. interpolace. Stupeň křivky.

13. α - shapes

 S_{α} (Edelsbrunner et al, 1983), definice využívá α -ball.

$\alpha-\text{ball}$:

Představuje množinu bodů (kružnice, sféra, ...) se středem C poloměrem $0 < \alpha < \infty$.

Pro $\alpha = \mathbf{0} \Rightarrow \mathsf{bod}, \ \alpha = \infty \Rightarrow \mathsf{polorovina}.$

Nechť $e = (p, q), p, q \in P$ je libovolná úsečka, která je tětivou α - ballu. Pokud α - ball neobsahuje žádný další bod P, pak e je α -**exposed**.

크

14. α - shape

Hranice $\partial S_{\alpha}(P)$ je množina všech úseček, které jsou α -exposed. α -shape $\partial S_{\alpha}(P)$ oblast s hranicí $\partial S_{\alpha}(P)$. Ve 2D: po částech spojité křivky 1. stupně.

▲□▶ ▲圖▶ ▲国▶ ▲国

Může obsahovat díry, tvar závisí na hodnotě α .

15. Geometrická interpretace

Odvalování kružnice po obvodu množiny. Jak velký α -ball projde množinou, aniž se zastaví o body?

Tomáš Bayer | bayertom@natur.cuni.cz (Kate Rekonstrukce objektů z bodových množin.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

16. α -hull

Množina všech bodů, které neleží uvnitř α -ballu. Podobné α -shapům, úsečky nahrazeny kružnicovými oblouky. Po částech spojitá křivka.

Konstantní křivost 1/ α (s výjimkou "lomových" bodů).

V praxi se příliš nepoužívají, bublinový efekt.

17.* Vztah $S_{\alpha}(P)$ a $\mathcal{H}(P)$

Velikost poloměru α významně ovlivňuje tvar $S_{\alpha}(P)$.

Dva extrémní případy:

- α = 0,
- $\alpha = \infty$.

Pokud $\alpha \rightarrow 0$,

$$\lim_{\alpha\to 0} S_{\alpha}(P) = P,$$

pak každý $p_i \in P$ je α -exposed a $S_{\alpha}(P)$ odpovídá P.

Pokud $\alpha \to \infty$,

 $\lim_{\alpha\to\infty} S_{\alpha}(P) = \mathcal{H}(P),$

pak $S_{\alpha}(P)$ odpovídá konvexní obálce $\mathcal{H}(P)$.

Pak hovoříme o 0- shape resp. ∞ -shape.

V ostatních případech $S_{\alpha}(P)$ něco "mezi" P a její konvexní obálkou. Tvořena body, hranami a trojúhelníky DT(P).

18. Vztah $S_{\alpha}(P)$ a DT(P)

Vztah $S_{\alpha}(P)$ a DT(P)

 $\partial S_{\alpha}(P) \subset DT(S), \qquad 0 \leq \alpha < \infty.$

Pokud libovolná hrana e = (p, q) je α -exposed, pak $e \in DT(P)$.

Důležitá vlastnost, umožňuje pro konstrukci $S_{\alpha}(P)$ použít DT(P). Výběr vhodných hran a trojúhelníků DT(P), které tvoří $S_{\alpha}(P)$.

19. Vztah $S_{\alpha}(P)$ a DT(P), ukázka

20. α -complexes

Využití CDT, $S_{\alpha}(P)$ neumíme zkonstruovat přímo. Postupná konstrukce $S_{\alpha}(P)$ z trojúhelníků a hran CDT(P).

Pomocná struktura α -**complexes**: $C_{\alpha}(P)$.

Nechť <u>r</u> poloměr nejmenší prázdné kružnice obsahující e = (p, q). Jestliže $e \in CDT(P)$ a <u>r</u> < α , pak $e \in C_{\alpha}(P)$.

Alternativně definice s využitím Growing Discs. Pokud $k(p, \alpha)$ a $k(q, \alpha)$ se protínají, $e \in C_{\alpha}(P)$.

21. Ukázky α -complexes

Konstrukce pro různé hodnoty α .

22. Souvislost s Gabriel Graph

Úzká souvislost s Gabriel Graph. Proximity Graph: hrany spojují "blízké" objekty.

Body $p, q \in P$ tvoří hranu GG pokud

$$\frac{1}{2}\|\boldsymbol{p}-\boldsymbol{q}\|<\alpha.$$

23.* Obalová hrana ∂S_a

Okrajová hrana $e = (p, q) \alpha$ -shapu. Pokud $e \in \partial S_a(P)$, pak $e \in \partial C_{\alpha}(P)$.

Otevřený S_a : poloměr α -ballu

$$\alpha > \frac{1}{2} \|\boldsymbol{e}\|$$

a α -ball je prázdný.

Uzavřený S_a : poloměr α -ballu

 $\alpha > r$,

æ

kde r poloměr kružnice opsané Delaunay trojúhelníku.

24.* Vnitřní/vnější hrana

Pro okrajovou hranu $e = (p, q) \alpha$ -shapu existují dva α -bally. Jeden je prázdný (outer). Druhý neprázdný (inner).

Střed opsaných kružnic leží v levé/pravé polorovině vůči e.

25.* Vnitřní hrana

Každá vnitřní hrana $e \in DT(P)$ inciduje se dvěma Delaunay trojúhelníky. Poloměry odpovídajících opsaných kružnic r_1, r_2 .

Pak e vnitřní hranou, pokud oba α -bally prázdné

26. Konstrukce α -shapes

 $S_{\alpha}(P)$ neumíme konstruovat přímo. Pomocné datové struktury: $DT + C_{\alpha}(P)$. Snadná konstrukce.

Princip algoritmu:

Konstrukce DT(P).

Sonstrukce $C_{\alpha}(P)$. Pro každou hranu $e \in DT(P)$ testujeme

$$\alpha > \frac{1}{2} \left\| \boldsymbol{e} \right\|.$$

Příslušné *e* přidány do $C_{\alpha}(P)$.

3 Výběr hran $\partial C_{\alpha}(P)$ Značkování hran na Inner/Boundary. Výběr Boundary hran.

Metodu lze zobecnit i pro vyšší dimenze. Nevýhoda, pro každé α nutno přepočítat.

27. Ukázka konstrukce α -shapes

28. Ukázka 2D α -shapes

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

29. Ukázka 3D α -shapes

(二)

30. Modifikovaný algoritmus

Edelsbrunner, 1992.

2 základní úpravy:

- Výpočet intervalu I_α: Pro každou hrana počítán interval I_α = ⟨<u>α</u>, <u>α</u>⟩ použitelnosti. Pro příslušné hodnoty α pak e ∈ S_α(P).
- Rozdělení hran do 3 kategorií
 Na základě hodnot α hrany erozděleny

$$\boldsymbol{\varrho} \begin{cases} \notin \boldsymbol{C}_{\alpha}(\boldsymbol{P}), & \alpha < \alpha_{1}, \\ \in \partial \boldsymbol{C}_{\alpha}(\boldsymbol{P}), & \alpha_{1} < \alpha < \alpha_{2}. \\ \in \boldsymbol{C}_{\alpha}(\boldsymbol{P}), & \alpha > \alpha_{2}. \end{cases}$$

Při zpracování postupujeme od segmentů s nižšími dimenzemi. Od *e* přes Delaunay trojúhelníky.

Podrobnosti např. ve Fischer (2000).

31. Stanovení optimální hodnoty α

Praktické omezení, stanovení optimální hodnoty α .

Výrazně ovlivňuje výsledný tvar $S_{\alpha}(P)$. Řešeno předzpracováním množiny. Výpočet prostorové hustoty (jak jsou body průměrně vzdáleny).

Nedává dobrý výsledek pro množiny s proměnnou hustotou. Zde optimální α nejde určit, metoda pokus omyl.

Vylepšení (Edelbrunner, 1994): Stanovení optimální hodnoty α aby S byl watertight.

Tomáš Bayer | bayertom@natur.cuni.cz (Kate Rekonstrukce objektů z bodových množin.

32. Crust

Amenta et al (1998, 2001). Využívá Medial Axis, koncept Medial Balls.

Medial ball:

Maximální prázdný ball. Střed je nejbližší k nejméně 2 bodům Dotýká se *S* nejméně ve 2 bodech.

Medial Axis Transformation:

Množina všech maximálních kruhů, sjednocení. Jejich středy generují Medial Axis M(P). Použita při konstrukci Power Crust.

Základní myšlenka:

Inverzní postup. Zpětná rekonstrukce S při znalosti aproximované M(P).

Metoda nemá žádný vstupní parametr. Povrch *S* citlivý na krok vzorkování.

33. Princip konstrukce Crust

Vstupem množina P vzorkující povrch S.

Inverzní přístup.

Z aproximované Medial Axis zkonstruován S.

Postup tvořen několika fázemi:

- Konstrukce Voronoi diagramu $\mathcal{V}(P)$.
- 2 Nalezení pólů p.
- Klasifikace pólů na Inner/Outer (pro výpočet normál).
- Konstrukce $DT(P \lor \wp)$.
- Syběr vhodných hran *DT*.

Charakteristika:

- + Výpočetně snadná konstrukce.
- Citlivost ke kroku vzorkování.
- Malá odolnost proti šumu.
- Obtížné modelování dutých objektů.

Crust

Princip konstrukce

34. Konstrukce Voronoi diagramu

36/54

35. Nalezení pólů

Každý bod $p \in P$ má 2 póly. Nejvzdálenější body příslušné $\mathcal{V}(p)$ od p vně S a uvnitř S. Vnitřní póly aproximují Medial Axis.

- 990

36. Klasifikace pólů

Vnější pól \wp^+ nejvzdálenějším vrcholem $\mathcal{V}(p)$. Vnitřní pól \wp^- , nejvzdálenější, pro který platí

æ

 $u \cdot v < 0,$ $u = v - \wp^+,$ $w = v - \wp^-,$

37. Konstrukce $DT(P \lor \wp)$

Doplnění vstupní množiny P o póly p.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQで

38. Výběr vhodných hran I.

Hrany spojující pouze body P.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ シタの

39. Výběr vhodných hran II.

Trojúhelníky, jejich trojice vrcholů tvoří body *P*. Kružnice opsaná hraně neobsahuje žádný pól.

Sac

40. Power Crust

Amenta et al (2001).

Snaha vylepšit vlastnosti Crustu. Menší závislost na kroku vzorkování. Lepší výsledky i pro data se šumem.

Využití Power metriky. Vážený Voronoi diagram, aditivní metrika. Vzdálenost mezi sousedními $p, q \in P$ je r x menší než k nejbližšímu bodu M(P).

- + Výsledný surface je watertight.
- Konstrukce Power diagramu netriviální.

Upravený postup konstrukce:

- Vytvoření obalového simplexu.
- Konstrukce Voronoi diagramu.
- Nalezení pólů.
- Konstrukce polárních kružnic.
- Konstrukce Power Diagramu.
- Konstrukce Power Crustu.

41. Power Diagram

Popisuje vztah mezi *S* a *M*. Voronoi diagram s aditivní metrikou.

Power distance mezi $q \in \mathbb{R}^3$ a $B_{c,\rho}$

Power Diagram $\Pi(P)$ představuje rozklad množiny bodů P na n uzavřených či otevřených oblastí $\Pi(P) = \Pi(p_1), \Pi(p_2), ..., \Pi(p_n)$ takových, že každý bod $q \in \Pi(p_i)$ a libovolnou buňku $\Pi(p_j)$ platí

$$d_{pow}(q, B_{p_i, \rho}) \leq d_{pow}(q, B_{p_j, \rho}).$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

42. Hrany Power diagramu

Bisektory, vždy úsečky. Podobné jako u Voronoi diagramu. Celkem 4 varianty, vzájemná poloha 2 kružnic.

Varianta 2 použita při konstrukci Power Crustu.

43. Ukázka Power diagramu

Buňky konvexní. Mohou být prázdné nebo obsahovat více generátorů.

44. Přidání simplexových vrcholů

Přidání 4 vrcholů (5 x min-max box) *P* uvnitř konvexní obálky simplexu.

•

(日) (종) (종) (종) (종)

.

45. Konstrukce Voronoi diagramu

Simplex ovlivní tvar V(P).

46. Konstrukce polárních kružnic

Polární kružnice: střed v pólu, poloměr dán vzdáleností k nejbližšímu *p*. Aproximace Medial Ball.

47. Vnitřní/vnější póly

Polární kružnice/sféry klasifikovány dle úhlu α , pod kterým se protínají.

Vnitřní: protínají se pod tupými úhly (shallow). Vnější: protínají se pod ostrými úhly (deep).

Heuristická strategie:

Simplex: vnější, následná propagace. Pokud vnější kružnice/sféra protíná neoznačenou pod ostrým úhlem \Rightarrow vnější. Pokud první pól *p* v buňce $\mathcal{V}(p)$ vnější, pak druhý vnitřní.

48. Vnitřní/vnější kružnice/sféry

Na základě pólů klasifikovány i kružnice/sféry. Rozděleny na vnitřní/vnější.

49. Power diagram

Generátory tvořeny polárními kružnicemi.

50. Power Crust

Vnitřní/vnější póly generují vnitřní/vnější buňky $\Pi(P)$. Power Crust rozhraním mezi vnitřními a vnějšími buňkami. Výběr všech vnitřních buněk.

51. Ukázka 2D-Power Crust

Obtížné modelování dutých objektů.

◆□▶ ◆御▶ ◆厘▶ ◆厘

52. Ukázka 3D-Power Crust

Lepší výsledky než α - shape. Umí i složité nekonvexní tvary. Zde 3D α -shapy selhávají.

