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Abstract

This article presents three new methods (M5, M6, M7) for the estimation of an unknown map projection
and its parameters. Such an analysis is beneficial and interesting for historic, old, or current maps without
information about the map projection; it could improve their georeference. The location similarity approach takes
into account the residuals on the corresponding features; the minimum is found using the non-linear least squares.
For the shape similarity approach, the minimized objective function φ takes into account the spatial distribution
of the features, together with the shapes of the meridians, parallels and other 0D-2D elements. Due to the
non-convexity and discontinuity, its global minimum is determined using the global optimization, represented by
the differential evolution. The constant values of projection ϕk, λk, ϕ1, λ0, and map constants R,∆X,∆Y, α

(in relation to which the methods are invariant) are estimated. All methods are compared and the results are
presented for the synthetic data as well as for 8 early maps from the Map Collection of the Charles University
and the David Rumsay Map Collection. The proposed algorithms have been implemented in the new version of
the detectproj software.

Keywords: digital cartography, map projection, optimizing, differential evolution, least squares, BFGS, early
maps, analysis, georeferencing, cartographic heritage, history of cartography.

1 Introduction

The map projection analysis, together with the estima-
tion of the best constant values of the projection, belongs
to the new methods of the cartographic research of early
maps. It represents a process of the recognition and re-
construction of the geometric relationship, between the
early map content and the present representation of the
Earth. The early maps are a source of interest for many
scientific fields. For serious analysis of the map content,
the correct position of the map in the projected coor-
dinate system needs to be established. However, with-
out any information about map projections, this may be
complicated. In this context, the importance of the map
projection analysis is primarily referred to the refinement
of spatial georeference for medium- and small-scale maps,
to the analysis of the knowledge about the world, and to
the appropriate cataloging of maps, which is discussed
in Sec. 4. In georeferencing small-scale maps, it is not
correct to transform the analyzed map into a distinct
projected coordinate system and neglect the influence of
the different map projections. Fig. 1, illustrates this
issue, when the similarity transformation is utilized.

There are many requirements imposed on the devel-
oped solution. It should be robust to gross errors, pa-
per aging, sufficiently accurate, provide results in real

time, and invariant to the map constants. Even their
partial acceptance represents a serious challenge. To im-
prove the results in terms of reliability, accuracy, compu-
tational time, relevancy, and robustness against gross er-
rors, three new methods M5, M6, and M7 are suggested.
Compared to the approach presented in [5], some addi-
tional parameters are determined. The more accurate
and on-the-fly analysis as well as a significantly lower
amount of iterations allow use for maps of all scales and
types.

Two approaches measuring the map similarity are
presented. The location similarity estimates the map
projection parameters minimizing the squared sum of
residuals using the non-linear least squares solution. The
shape similarity, where the objective function φ takes
into account the spatial distribution of the analyzed fea-
tures together with the shapes of the meridians and par-
allels, is minimized using differential evolution (DE). Due
to its non-convexity, this problem is NP-hard. It will be
also investigated whether, for the location similarity, it
is possible to replace global optimizing techniques with
the local optimization.
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Figure 1: Georeferencing of a small-scale early map in the Bonne projection to the Mercator projection using the
similarity transformation; the transformation key is determined from the identical points.

2 Related Work

Interest in early maps and their analysis has grown sig-
nificantly, during the last 10 years. Therefore, the In-
ternational Cartographic Associations (ICA) established
a Commission on Digital Technologies in Cartographic
Heritage (2005). There are several early papers, dealing
with the assessment of early maps [33], [44], their accu-
racy [69], [34], [56], the correspondence between patterns
in geographical maps [74], the analysis of an ancient map
projections [75], [76]. The projection analysis of the gen-
eral map of Britain can be found in [68], the accuracy of
the first world map in [79]. However, the development of
computer sciences has provided new visualization tech-
niques [38], [64], analytical methods and procedures [3],
[4], [8], [51]. The analysis of the American civil war maps
can be found in [73], the Ptolemy’s map of Greece in
[49], portolan maps in [60], the Gough map of Britain in
[47], [52], the Mercator map of Slavonia, Croatia, Bosnia,
and Dalmatiae in [67], the Vogt’s map of Bohemia in [6].
There are software tools focused on georeferencing and
the analysis of early maps [14], [43], [65], [18], widely used
in various institutions, including the British Library [41],
[65], and the New York Public Library [43]. So far, they
do not allow automated detection of a map projection.

The method, measuring the map projection similarity
from the residuals of corresponding points, was described
in [77], the bidimensional regression for the comparison
of geographic phenomena in [78]. Some simple meth-
ods for identifying a projection can be found in the Esri
Knowledge Base [19], [20]. The prjfinder software [23]
represents a more sophisticated tool for Arc Map, which
searches for the best matching coordinate system. A dif-
ferent detection method, based on 2D transformations
[36], was developed in [37], the algorithms were imple-
mented in MapAnalyst open-source software. According
to author knowledge, it is the only solution for the pro-
jection analysis that works well. Another approach based
on the Nelder-Mead optimization of the objective func-
tion can be found in [5]. The method proposed in this
paper is more robust; it supports the analysis of elements
of different spatial dimensions, enables the determination
of additional parameters of the map projection in all as-
pects (normal, transverse, oblique).

The detection process consists of different procedures
that are frequently used in computer sciences. Given the
wide range of the paper, not all relevant articles could
be referenced. The detailed description of local optimiz-
ing methods for problems with a known gradient is in
many books: [29], [27], [28], [7], [40], [58], [59]. The
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BFGS method was introduced in [24], [31], [70], [10],
[11]; the efficient combination of the globally convergent
Gauss-Newton and BFGS methods was described in [45],
[42]. Very powerful hybrid method combinig the Gauss-
Newton and BFGS methods for solving non-linear least
squares (NLS) was introduced in [53], [54], [81]. The
BFGS formula has been found to be one of the most ef-
ficient optimizing approaches; this fact was discussed in
[15], [46], [55].

Differential evolution (DE) represents a global opti-
mizing method in the continuous search domain; it was
proposed in [71] as the replacement of simulated an-
nealing. Several modified versions with a new mutation
scheme were described in [13], [21], [22], [16]. Due to the
small amount of input parameters, the differential evolu-
tion is easily adjustable [9], [66]. Appropriate setting of
the DE parameters is crucial; this step has been exten-
sively tested by many researchers: [63], [62], [48], [30],
[80], [61]. A detailed overview can be found in [66]. The
slow convergence can be accelerated by modifying the
parameters [16], [35] or changing the evolution scheme
[32], [39].

3 Map projection

In terms of our problem, let us put the simplification that
only projections between the sphere and the plane, will
be considered. Let S2 be a sphere in R

3 (reference sur-
face, Earth), given by x2 + y2 + z2 = R2, A = (0, 0, R),
B = (0, 0,−R) North and South Poles of S2, and σ a
plane. For a current point Q = [ϕ, λ] ∈ S2, different
from A,B, and and its image P ′ = [x, y] ∈ σ, the projec-
tion P is

P : S2 − {A,B} → σ : Q→ P ′.

The projection P is defined by the coordinate func-
tions F,G, continuous with their first and second partial
derivatives and finite

X(R,ϕ1, λ0,∆X) = F (ϕ, λ),

Y (R,ϕ1, λ0,∆Y ) = G(ϕ, λ),

where ϕ1 is the standard parallel, λ0 is the central merid-
ian and ∆X,∆Y are the shifts between P, P ′. If λ0 6= 0,
the latitude is reduced

λ = λ− λ0. (1)

Map projections are frequently used in the transverse
or oblique aspects; so λ0 6= 0 can be compensated
by the coordinate λk, see Sec. 5.4. For the image
Q′ = [ϕ′, λ′] ∈ S′2 of Q on a sphere S′2 in R

3 concentric
to S2, the transformation T

T : S2 → S′2 : Q→ Q′

turns the North Pole A into the new meta pole K =
[ϕk, λk]. The transformation is given by the functions
H, I

ϕ′(ϕk, λk) = H(ϕ, λ), λ′(ϕk, λk) = I(ϕ, λ), (2)

which express the laws of the spherical trigonometry.
The coordinate functions F,G can be rewritten in the
following, more complex, form of the composite functions

X(R,ϕk, λk, ϕ1, λ0,∆X) = F (H(ϕ, λ), I(ϕ, λ)),

Y (R,ϕk, λk, ϕ1, λ0,∆Y ) = G(H(ϕ, λ), I(ϕ, λ)).

From the laws of cosine for ϕ′ and sine for λ′ are

sinϕ′ = sinϕk sinϕ+ cosϕk cosϕ cos(λ− λk), (3)

sinλ′ =
sin (90◦ − ϕ) sin(λ− λk)

sin (90◦ − ϕ′)
.

Due to the ambiguity in λ′ ∈ [−180◦, 180◦], the second
computation based on the five-part rule is needed

cosλ′ =
cosϕ sinϕk cos(λ− λk)− sinϕ cosϕk

cosϕ′
.

To avoid the quadrant adjustment, the both equations
are divided each other, and the final formula is indepen-
dent of ϕ′

tanλ′ =
cosϕ sin(λ− λk)

cosϕ sinϕk cos(λ− λk)− sinϕ cosϕk
. (4)

If the prime meridian does not correspond to Greenwich
but to a different meridian (Ferro, Paris, Lisbon) of the
longitude λ0, the longitude λ needs to be reduced sub-
tracting λ0. For the current point Qi, and its image P ′

i ,
the projection equations are written as follows

Xi(R,ϕk, λk, ϕ1, λ0,∆X) = F (H(ϕi, λi), I(ϕi, λi)),

Yi(R,ϕk, λk, ϕ1, λ0,∆Y ) = G(H(ϕi, λi), I(ϕi, λi)),

or, when a rotation involved

Xi(R,ϕk, λk, ϕ1, λ0,∆X,α) = F (H(ϕi, λi), I(ϕi, λi)),

Yi(R,ϕk, λk, ϕ1, λ0,∆Y, α) = G(H(ϕi, λi), I(ϕi, λi)).

Determined parameters of the projection. Dur-
ing the analysis, the following parameters of the projec-
tion P, affecting the graticule shape, are estimated:

• Transformed pole position ϕk, λk

The transformed pole position K = [ϕk, λk] of the
analyzed projection has a significant influence on
the shape of the graticule.

• Standard parallel ϕ1

The latitude of the standard parallel ϕ1, along
which the nominal scale is preserved, is determined.
Conic projections in a secant form specify two stan-
dard parallels ϕ1, ϕ2, ϕ1 6= ϕ2, representing in-
tersections of the cone and the secant plane; or
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Figure 2: An insufficient amount of analyzed features on parallels leads to the detection of a different type of
projection.

ϕ1 = ϕ2 for its tangent form. For cylindrical pro-
jections, the secant form uses two standard par-
allels ϕ1 = −ϕ2, but for the tangent form, is
ϕ1 = ϕ2 = 0. Some pseudo- or polyconic pro-
jections require the standard parallel ϕ1, but for
others, it is not used. During the analysis, the car-
tographic model is simplified to ϕ1 = ϕ2. How-
ever, not all projections define the standard paral-
lel, then, ϕ1 = 0.

• Longitude λ0 of the central meridian

To minimize the distortion and provide a true de-
piction of the mapped region, the central meridian
is shifted by λ0.

Determined constants of the map. The proposed
solution is invariant to the following constants of the ana-
lyzed mapM , which do not influence the graticule shape:

• Auxiliary sphere radius R′

The analyzed and reference maps may have dif-
ferent scales; the auxiliary sphere radius R′ ≡ R
ensures that the analyzed map fits best to the ref-
erence one.

• Shifts ∆X,∆Y

Both the analyzed and projected reference coordi-
nate systems may be shifted each other. Some-
times, the shifts are small, especially for the

scanned maps, otherwise, become larger values
(UTM, shifted origin, ∆Y = 500, 000, 000 m).

• Angle of rotation α

This optional parameter treats the inappropriate
insertion of the map into the scanner, or its addi-
tional rotation on the page.

The parameters are stored in the vector x and deter-
mined so as to minimize the objective function φ. While
the estimation of R′,∆X , ∆Y leads to the convex op-
timization, the remaining parameters result in the non-
convex optimization. Instead of the Nelder-Mead (NM)
approach [57], [5], the differential evolution (DE), and
the non-linear least squares (NLS), are utilized.

4 The concept and utilization of

the analysis

The map projection analysis represents a challenging,
but conceptually difficult, problem. Compared to the
solution based on the Nelder-Mead optimization [5], the
methods proposed in this paper are better in several as-
pects (accuracy, reliability, convergence, time consump-
tion, and robustness). Let us give a brief description of
the basic concepts and the practical applications.

Test and reference features. Consider a set of the
test features P = {P1, ..., Pn} ⊂ R

2, (1 ≤ n ≤ ∞), where
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Figure 3: The analyzed features covering a small part of the analyzed territory; the estimated graticule fits the
original only inside the convex hull.

Pi represents a point, a line segment, or a closed area
on the analyzed map, and analogously, a set of the ref-
erence features Q = {Q1, ..., Qn} ⊂ R

2, (1 ≤ n ≤ ∞) on
the sphere. Assume that the elements in P and Q do
not intersect each other, and that any element Pi corre-
sponds to Qi.

Overview of the analysis. Our approach is based on
a comparison of the subset on the analyzed map and
the corresponding subset on the reference surface. The
Cartesian and geographical coordinates of each analyzed
feature of both subsets are known. Let P represent the
analyzed map projection with the determined parame-
ters x. Suppose the dissimilarity δ

δ = φ(Px(Q), P ),

of features on the analyzed map P and the reference sur-
face Q projected with P, measured by the objective func-
tion φ. A projection P

Px : Q→ P ′

x,

and its constant values x need to be found such that,
satisfying

δ = φ(P, P ′

x) = 0,

which is fulfilled if P = P ′
x. In general, the elements P,Q

are affected by the errors, therefore

φ(P, P ′

x) 6= 0, P 6= P ′

x.

The unconstrained global optimizing problem is being
solved, where the vector of its best constant values x̂ is

given by

φ(P, P ′

x̂) = min, x̂ = argmin
P

(φ(P, P ′

x)). (5)

Under all analyzed projections, the optimal projection P,
and its the best constant values x̃ hold

x̃ = argmin
∀P

(φ(P, P ′

x̂)). (6)

The projection with the smallest objective function value
is assigned to the analyzed map. Instead of the global
optimization, which is computationally expensive, the
problemmay be solved using the non-linear least squares.
There are many ways to propose the objective func-
tion. The most simple approach is the location similarity,
when the objective function with the known gradient ∇φ
is represented by the squared sum of the residuals. The
objective function φ may be more complex, or discrete,
when the shape similarity is taken into account. For such
a function its gradient ∇φ may not be available for com-
putation.

The most important factors affecting the results will be
discussed; their impact on the projection analysis will be
shown.

4.1 Spatial distribution of features

A crucial role is played by the uniform distribution of
the analyzed features. The following rules should be re-
spected:

5



• To capture the curvature, at least three points
should be placed over each analyzed meridian or
parallel (i.e., noth-south and east-west directions).
Fig. 2 illustrates the situation when the meridians
are well reconstructed but the parallel shape was
not recognized.

• The analyzed features should preferably be dis-
tributed over the entire analyzed map. The es-
timated projection parameters fit well inside the
convex hull of the analyzed set; any extrapolation
outside the analyzed set is not supported and leads
to the wrong results, see Fig. 3.

• The analyzed features should be placed “symmetri-
cally”, on both sides of the equator and the central
meridian.

4.2 The graticule and the map content

accuracy

In the early maps created before the 17th century, the
graticule is the geometric construct. However, the map
content was not measured seriously; it is not too accu-
rate, some territories are completely missing (Australia,
the polar regions of North America). The reconstructed
graticule generated from the determined parameters can
be shifted or rotated to the original graticule. For early
maps, the graticule as well as the map frame are signif-
icantly more accurate than the map content, which was
discussed in [50]; they are also not affected by the gen-
eralization. There is also far less chance of outliers, so
the estimated parameters and reconstructed graticule fit
better to the original.

4.3 Analysis and the territory size

The success of map projection analysis is greatly affected
by the size of the analyzed territory. If there are no mea-
surable distortions (small depicted territories, territories
near the equator, central meridian, poles, or large scale
maps) representing the projection footprint, there is a
little chance that map projection could be detected; the
analyzed territory has a similar shape in multiple projec-
tions.

4.4 Analysis and georeference

Georeferencing assigns a spatial information to each pixel
of the map so as it aligns to a projected coordinate sys-
tem and obtains a correct geographical location. The
problem arises when the analyzed map and the destina-
tion coordinate system are based on different projections.
A similarity relationship between two sufficiently small
territories may be established; the impact of the map
projection may be neglected. For large territories, the

linear transformation of the analyzed map to the desti-
nation coordinate system omitting the influence of dif-
ferent projections is undesirable. Increasing the order of
transformation does not lead to any reasonable results;
the higher order transformations cause the secondary de-
formation and twist of the map content.

Another approach, splitting the analyzed small-scale
map into tiles, applying a transformation to each tile,
with the restoration of the continuous raster image, is
time-consuming and laborious.

The correct method is to determine the analyzed map
projection and re-project the map from the Cartesian co-
ordinates to geographical coordinates using inverse pro-
jection formulas. This is followed by projecting the ge-
ographical coordinates to the destination map’s coor-
dinate system. Suppose that our analyzed small-scale
early map, created in the thus far unknown projection
P1, needs to get the spatial reference in the coordinate
system given by different projection P2 representing the
national grid, heterogeneous to the map’s coordinate sys-
tem. Therefore, the best recommended solution seems to
be:

1. The determination of the analyzed map projection
P1

Using the proposed solution, the vector x̃ of the
analyzed map projection P1 parameters, is deter-
mined.

2. The inverse re-projection

Inverse projection formulas are applied; the ana-
lyzed map is reprojected to the sphere P

−1
1 : P ′ →

Q′. This step may be solved using the Proj.4 li-
brary.

3. Projection into destination coordinate system

The map re-projected on the sphere is projected to
the destination coordinate system given by P2, so
P2 : Q′ → P ′′. Nevertheless, possible residuals may
be fixed using a transformation.

4. Corrections of shifts and rotation

Despite the proposed solution, the additional shifts
and rotation may occur between the reconstructed
and reference maps at the destination coordinate
system. They may be corrected with the zero resid-
ual transformation.

The procedure is shown in Fig. 5, the georeferenced map
in the Bonne projection, reprojected to the Mercator pro-
jection, is illustrated in Fig. 4. This problem was dis-
cussed in [37], where an analogous scheme was presented.

4.5 Analysis and incorrectly drawn map

content

For early maps created before the 17th century, the lack
of a solid geometric and geodesic basis is typical. Maps
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Figure 4: Georeferencing of a small-scale early map in the Bonne projection using the proposed solution: the re-
projection to the Mercator projection. Only slight discrepancies between the original and reconstructed graticules
are visible.

without a geometric basis, affected by many errors, were
more like charts. Their inappropriate geometric proper-
ties, especially the length, aerial and shape distortions,
randomly changing depending on the geographic posi-
tion, makes the detection process more difficult and am-
biguous. The map content was not seriously measured,
and the only geometric basis can be found on the gratic-
ule, as well as on the map frame. This feature may be
utilized for further analysis of the map, which gives an
answer, as to which territories are drawn more or less
accurately. Many territories are well-placed with the dis-
torted shape, or well-shaped with the systematic shifts,
or a combination of both factors may occur. When super-
imposing the early map on the current state, the spatial
or location dissimilarities become clearly visible, see Fig.
4. For the analysis of the incorrectly drawn elements,
M-estimates with the Huber function, solved by the it-
eratively reweighted least squares (IRLS), were used.

4.6 Cataloging of maps

Currently, many map collections have been digitized, or
the process is still in progress. To be easily accessi-

ble, they must be sorted, organized, and stored in the
database, represented and organized as a catalog. The
cataloging of maps creates the need for information about
the map projection, which form a part of the carto-
graphic metadata. The widely used bibliographic format
Marc 21 involves a detailed description of a map projec-
tion and its properties in fields 034 (Coded Cartographic
Mathematical Data), 255 (Cartographic Mathematical
Data), and 342 (Geospatial Reference Data); see Fig. 6.
It is evident that some parameter values may be visually
estimated better (projection family), worse (projection
aspect), or the visual estimation is impossible (standard
parallel). Using the proposed solution, this step can be
performed semi-automatically and with a higher degree
of relevance. The tool may be useful for librarians as well
as for cataloguers.

5 Detection based on non-linear

least squares

The first strategy is based on solving the weighted non-
linear least squares problem (NLS). NLS is globally con-
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Figure 5: Georeferencing of a small-scale early map to the national grid, several approaches are illustrated.

vergent to the local minimum, but finding the global min-
imum is not ensured. Despite this fact, it provides fast
and reliable results, which for this problem, are not sig-
nificantly worse than the global minimizer. It is supposed
that the objective function φ(x) is available for the gradi-
ent computations. The NLS approach finds a minimizer
x̂

x̂ = argmin(φ(x)), (7)

of the sum of the squares of m non-linear functions ri(x)

φ(x) =
1

2

n∑

i=1

r2i (x) =
1

2
rT (x)r(x),

where x and r are m-dimensional and n-dimensional vec-
tors of the variables and residuals, and n ≥ m. For the
i−th item of the given data bi, i = 1, 2, ...m, and the
model function g(xi), the residual r(xi) is given by

r(xi) = g(xi)− bi.

Three methods, denoted as M7, M6, and M5 minimiz-
ing Eq. 7, are presented. They differ in the number
of determined parameters and the robustness, but their
computational demands are similar.

5.1 The 7-parameter method

The first method (denoted as M7) is based on the esti-
mation of 7 parameters

x̂T =
[
R′ ϕk λk ϕ1 λ0 ∆X ∆Y

]
.

The model function g(x) is represented by the coordinate
functions of the projection P

g(x) =




F (H(ϕ1, λ1), I(ϕ1, λ1))
· · ·

F (H(ϕn, λn), I(ϕn, λn))
G(H(ϕ1, λ1), I(ϕ1, λ1))

· · ·
G(H(ϕn, λn), I(ϕn, λn))



,

the vector of residuals r, between sets P, P ′
x, is written

as follows

r(x) =




X1 − x1,
· · ·

Xn − xn

Y1 − y1
· · ·

Yn − yn



. (8)

While the set P has a fixed position, the size and posi-
tion of the P ′

x set changes from iteration to iteration. The
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Figure 6: A part of an XML file containing cartographic meta data.

residuals are continuously decreasing, until a suitable so-
lution is found. Taking into account the 7 unknown pa-
rameters, at least m = 4 analyzed features must be col-
lected by the user. Due to the problematic determination
of the initial values ∆X,∆Y , this method proved to be
less robust and reliable, especially for large shifts, which
is discussed in Sec. 7.

Jacobian matrix. The Jacobian matrix J(2n, 7) of
the coordinate functions F,G is

J =




j1,1 j1,2 j1,3 j1,4 j1,5 j1,6 j1,7
· · · · · · · · · · · · · · · · · · · · ·
jn,1 jn,2 jn,3 jn,4 jn,5 jn,6 jn,7

j1+n,1 j1+n,2 j1+n,3 j1+n,4 j1+n,5 j1+n,6 j1+n,7

· · · · · · · · · · · · · · · · · · · · ·
j2n,1 j2n,2 j2n,3 j2n,4 j2n,5 j2n,6 j2n,7



,

where the partial derivative of the first coordinate func-
tion according to determined parameters are

ji,1(x, ϕ, λ) =

(
∂X

∂R′

)

(x=x(k),ϕ=ϕi,λ=λi)

,

ji,2(x, ϕ, λ) =

(
∂X

∂ϕk

)

(x=x(k),ϕ=ϕi,λ=λi)

,

ji,3(x, ϕ, λ) =

(
∂X

∂λk

)

(x=x(k),ϕ=ϕi,λ=λi)

,

ji,4(x, ϕ, λ) =

(
∂X

∂ϕ1

)

(x=x(k),ϕ=ϕi,λ=λi)

,

ji,5(x, ϕ, λ) =

(
∂X

∂λ0

)

(x=x(k),ϕ=ϕi,λ=λi)

,

ji,6(x, ϕ, λ) =

(
∂X

∂∆X

)

(x=x(k),ϕ=ϕi,λ=λi)

= 1,

ji,7(x, ϕ, λ) =

(
∂X

∂∆Y

)

(x=x(k),ϕ=ϕi,λ=λi)

= 0,

and the partial derivative of the second coordinate func-
tion according to the determined parameters are

ji+n,1(x, ϕ, λ) =

(
∂Y

∂R′

)

(x=x(k),ϕ=ϕi,λ=λi)

,

... ... ...

ji,n+6(x, ϕ, λ) =

(
∂Y

∂∆X

)

(x=x(k),ϕ=ϕi,λ=λi)

= 0,

ji,n+7(x, ϕ, λ) =

(
∂Y

∂∆Y

)

(x=x(k),ϕ=ϕi,λ=λi)

= 1.

In other words, each row J(i, :) stores the values of the
partial derivatives for the point Qi.

5.2 The 5-parameter method

The next method proposed in this paper (denoted as M5)
determines the following parameters

x̂T =
[
R′ ϕk λk ϕ1 λ0

]
.

It aligns both sets P, P ′
x in their centers of mass C =

[XC , YC ], c = [xc, xc]

XC =
1

n

n∑

j=1

Xj , YC =
1

n

n∑

j=1

Yj ,

xc =
1

n

n∑

j=1

xj , yc =
1

n

n∑

j=1

yj ,

so it eliminates the need to determine the ∆X,∆Y shifts.
Let us denote the model function from the previous
method M7 with the upper index (1). The model function
g(x) is

g(x) =




g
(1)
1 (x) − 1

n

∑n
l=1 F (H(ϕl, λl), I(ϕl, λl))
· · ·

g
(1)
n (x) − 1

n

∑n
l=1 F (H(ϕl, λl), I(ϕl, λl))

g
(1)
n+1(x)− 1

n

∑n
l=1 F (H(ϕl, λl), I(ϕl, λl))
· · ·

g
(1)
2n (x) − 1

n

∑n
l=1 F (H(ϕl, λl), I(ϕl, λl))




.

The vector of residuals r, between aligned sets P̄ , P̄ ′ in
coordinate systems (C,X ′, Y ′) and (c, x′, y′), minimized
with the least squares adjustment, is written as follows
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r(x) =

















(X1 −Xc)− (x1 − xc)
· · ·

(Xn −Xc)− (xn − xc)

(Y1 − Yc)− (y1 − yc)
· · ·

(Yn − Yc)− (yn − yc)

















=

































X ′

1 − x′

1

.

.

.

X ′

n − x′

n

Y ′

1 − y′

1

.

.

.

Y ′

n − y′

n

































, (9)

where the reduced coordinates are

X ′

i =Xi −Xc, Y ′

i =Yi − Yc,

x′

i = xi − xc, y′i =yi − yc.

The M5 method, set as the primary analysis tool, brings
a better convergence; ‖J‖ is significantly smaller. At
least, 3 points are necessary. During the iteration pro-
cess, the aligned set P̄ has a fixed position and size. The
properties of P̄ ′ are continuously changing, depending on
xk, the residuals between P̄ , P̄ ′, decrease; see Fig. 7, il-
lustrating the analysis of the Eckert V projection in the
normal aspect. The fast convergence rate is clearly visi-
ble. M5 is not robust against a possible rotation of the
analyzed map. A situation for a map rotated by α = 1.7◦

due to inappropriate insertion into the scanner is shown
in Fig. 8.

Jacobian matrix. Let us denote the derivatives from
the previous method M7 with the upper index (1). The
new Jacobian matrix J(2n, 5) is

J =




j1,1 j1,2 j1,3 j1,4 j1,5
· · · · · · · · · · · · · · ·
jn,1 jn,2 jn,3 jn,4 jn,5

j1+n,1 j1+n,2 j1+n,3 j1+n,4 j1+n,5

· · · · · · · · · · · · · · ·
j2n,1 j2n,2 j2n,3 j2n,4 j2n,5



,

where the partial derivatives of the first coordinate func-
tion according to the determined parameters are

ji,1(x, ϕ, λ) = j
(1)
i,1 −

1

n

n∑

l=1

(
∂X

∂R′

)

(x=x(k),ϕ=ϕl,λ=λl)

,

ji,2(x, ϕ, λ) = j
(1)
i,2 −

1

n

n∑

l=1

(
∂X

∂ϕk

)

(x=x(k),ϕ=ϕl,λ=λl)

,

ji,3(x, ϕ, λ) = j
(1)
i,3 −

1

n

n∑

l=1

(
∂X

∂λk

)

(x=x(k),ϕ=ϕl,λ=λl)

,

ji,4(x, ϕ, λ) = j
(1)
i,4 −

1

n

n∑

l=1

(
∂X

∂ϕ1

)

(x=x(k),ϕ=ϕl,λ=λl)

,

ji,5(x, ϕ, λ) = j
(1)
i,5 −

1

n

n∑

l=1

(
∂X

∂λ0

)

(x=x(k),ϕ=ϕl,λ=λl)

,

and analogously, for the second coordinate function,

ji+n,1(x, ϕ, λ) = j
(1)
i+n,1 −

1

n

n∑

l=1

(
∂Y

∂R′

)

(x=x(k),ϕ=ϕl,λ=λl)

,

· · · · · · · · ·

ji+n,5(x, ϕ, λ) = j
(1)
i+n,5 −

1

n

n∑

l=1

(
∂Y

∂λ0

)

(x=x(k),ϕ=ϕl,λ=λl)

.

5.3 The 6-parameter method

The last method proposed in this paper represents an ex-
tension of the M5 method, but it supports the additional
rotation α of the map. In other words, it is invariant to
all map constants. The vector of determined parameters
is

x̂T =
[
R′ ϕk λk ϕ1 λ0 α

]
.

Analysis will be performed in local coordinate systems
(C, χ′, γ′) and (c, x′, y′), with origins c, C, where C is
also the rotation center; this approach is analogous to
the similarity transformation. Taking into account the
residual of i-th element

[
rxi

ryi

]
= ℜ

[
Xi −Xc

Yi − Yc

]
−

[
xi − xc

yi − yc

]
,

where ℜ represents the rotation matrix

ℜ =

[
cosα − sinα
sinα cosα

]
,

the vector of the residuals is given by

r(x) =

















(X1 −Xc) cosα− (Y1 − Yc) sinα− (x1 − xc),
· · ·

(Xn −Xc) cosα− (Yn − Yc) sinα− (xn − xc)

(X1 −Xc) sinα+ (Y1 − Yc) cosα− (y1 − yc)
· · ·

(Xn −Xc) sinα+ (Yn − Yc) cosα− (yn − yc)

















.

Denoting

χ′

i = (Xi −Xc) cosα− (Yi − Yc) sinα = X′

i cosα− Y ′

i sinα,

γ′

i = (Xi −Xc) sinα+ (Yi − Yc) cosα = X′

i sinα+ Y ′

i cosα,

the residuals may be rewritten as

r(x) =




χ′
1 − x′

1,
· · ·

χ′
n − x′

n

γ′
1 − y′1
· · ·

γ′
n − y′n



. (10)
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Figure 7: Detection of the Eckert V projection in the normal aspect using the M5 method, a random set of analyzed
features, iterations 1-6. The residuals between P̄ , P̄ ′ are continuously decreasing.

Jacobian matrix. The Jacobian matrix J(2n, 7) has
the form of

J =




j1,1 j1,2 j1,3 j1,4 j1,5 j1,6
· · · · · · · · · · · · · · · · · ·
jn,1 jn,2 jn,3 jn,4 jn,5 jn,6

j1+n,1 j1+n,2 j1+n,3 j1+n,4 j1+n,5 j1+n,6

· · · · · · · · · · · · · · · · · ·
j2n,1 j2n,2 j2n,3 j2n,4 j2n,5 j2n,6



,

where the partial derivatives of the first coordinate χ′

according to the determined parameters are

ji,1(x) =

[

j
(1)
i,1 −

1

n

n
∑

l=1

(

∂X

∂R′

)

(x=x(k),ϕ=ϕl,λ=λl)

]

cosα−

[

j
(1)
i+n,1 −

1

n

n
∑

l=1

(

∂Y

∂R′

)

(x=x(k),ϕ=ϕl,λ=λl)

]

sinα,

ji,2(x) =

[

j
(1)
i,2 −

1

n

n
∑

l=1

(

∂X

∂ϕk

)

(x=x(k),ϕ=ϕl,λ=λl)

]

cosα−

[

j
(1)
i+n,2 −

1

n

n
∑

l=1

(

∂Y

∂ϕk

)

(x=x(k),ϕ=ϕl,λ=λl)

]

sinα,

ji,3(x) =

[

j
(1)
i,3 −

1

n

n
∑

l=1

(

∂X

∂λk

)

(x=x(k),ϕ=ϕl,λ=λl)

]

cosα−

[

j
(1)
i+n,3 −

1

n

n
∑

l=1

(

∂Y

∂λk

)

(x=x(k),ϕ=ϕl,λ=λl

]

sinα,

ji,4(x) =

[

j
(1)
i,4 −

1

n

n
∑

l=1

(

∂X

∂ϕ1

)

(x=x(k),ϕ=ϕl,λ=λl)

]

cosα−

[

j
(1)
i+n,4 −

1

n

n
∑

l=1

(

∂Y

∂ϕ1

)

(x=x(k),ϕ=ϕl,λ=λl)

]

sinα,

ji,5(x) =

[

j
(1)
i,5 −

1

n

n
∑

l=1

(

∂X

∂λ0

)

(x=x(k),ϕ=ϕl,λ=λl)

]

cosα−

[

j
(1)
i+n,5 −

1

n

n
∑

l=1

(

∂Y

∂λ0

)

(x=x(k),ϕ=ϕl,λ=λl)

]

sinα,

ji,6(x) = −

(

Xi −
1

n

n
∑

l=1

Xl

)

(x=x(k),ϕ=ϕl,λ=λl)

sinα−

(

Yi −
1

n

n
∑

l=1

Yl

)

(x=x(k),ϕ=ϕl,λ=λl)

cosα,
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Figure 8: A superimposition of the original and reconstructed graticules; method M5, map rotation α = 1.7◦ is not
involved.

and the partial derivatives of the second coordinate γ′

according to the determined parameters are

ji+n,1(x) =

[

j
(1)
i,1 −

1

n

n
∑

l=1

(

∂X

∂R′

)

(x=x(k),ϕ=ϕl,λ=λl)

]

sinα+

[

j
(1)
i+n,1 −

1

n

n
∑

l=1

(

∂Y

∂R

)

(x=x(k),ϕ=ϕl,λ=λl)

]

cosα,

... ... ...

ji+n,5(x) =

[

j
(1)
i,5 −

1

n

n
∑

l=1

(

∂X

∂λ0

)

(x=x(k),ϕ=ϕl,λ=λl)

]

sinα+

[

j
(1)
i+n,,5 −

1

n

n
∑

l=1

(

∂Y

∂λ0

)

(x=x(k),ϕ=ϕl,λ=λl)

]

cosα,

ji+n,6(x) =

(

Xi −
1

n

n
∑

l=1

Xl

)

(x=x(k),ϕ=ϕl,λ=λl)

cosα−

(

Yi −
1

n

n
∑

l=1

Yl

)

(x=x(k),ϕ=ϕl,λ=λl)

sinα.

Analogously, each row of the Jacobian matrix J(i, :)
stores the partial derivatives at the point Qi.

Modified M6 method. To improve the robustness
and keep the solution x̂

x̂T =
[
ϕk λk ϕ1 λ0 | q1 q2

]
,

invariant to the map constants R′, α, their increments
are not determined from NLS, but they are computed di-
rectly, from the coefficients q1, q2 of the weighted Helmert

2D transformation

qk =
(
AT

k WkA
)−1

AT
kWkl, qk =

[
q1
q2

]
,

where

αk = arctan
q2
q1

, R′

k = R′

0 ‖qk‖2 , ‖qk‖2 =
√
q21 + q22 ,

Ak is the design matrix

Ak =




X ′
1 −Y ′

1

· · · · · ·
X ′

n −Y ′
n

Y ′
1 X ′

1

· · · · · ·
Y ′
n X ′

1



, l =




x′
1

· · ·
x′
n

y′1
· · ·
y′n



.

The residuals are determined from

r(xk) = Ak qk − l.

The modified M6 method is more robust to the possible
errors as well as to the far initial guess x0. The Jaco-
bian matrix J(2n, 4) is analogous to the previous case
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Figure 9: A superimposition of the original and reconstructed graticules; method M6, map rotation α = 1.7◦ is
involved.

but cosα is replaced with q1, and sinα with q2

ji,1(x) =

[

j
(1)
i,2 −

1

n

n
∑

l=1

(

∂X

∂ϕk

)

(x=x(k),ϕ=ϕl,λ=λl)

]

q1 −

[

j
(1)
i+n,2 −

1

n

n
∑

l=1

(

∂Y

∂ϕk

)

(x=x(k),ϕ=ϕl,λ=λl)

]

q2,

· · · · · · · · ·

ji,4(x) =

[

j
(1)
i,5 −

1

n

n
∑

l=1

(

∂X

∂λ0

)

(x=x(k),ϕ=ϕl,λ=λl)

]

q1 −

[

j
(1)
i+n,5 −

1

n

n
∑

l=1

(

∂Y

∂λ0

)

(x=x(k),ϕ=ϕl,λ=λl)

]

q2,

and

ji+n,1(x) =

[

j
(1)
i,,2 −

1

n

n
∑

l=1

(

∂X

∂ϕk

)

(x=x(k),ϕ=ϕl,λ=λl)

]

q2 +

[

j
(1)
i+n,2 −

1

n

n
∑

l=1

(

∂Y

∂ϕk

)

(x=x(k),ϕ=ϕl,λ=λl)

]

q1,

· · · · · · · · ·

ji+n,,4(x) =

[

j
(1)
i,5 −

1

n

n
∑

l=1

(

∂X

∂λ0

)

(x=x(k),ϕ=ϕl,λ=λl)

]

q2 +

[

j
(1)
i+n,5 −

1

n

n
∑

l=1

(

∂Y

∂λ0

)

(x=x(k),ϕ=ϕl,λ=λl)

]

q1.

A situation for the M6 method and a map rotated by
α = 1.7◦ due to inappropriate insertion into the scanner
is shown in Fig. 9. Involving a rotation, a significantly
better fit between the original and reconstructed gratic-
ules is obvious.

5.4 Partial derivatives

Some partial derivatives stored in the Jacobian matrix
are projection-specific, others are independent of the pro-
jection, or constant.

Derivatives ∂X
∂ϕk

, ∂X
∂λk

and ∂Y
∂ϕk

, ∂Y
∂λk

. Both F,G are the
composite functions, the chain rule must be applied

∂X

∂ϕk
=

∂X

∂ϕ′

∂ϕ′

∂ϕk
+

∂X

∂λ′

∂λ′

∂ϕk
,

∂Y

∂ϕk
=

∂Y

∂ϕ′

∂ϕ′

∂ϕk
+

∂Y

∂λ′

∂λ′

∂ϕk
,

and analogously for ∂X
∂λk

, ∂Y
∂λk

, etc. Let us put

A = cosϕ cos(λ− λk),

B = cosϕ sin(λ− λk),

C = sinϕk sinϕ+A cosϕk,

D = sinϕ cosϕk cos(λ− λk)− cosϕ sinϕk,

E = cosϕk sinϕ−A sinϕk.

For the oblique aspect of the projection, the derivatives
are

∂ϕ′

∂ϕk
=

E√
1− C2

,
∂ϕ′

∂λk
=

B cosϕk√
1− C2

,

where 1− C2 > 0. Analogously,

∂λ′

∂ϕk
= − BC

B2 + E2
,

∂λ′

∂λk
=

D cosϕk

B2 + E2
,
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where B2+E2 6= 0. The transformed latitude and longi-
tude ϕ′, λ′ are frequently arguments of other functions.
Let us briefly state the most common cases, when ϕ′, λ′

are functions of sin() and cos(). Then

∂ sinϕ′

∂ϕk
= E,

∂ sinϕ′

∂λk
= B cosϕk,

∂ cosϕ′

∂ϕk
= − CE√

1− C2
,

∂ cosϕ′

∂λk
= −BC cosϕk√

1− C2
,

where 1 − C2 > 0 and analogously for other composite
functions of ϕ′, λ′. For the transverse aspect, the ϕk co-
ordinate is fixed, ϕk = 0◦. Then, derivatives ∂ ·/∂ϕk are
zero

∂ϕ′

∂ϕk
=

∂λ′

∂ϕk
= 0,

the both ∂ · /∂λk derivatives are equal to the oblique
aspect. In the normal aspect, ϕk = 90◦, λk = 0◦, all
derivatives ∂ · /∂ϕk and ∂ · /∂λk are zero

∂ϕ′

∂ϕk
=

∂λ′

∂ϕk
= 0,

∂ϕ′

∂λk
=

∂λ′

∂λk
= 0.

Derivatives ∂X
∂ϕ1

, ∂Y
∂ϕ1

. The derivatives are only the an-
alyzed projection P function. They appear in some pro-
jection equations (conic, cylindrical, pseudoconic), oth-
erwise, they are zero.

Derivatives ∂X
∂∆X , ∂X

∂∆Y and ∂Y
∂∆X , ∂Y

∂∆Y . They do not
depend on the analyzed projection P

∂X

∂∆X
=

∂Y

∂∆Y
= 1,

∂X

∂∆Y
=

∂Y

∂∆X
= 0,

they are constant.

Derivatives ∂X
∂λ0

, ∂Y
∂λ0

. With respect to Eq. 1, both
derivatives depend on the projection equations. More-
over, λ may be a composite function. The λ0 shift ap-
pears, when the analyzed projection uses a prime merid-
ian different from Greenwich (e.g., Ferro), or, if the map
has a shifted central meridian passing a center of the
mapped territory (it minimizes distortions on the bound-
aries of the map). Otherwise, λ0 = 0.

For both transverse and oblique aspects, the situa-
tion is slightly complicated. Replacing λ with λ = λ−λ0

in Eqs. 3, 4, it is obvious that changing the position λk

of the meta-pole may be compensated by the same shift
λ0 in the opposite direction. There are infinitely many
pairs λ0, λk holding the following condition

λk + λ0 = const,

and λk, λ0 are dependent. Therefore, for the transverse
and oblique aspects it is not necessary to determine λ0.
We set λ0 = 0, and

∂X

∂λ0
=

∂Y

∂λ0
= 0.

Alternatively, some numerical methods of differentiation
can be used; for example, the Stirling method, which is
efficient.

5.4.1 Mercator projection, example

The above-mentioned principles will be illustrated on the
Mercator projection

X = Rλ cosϕ1, Y = R ln
[
tan

(ϕ
2
+

π

4

)]
,

proposed in the oblique aspect, so ϕ ≡ ϕ′, and λ ≡ λ′.
Only the crucial steps of the derivation of the Jacobian
matrix elements for the M7 method, are shown. The
following partial derivatives are easy to compute

ji,1 =
∂X

∂R′
= λ′ cosϕ1,

ji,4 =
∂X

∂ϕ1
= −R′λ′ sinϕ1,

ji,5 =
∂X

∂λ0
= 0,

ji+n,1 =
∂Y

∂R′
= ln

[
tan

(
ϕ′

2
+

π

4

)]
,

ji+n,4 =
∂Y

∂ϕ1
= 0,

ji+n,5 =
∂Y

∂λ0
= 0,

andR′ ≡ R. For the remaining derivatives, the chain rule
must be applied. First, the following derivatives need to
be evaluated

∂X

∂ϕ′
= 0,

∂X

∂λ′
= R′ cosϕ1,

∂Y

∂ϕ′
=

R′

cosϕ′
,

∂Y

∂λ′
= 0.

Taking into account the previous derived formulas for
∂ϕ′/∂ϕk, ∂ϕ

′/∂λk, ∂λ
′/∂ϕk, ∂λ

′/∂λk, the partial deriva-
tives of the coordinate function X are

ji,2 =
∂X

∂ϕk
=

∂X

∂ϕ′

∂ϕ′

∂ϕk
+

∂X

∂λ′

∂λ′

∂ϕk
= R′

BC cosϕ1

B2 + E2
,

and

ji,3 =
∂X

∂λk
=

∂X

∂ϕ′

∂ϕ′

∂λk
+

∂X

∂λ′

∂λ′

∂λk
= R′

D cosϕ′ cosϕ1

B2 + E2
.

Analogously, for the second coordinate function Y ,

ji+n,2 =
∂Y

∂ϕk
=

∂Y

∂ϕ′

∂ϕ′

∂ϕk
+

∂Y

∂λ′

∂λ′

∂ϕk
,

=
R′

cosϕ′

E√
1− C2

,

ji+n,3 =
∂Y

∂λk
=

∂Y

∂ϕ′

∂ϕ′

∂λk
+

∂Y

∂λ′

∂λ′

∂λk
,

=
R′

cosϕ′

B cosϕk√
1− C2

.
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5.5 Initial cartographic parameters

The iteration process reliability depends on accurate ini-
tialization, relatively close to the stationary point. Let
us denote x0 as the initial guess

xT
0 =

[
R′ ϕk λk ϕ1 λ0 ∆X ∆Y α

]
0
.

The correct estimation of the initial value R′
0 of the auxil-

iary sphere is a step of high importance. A wrong setting
may cause a failure of the iterative process, which was
confirmed in practice. The initial guess R′

0 is

R′

0 =
R

s
, s =

√
q21 + q22

where s is the scale factor of the Helmert transforma-
tion of T (P, P ′

x), R the initial Earth radius (currently
R

.
= 6, 380, 000 m), and q1, q2 are the transformation

coefficients. The standard parallel of latitude ϕ1, pre-
serving a nominal scale, is centered along the analyzed
region

(ϕ1)0 = (ϕ+ ϕ)/2,

where ϕ represents the minimum and ϕ the maximum
values of the geographic extent. Even the approxi-
mate determination of the initial values ∆X,∆Y for the
oblique aspect represents a serious problem. The first
approach sets ∆X0 = 0, ∆Y0 = 0, the second approach
uses shifts between centroids c, C of both systems

∆X0 = Xc − xc, ∆Y0 = Yc − yc.

If the actual shifts are too large, the first method may
fail, due to the inaccurate initialization. The initial
value of the rotation angle may be determined from the
Helmert transformation of T (P, P ′

x)

α0 = arctan
q2
q1

.

The approximate values R′
0, α0 may differ significantly

from their true values; especially if P, P ′
x have a circular

shape, they are affected by gross errors, the initial guess
of the pole position is too far, or a conformal projection
is analyzed. Suppose the analyzed region to be located
along the equator and the cylindrical projection in the
transverse aspect is applied so as the standard parallel is
centered above the region. Rotating the tangent cylinder
in the east direction by the Earth axis so that equator of
the rotated system is aligned with a point [0, λ], the in-
tersection K = [0, λk], of the sphere and the cylinder axis
representing the pole is λk = λ ± 90◦. Analogously, ro-
tating the cylinder in the west direction, is λk = λ±90◦.
Then,

(λk)0 = (λ+ λ)/2 + 90◦.

For conic projections λk < λ + 90◦, and λk > λ − 90◦;
the middle of the λ interval is set as the initial value

(λk)0 = (λ+ λ)/2.

The same approach is used for azimuthal projections,
where the extreme values are λk = λ, and λk = λ. The
the second pole coordinate is

(ϕk)0 = (ϕ+ ϕ)/2.

The central meridian shift is set to λ0 = 0.
For the transverse aspect, an analogous approach is

used. The first coordinate of the meta pole is fixed,
ϕk = 0◦, while λk uses the same rules as the oblique
aspect. In the normal aspect of the projection, the pole
coordinates are fixed, so ϕk = 90◦, λk = 0◦. The central
meridian of longitude λ0 is set so that it passes approxi-
mately through the center of an analyzed region

(λ0)0 =
1

n

n∑

i=1

λi.

5.6 Hybrid BFGS method

BFGS is one of the most popular and versatile quasi-
Newton methods. For small residual problems, it has
a slower convergence rate. A possible way to overcome
this issue is the ability to switch between first order and
second order methods; this approach was studied in [1],
[17], [25], [26], [53], [54], [81]. The advantage of all hy-
brid methods, solving the least squares problem, is the
scaling unnecessity. A combination of the Gauss-Newton
and BFGS methods, is efficient; for non-zero residual
problems, it converges superlinearly, and quadratically
for zero residual problems. The initial approximation of
the Hessian matrix

B1 = JT (x0)W0J(x0),

is based on the Gauss-Newton method. In next itera-
tions, the following test, proposed in [26],

τ =
φ(xk)− φ(xk+1)

φ(xk)
,

indicates which actualization step will taken. If τ >
τmin, the nearly zero residual problem is solved, in which
the Gauss-Newton method

Bk+1 = JT (xk)WkJ(xk),

is more efficient. If τ < τmin, and yTk sk > 0, the large
residual problem is solved. Here the BFGS update

Bk+1 = Bk +
yTk yk
yTk sk

− Bksks
T
kB

T
k

sTkBksk
,

where

sk = xk+1 − xk, yk = ∇φ(xk+1)−∇φ(xk),

works better. For practical computations, the recom-
mended value in [54] is τmin = 0.0001. The new solution
is
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Figure 10: A convergence of the vector x to the global minimum ϕk = 2.2◦N , λk = 109.1◦W (Map 4) of φ(x) using
hybrid BFGS; iterations 1-8, together with contour lines, are shown.

xk+1 = xk + αkhk, hk = −B−1
k+1∇φ(xk),

the length step αk satisfies the sufficient decrease condi-
tion

φ(xk + αhk) ≤ φ(xk) + αc1∇fT
k (x)hk, (11)

where αk ∈ [0, 1] , and c1 ∈ [0, 1]. Because of the faster
convergence (see Fig. 10), hybrid BFGS seems to be
efficient for this problem.

Terminal condition. The following stopping condi-
tions indicating a local minimum proximity, widely de-
scribed in [81], have been involved. Their numerical val-
ues have been adapted to our problem:

• ‖∇φ(x)‖2 < 10−8,

• |φ(xk)− φ(xk+1)| < 10−10 ·max(1, φ(xk+1))),

• φ(xk) < 10−8,

• iterations < 200.

If there is no convergence after 200 iterations, the com-
putation is terminated.

The detection algorithm. The algorithm for the
map projection analysis based on the hybrid BFGS may
be expressed as follows:

1. Initialize

Initialize xk, k = 0, compute J(xk). Apply the
projection formulas: Pxk

: Q → P ′
x. Detect the

outliers, and form the weight matrix Wk of all
elements. Compute the residuals r(xk), gradient
∇φ(xk), the objective function φ(xk), and the ap-
proximation of the Hessian matrix Bk+1

∇φ(xk) = J(xk)Wkr(xk),

φ(xk) = 0.5rT (xk)Wkr(xk),

Bk+1 = JT (xk)WkJ(xk).

2. Main loop

Until the terminal condition is true, do the follow-
ing steps:

(a) Solve normal equations

Solve normal equations, compute the trial
point xt

hk = −B
−1
k+1∇φ(xk), xt = xk + hk.

(b) Determine the length step αk

For given α = 1, and the trial point xt, repeat

α = α/2, xt = xk + αhk,
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Figure 11: Maps 3,4: A superimposition of the graticule reconstructed from the estimated parameters and the early
map, stereographic projection in the transverse aspect, Western and Eastern Hemispheres.

and determine α as the largest number hold-
ing the sufficient decrease condition given by
Eq. 11. Compute the new solution

xk+1 = xk + αhk.

(c) Outlier detection

Apply the projection formulas: Pxk+1
: Q →

P ′
x. Detect and remove the outliers between

P, P ′
x using IRLS, form the weight matrix

Wk+1 of all elements.

(d) Compute new residuals

Determine new Jacobian matrix J(xk+1), the
residuals r(xk+1), the gradient∇φ(xk+1), and
the objective function φ(xk+1)

∇φ(xk+1) = J(xk+1)Wk+1r(xk+1),

φ(xk+1) = 0.5rT (xk+1)Wk+1r(xk+1).

Check the terminal conditions for ∇φ(xk+1)
and ∇φ(xk) and stop the iteration process, if
necessary.

(e) Selection criterion

Evaluate the selection criterion τ for φ(xk+1)
and φ(xk). If τ > τmin, or yTk sk < 0, actu-
alize Bk+1 from the Gauss-Newton method.
Otherwise, use the BFGS update for Bk+1.

(f) Assign values

Assign old values

Bk = Bk+1,∇φ(xk) = ∇φ(xk+1), φ(xk) = φ(xk+1).

The algorithm reliability can also be controlled by set-
ting the β value. Decreasing c1 = 0.0001, the efficiency
improved to 98%; see Sec. 7.

6 Detection based on the differ-

ential evolution

The differential evolution, probably the most popular ge-
netic algorithm, is successfully used for solving large or
NP-hard optimizing problem, where deterministic meth-
ods mostly fail, and the gradient ∇φ is not available for
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Figure 12: Map 5: A superimposition of the graticule reconstructed from the estimated parameters and the early
map, stereographic projection in the transverse aspect.

computations. Compared to NLS, they overcome a de-
pendency on the initial solution x0. Instead of a single
starting point, an initial population of individuals covers
the search space (Fig. 14).

6.1 Methods M5-M7

For the location similarity approach, the model function
g(x), residuals r(x), and the objective function φ(x) are
analogous to the NLS approach; the differential evolution
may be used to verify the quality of the NLS solution.
Due to the lack of partial derivatives, the Jacobian ma-
trix J(x) cannot be evaluated. Considering the shape
similarity approach where the global minimizer x̂

x̂ = argmin
P

(φ(P, P ′

x)),

is required, and φ(x) is the non-continuous, non-convex,
or complex function (the shape-matching invariant), DE
represents the natural solution. Frequently, L2 norm of
the solution is minimized, see [5]. For the M5-M7 meth-
ods, x̂ has the analogous form, but g(x), and r(x) are
not used and replaced with the shape-matching criteria.
Due to the translation invariance of the shape-matching
functions, the M5, M6 methods are more appropriate,
while the M7 method depends on the shifts ∆X,∆Y .

6.2 Shape similarity, objective function

The shape similarity approach, taking into account the
change of the shape between two corresponding features,
expressed with the dissimilarity δ, leads to the global op-
timization. There is a wide set of available distance func-
tions, starting from the simple geometric invariants, and
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proceeding to the complicated shape matching functions.
Some of them are well-known from computer graphics or
machinery perception. Let us give the formal definition
of the objective function φ(P, P ′

x) as the mean of the ob-
jective functions under all dimensions

φ(P, P ′

x) =
1

3
(φ(P, P ′

x)0D + φ(P, P ′

x)1D + φ(P, P ′

x)2D) .

Objective function for 0D features. The shape
similarity cannot be directly measured for 0D entities [5].
Suppose, an analysis of corresponding faces F (Pi), F (P ′

i )
formed by merged Voronoi cells V(Pi), V(P ′

i ), generated
by sets P, P ′

x. The objective function φ(P, P ′
x) expresses

the average dissimilarity measured by the distance func-
tion d2(P, P

′
x) over all corresponding faces

φ(P, P ′

x)0D =
1

n

n∑

i=1

d2(F (P i), F (P ′

i )).

The faces are constructed from k adjacent and subse-
quently merged Voronoi cells V(Pi), V(P ′

i ) as follows

F (Pi) =

k⋃

j=1

[[V(Pi) ∨ V(Pj)] ∧ [V(Pi) ∧ V(Pj) 6= 0]] ,

F (P ′

i ) =

k⋃

j=1

[[
V(P ′

i ) ∨ V(P ′

j)
]
∧
[
V(P ′

i ) ∧ V(P ′

j) 6= 0
]]
.

Only cells, whose generators Pi, P
′

i satisfy the condition
Pi /∈ ∂H(P )∧P ′

i /∈ ∂H(P ′), e.g., they are not on the con-
vex hullsH(P ),H(P ′), can be merged. The algorithm for
the d2(F (P i), F (P ′

i )) computation based on the turning
function can be found in [2], [5]. All faces are to be
normalized by their perimeter.

Objective function for 1D and 2D features. 1D
and 2D elements, represented by the line and polygonal
features, or the graticule (meridians, parallels), are im-
portant source matter for the analysis. Involving these
features significantly increases the reliability; they allow
the analysis of extensive parts of maps in a single step.
The objective function represents the average dissimilar-
ity measured over all n corresponding features

φ(P, P ′

x)1D/2D =
1

n

n∑

i=1

d2(P i, P
′

i ).

2D elements are used for larger parts of the surface
(woods, lakes), their position and shape may significantly
change over time, their geometric accuracy and reliabil-
ity is lower. Because the acquisition of corresponding
1D and 2D features as well their analysis represent time-
consuming processes, such a complex data structure is
available only in rare cases; the vast majority of analy-
ses are based on point sets. Further information can be
found in [5].

6.3 Differential evolution

Differential evolution, the well-known and efficient opti-
mizing strategy [72], was proposed in [62] as the replace-
ment of the simulated annealing. It has small computa-
tional demands (the lower complexity and good memory
utilization), a fast convergence, and may be adapted to
a wider set of optimizing problems, regardless of the di-
mension of the problem and the type of the objective
function. However, it has a significant disadvantage; its
performance depends on the numerical values of three
main parameters: the population size NP , the mutation
factor F , and the crossover constant CR. The shape sim-
ilarity approach leads to the multimodal objective func-
tion φ.

Initial population. The population P0 is distributed
randomly over the search space SD; its size NP = 10 ·D
depends on the detection method, where D = 5, 6, 7 is a
dimension of the problem. The initial i-th random vector
xi,g, i = 1, 2, ..., 10 · D, with j = 1, 2, ..., D components

xj
i,g at the generation g = 0 is given by

xj
i,g = xj + rand(0, 1)

(
xj − xj

)
, (12)

where xj , xj are their lower and upper bounds.

Mutation scheme. The differential mutation com-
bines selection and mutation strategies. For this prob-
lem, the random strategy, represented by the DE/rand/1
scheme

vi,g = xr1,g + F (xr2,g − xr3,g),

generating the new vector vi,g at g-th generation from
three random vectors xr1,g, xr2,g, xr3,g, is efficient. To
accelerate the convergence, the adaptive control of the
differential evolution parameters was used. The MFDE
technique

Fi,g = s
√
di,g · rand(0, 1)2 − b. (13)

of controlling the mutation factor F , based on the mod-
ified dithering, was introduced in [12]. For each genera-
tion g, the linear decreasing factor di,g is computed

di+1,g = di,g − 1/np,

where d1,g = 1.2, and dnp,g = 0.2. In initial steps, the
algorithm adds a stronger noise, which further reduces.
If the fitness between two generations does not improve,
the deceleration factor b = 1.5 is used; otherwise, the
acceleration factor s = 0.2, is utilized

Fi,g =

{
s
√
di,g · rand(0, 1)2, φbest,g−1 − φbest,g > 0,√
di,g · rand(0, 1)2 − b, otherwise.
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Algorithm 1 Reflection of the individual vji,g into the search space SD.

1: function Reflect(vi,g, vj , vj)

2: for j ← 0 : m-1 //Process all parameters of vi,g

3: while
(
vji,g < vj

)
∨
(
vji,g > vj

)
// Parameter outside interval

4: if vji,g < vj //Parameter lower than the lower bound

5: vji,g ← 2vj − vji,g //Flip

6: else if vji,g > vj //Parameter greater than the upper bound

7: vji,g ← 2vj − vji,g //Flip

Reflection into the search space. The mutation
does not ensure that the new vji,g element will be in-

side the search space SD. If vji,g /∈ SD, a simple method

that flips all vji,g elements to SD is used. Let us denote

vj , vj the lower and upper bounds of j-th determined
parameter forming the edge of the search space SD. Ac-
cording to the reflection used in [71], new vji,g elements
are written as follows

vji,g =

{
2vj − vji,g, vji,g < vj ,

2vj − vji,g vji,g > vj .
(14)

The reflection algorithm is iterative, see Alg. 1; if vji,g is
too far from a bound, one step may not be sufficient.

Cross-over scheme. Exchanging the part of the
genetic information, between the trial and the current
individuals keeps the population to a minimum stan-
dard. Using the binomial cross-over, a random number
pjc = rand(0, 1), expressing the probability of the mu-
tated individual, is generated. The target individual xi,g

is crossed with the mutated one vi,g

uj
i,g =

{
vji,g, pjc ≤ CR ∨ j = l,

xj
i,g , otherwise,

(15)

the cross-over factor is set to CR = 0.8.

Selection scheme. The selection process decides,
which individual survives, and proceeds to the next gen-
eration g+1. If the trial vector ui,g has a lower objective
value φ(ui,g) than the target vector φ(xi,g), it replaces
the target vector; otherwise, the target vector is pre-
served

xi,g+1 =

{
ui,g, φ(ui,g) ≤ φ(xi,g),

xi,g, otherwise.
(16)

Stopping criterion. The first condition is based on
the sufficient decrease condition

|φbest,g − φbest,g+1| < εmax(1, φbest,g), (17)

where ε < 1.0 · 10−8. The second criterion takes into
account the convergence of the population to the global

minimum, when no significant improvements in the pop-
ulation are found

|φbest,g − φworst,g| < ε. (18)

The third and auxiliary criterion involves an improve-
ment during the last k generations

|φbest,g − φbest,g+∆g | < ε, (19)

where ∆g = 50. It is used if the differences between
φbest,g −φbest,g+1 tend to be small and constant, but the
objective function value continuously decreases. In ac-
cordance with the previous condition, this behavior may
be falsely classified as suitable for stopping the iteration
process. The last criterion takes into account the total
amount of iterations

k < MAXITER. (20)

If there is no convergence after 2,000 generations, the
computation is terminated. Avoiding the premature con-
vergence for Maps 1, 2 (see Sec. 7), the threshold was
decreased to ε < 1.0 · 10−10.

Find the best matching projection. For each car-
tographic projection P, the vector x̂ of parameters mini-
mizing φ is determined. It represents the best individual
of a population Pg at the generation g

x̂ ≡ xbest,g = argmin
P

φ(xi,g). (21)

The detection algorithm. The algorithm for the
map projection analysis based on the differential evo-
lution is summarized as follows:

1. Create the initial population

Set the initial population size to NP = 10D. For
i = 1, ..., NP and for j = 1, ..., D create the initial
random population P0. Initialize Wi,g = I. For
each individual xi,g , evaluate the residuals r(xi,g)
and the objective function φ(xi,g).

2. Main loop

Until the stopping criteria ε are satisfied, do the
following steps:
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(a) Mutation step

Initialize d1,g = 1.2. For all i = 1, ..., 10D in
the current generation: Compute the decre-
ment factor di,g and the modified mutation
factor Fi,g. Pick 3 random points and com-
pute the mutation vector vi,g, where F = Fi,g.

(b) Cross-over step

For all i = 1, ..., 10D and for all j = 1, ..., D
in the current generation: perform a bino-
mial crossover; generate a random number
rj = rand(0, 1), and compute the item uj

i,g

of the crossed vector.

(c) Reflection step

For all i = 1, ..., 10D in the current generation:
flip all elements uj

i,g into the search space SD,
if necessary.

(d) Outlier detection

Apply the projection formulas: Pui,g
: Q →

P ′. Detect and remove the outliers between
P, P ′

ui,g
using IRLS, form the weight matrix

Wi,g of all elements.

(e) Selection step

To compare the trial vector ui,g and the tar-
get vector xi,g , evaluate residuals r(ui,g) and
r(xi,g) and their objective function values
φ(ui,g), φ(xi,g), the better of them proceeds
to the next generation. Update the popula-
tion Pg.

(f) Stopping criteria

Find the worst and best individuals in the cur-
rent population

xbest,g = argmin(φ(xi,g)),

xworst,g = argmax(φ(xi,g)),

check the terminal conditions, and stop the
iteration process, if necessary. Increment the
generation g = g + 1.

The process of the map projection analysis may be vi-
sualized. The early Map 3 was analyzed, every 2nd it-
eration (Fig 13) and 10th generation (Fig. 14), together
with the contour lines, are shown. It is apparent that
the population is becoming more concentrated around
the global minimum.

7 Experiments and results

All the above-mentioned methods have been extensively
tested both on synthetic and real cartographic data. The
computations have been performed in C++; our testing
PC had the following hardware specification: CPU In-
tel i5-4460, 8GB RAM, Win8.1 64bit, VS 2013 compiler,
single thread mode.

The following characteristics have have been mea-
sured: The stationary point efficiency (EFF1), the global
minimum efficiency (EFF2), the number of iterations
(N IT), the objective function value φ(x) of the correctly
detected samples given by the residuals (RES C), the ob-
jective function value φ(x) of all tests (RES A), and the
computational time (TIME). The results of DE were con-
sidered flawless after being compared to the Mathemat-
ica 8 optimizers. The test has been classified as successful
if φ < 1.1φ, where φ was determined from a priori known
parameters or from the Mathematica 8 optimizer.

7.1 Synthetic tests

The impact of the small territory formed by the spher-
ical quadrangle of the fixed size of ∆ϕ = ∆λ = 10◦,
with the center [ϕc, λc], continuously shifting over the
planisphere, was analyzed. An assumption that there
are some areas on the planisphere where most projec-
tions have an analogous shape of the graticule, and the
detection reliability is lower, or fail, was verified. The
comparison was undertaken for Eckert V projection in
the normal aspect, method M5, and four distance func-
tions. The location similarity was represented by mini-
mization of the squared sum of residuals (RES), and the
cross nearest distance (CND); the shape similarity ap-
proach by the turning function over the graticule (GTF),
and over the merged Voronoi faces (VFTF). To simulate
the early map, each testing set was additionally contam-
inated with errors. The error ε lies inside the circles of
the radius 〈50, 100, 150, 200, 250〉 km. Due to the small
amounts of tests, the contour lines look slightly artificial,
but the properties and behavior of the distance functions
are clearly visible.

The Eckert V projection was reliably detected, except
the areas along the equator. With the increasing level of
error contamination, the reliability rapidly reduces. Up
to the level of 100 km, the results are reliable. Exceed-
ing the value, the detection becomes rather a random
process, especially for the shape similarity criteria. The
crucial factor is represented by the location of the an-
alyzed territory. Minimum reliability is achieved along
the equator, see Tab. 1 and Figs. 15, 16. Comparing
the location and shape similarity approach, the shape
similarity approach appears to be less efficient and more
sensitive to additional noise.

The analogous behavior was recognized for many pro-
jections. For most distance functions, a territory located
along the central meridian/equator or near the poles rep-
resents a serious problem, projections have here an anal-
ogous shape of the graticule; the projection footprint is
vague. In such territories, at a higher level of noise, the
detection process fails or becomes inefficient.
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7.2 Early map tests

8 early maps of different scales, ages, and categories, with
projections applied in all aspects, were selected. The
normal aspect is easily detectable and does not bring se-
rious information about the algorithm reliability (Maps
5, 6, and 8). The NLS, DE, and NM optimizing tech-
niques have been compared, a robustness against the ini-
tial guess x0 and the shifts ∆X , ∆Y , was measured. For
this purpose, the elements of x0 have been randomly ini-
tialized on the whole domain, and the additional shifts,
were added to the data. The test was repeated 300 times.
The coordinates [ϕ, λ], collected using Google Maps, re-
ferring to the WGS-84 ellipsoid, were not transformed to
the sphere, so the influence of the ellipsoid was neglected.
This issue primarily affects the large-scale maps (Maps
1 and 2), because the positional differences caused by
the negligence of the different surfaces are on the level of
the graphical accuracy of the map. For Maps 1 and 2,
the correct map projection parameters have been a pri-
ori known; for early maps 3-8, they were unknown. The
results are summarized in Tab. 2.

Map 1. “Czech topographic map”, scale 1:10,000, 16
identical points, analyzed area: ϕ ∈ [47◦N, 51◦N ], λ ∈
[12◦E, 18◦E]. Projection: Lambert conformal conic,
λ0 = 17◦40′ (Ferro), ϕk = [59◦43’N, 42◦32’E], ϕ1 =
78.5◦N , R = 6, 380, 703.611 m, △X = ∆Y = 0. Two
types of additional shifts were involved: ∆X = 1 m,
∆Y = 2 m and ∆X = 2, 000 m, ∆Y = 15, 000 m. The
interesting fact that the meta pole position [ϕk, λk] may
be compensated by the height of the cone ϕ1 and shifts
∆X,∆Y is mentioned. Many local minima and the lower
reliability of the EFF2 criterion for the NLS method ap-
peared. The overall best results were achieved by the M5
method. While the DE and NM approaches have always
been successful, the least squares solution was slightly
less efficient.

Map 2. “Czech topographic map”, scale 1:10,000, 16
identical points, analyzed area: ϕ ∈ [47◦N, 51◦N ],
λ ∈ [12◦E, 18◦E]. The coordinates were measured from
the digital copy of the map available on-line. Projec-
tion: transverse Mercator, K = [0◦N, 105◦E], zone 33,
△X = 0, ∆Y = 3, 500, 000 m. The determined re-
sults are: ϕk = 0.4◦N, λk = 105.6◦E, ϕ1 = 0.0◦N ,
λ0 = 0.0◦E. In several cases, the convergence to the lo-
cal minimum ϕk = 0.4◦N, λk = 105.6◦E, ϕ1 = 23.2◦N ,
λ0 = 0.0◦E was recognized. The large value of the ∆Y
shift seems to be quite problematic, especially for the M7
method. However, the global minimum is clearly defined
and easy to recognize.

Maps 3 and 4. “Nova Totius Terrarum Orbis Ge-
ographica ac Hydrographica Tabula”, Hendrik Hondius,
1630, Atlantis Maioris Appendix, The Map Collection
of the Charles University, maps of the Eastern and

Western Hemispheres. No solid geometric and geode-
tic bases, probably the graphical method of the con-
struction, 25 identical points, no shifts. For both maps
the stereographic projection in the oblique aspect near
to the transverse aspect has been detected. The de-
termined projection parameters for the Western Hemi-
sphere: ϕk = 2.2◦N , λk = 109.1◦E, ϕ1 = 0.0◦N ,
λ0 = 0.0◦W . The determined parameters for the East-
ern Hemisphere: ϕk = 2.9◦S, λk = 55.2◦W , ϕ1 = 0.0◦N ,
λ0 = 0.0◦W . The M5 method brought the overall best
results, but the improvement is not as visible as in the
previous tests. The estimated parameters were continu-
ously visualized with the step of 2 generations; see Fig.
13. The iteration process for DE and NLS, is shown in
Figs. 14, 10, the reconstructed graticule in Fig. 11.

Map 5. “Novus Orbis sive America Meridionalis et
Septentrionalis.”, Matthäus Seutter, 1730, Map Collec-
tion of the Charles University, 30 identical points, map
of the Western Hemisphere. The determined parameters:
stereographic projection, ϕk = 2.9◦N , λk = 94.4◦W ,
ϕ1 = 0.0◦N , λ0 = 0.0◦W . The oblique aspect, close
to the transverse, was detected. All methods have been
successful. For the generated graticule, see Fig. 12; the
prime meridian relates to Ferro.

Map 6. “Ethnografická mappa ke Slowanským
starožitnostem P. J. Šafařjka”, 1839, Map Collection
of the Charles University, 28 identical points, map of
Europe. The map has a solid geometric basis. The de-
termined parameters are: conical equal area projection,
ϕk = 90.0◦N , λk = 0.0◦E, ϕ1 = 44.6◦N , λ0 = 30.3◦E.
All the methods achieved almost analogous results. How-
ever, in few situations, the M7 method failed.

Map 7. “Africa Concinnata Secundum Observationes
Membror. Acad. Regal. Scientiarum et nonnullorum
aliorum, et juxta recentissimas annotationes”, Guillaume
Delisle, 1675-1726, Map Collection of the Charles Uni-
versity, 28 identical points, continental map. The de-
termined projection parameters are: Bonne projection,
ϕk = 90◦N , λk = 0◦E, ϕ1 = 26.2◦N , λ0 = 21.9◦E. The
M7 method provided worse results; its reliability is about
20% lower.

Map 8. “British Islands”, World Atlas, A. Arrow-
smith, 1817, David Rumsay Map Collection, 29 iden-
tical points, country map. To illustrate the capability
of the algorithm over the smaller territory, the map was
involved in testing. It has a solid geometric basis; the
determined parameters relate to the oblique aspect: or-
thographic projection, ϕk = 42.3◦N , λk = −2.7W ◦E,
ϕ1 = 0.0◦N , λ0 = 0.0◦E. All the methods achieved
analogous results.

There is no clear winner in the presented methods.
Method M7 achieved worse results in most tests. The
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discrepancies between M5, M6, and M7 are clearly no-
ticeable for the large shifts (Map 2). In other cases,
they were not apparent (Map 4). It can be confirmed
that methods M5, and M6, are more robust and efficient;
they require less iterations, and both residuals (RES C,
RES A) are smaller. For the M6 method, the slightly less
accurate determination of parameters R′, ϕk, λk, ϕ1, λ0

is compensated by the rotation α.
Hybrid BFGS brings consistent results in terms of

the reliability, residuals, robustness, convergence, and
amount of iterations. The overall success rate for the
random initialization is over 95%, but it can be further
improved to 98%, if β is decreased (for β = 0.0001). This
behavior is not surprising; BFGS provides the approxi-
mation of the second derivatives. If there is no need for
on-the-fly analysis, both the DE and NM methods, hav-
ing 100% and 99% success rates, may be appropriate.
In all experiments, DE detects the global minimum cor-
rectly. Although DE is more robust than NM, it has a
poor computational time.

Our experiments also illustrate a lower reliability of
the analysis for the transverse/oblique aspects, which is
due to the non-convexity of the problem.

8 Conclusion

This paper brings an overview of 3 new methods M5, M6,
M7 for the estimation of an unknown map projection and
its parameters. Due to the the problematic determina-
tion of the initial values of ∆X,∆Y , especially, if they
are large, the methods M5, and M6 are more efficient
and reliable than M7. Moreover, M6 supports the addi-
tional map rotation. An impact of the analyzed territory
on the results is crucial. Small territories, territories near
the equator, central meridian, or poles, where the projec-

tion footprint is not recognizable, may bring uncertainty
in determining R′, ϕk, λk, ϕ1, λ0, α, the results become
ambiguous.

Several optimizing techniques have been compared.
DE proved to be reliable, but completely inappropriate
for on-the-fly analysis; the computational time is in the
order of tens of minutes. NM brings only slightly worse
reliability, but it is faster; hybrid BFGS is about 5 per-
cent less efficient, but provides the real-time analysis.
Unfortunately, NLS may stuck in the local minimum, but
the difference between the global optimizer is frequently
bellow the graphical accuracy of the map.

The primarily importance is referred to the refine-
ment of the spatial georeference. It may be adopted
by the librarians to acquire the cartographic meta-data
semi-automatically and with a higher degree of relevance
which accelerates the work and saves time, as well as by
cartographers, geographers, or GIS users.

All algorithms have been implemented in the new ver-
sion of the detectproj software (the source code is avail-
able on the github), and in Georeferencer (online tool
for the map analysis).

The author hopes that introduced methods extend
the capabilities of the cartometric analysis, and become
additional research tools for the study of the national
cartographic heritage.
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Figure 13: Stereographic projection in the transverse aspect, the estimation of parameters for the Map 3 using DE;
generations 2, 4, 6, and 8 are shown.
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Figure 14: The convergence of the generated population xg to the global minimum ϕk = 2.9◦S, λk = 55.2◦E (Map
3) of φ(x), every 10-th generation, together with contour lines, are shown.

29



Table 1: Spherical territory shifting over the planisphere, Eckert V projection. The analysis reliability measured
over the grid, 4 distance functions, method M5, and 5 levels of error contamination, are separated by /.

d(P, P ′

x) ϕc/λc

Eckert V projection

0 20 40 60 80 100 120 140 160

RES

(M5)

80 90/82/78/

73/65

91/84/76/

75/72

90/82/77/

73/67

90/80/76/

68/64

90/81/79/

73/64

93/86/74/

72/70

90/86/82/

74/73

87/82/80/

77/75

97/94/86/

75/66

60 81/63/55/

47/37

83/62/54/

49/44

82/69/53/

45/39

82/65/50/

41/36

83/66/54/

36/32

90/77/61/

56/47

87/78/64/

60/54

86/75/71/

64/55

88/76/68/

68/60

40 77/50/41/

34/23

77/62/45/

40/29

79/53/44/

37/27

78/60/48/3

7/31

84/65/49/

37/29

87/71/57/

33/26

89/79/65/

47/27

89/81/71/

62/49

92/86/79/

67/53

20 41/22/17/

16/12

41/29/24/

16/12

51/37/23/

20/20

52/37/31/

25/23

54/41/32/

30/25

58/44/34/

27/23

70/56/43/

29/22

80/61/39/

34/22

90/73/51/

32/27

0 15/18/8/

12/7

23/23/8/

15/12

21/13/24/

15/8

24/19/18/

17/7

33/23/15/

8/9

30/17/16/

19/6

32/23/14/

11/7

38/25/18/

12/10

41/20/19/

14/10

CND

(M5)

80 85/73/69/

67/67

88/77/67/

75/72

89/78/70/

72/74

89/80/75/

74/77

88/82/77/

74/75

90/80/74/

75/76

92/82/77/

76/79

91/79/74/

77/76

93/81/77/

74/71

60 73/43/42/

47/46

86/40/35/

52/48

83/62/42/

49/55

83/52/32/

54/53

82/55/49/

48/52

83/54/37/

54/54

88/60/48/

50/47

86/58/55/

58/49

89/67/55/

60/61

40 73/39/25/

26/33

80/48/18/

35/33

80/48/23/

34/35

74/53/18/

32/31

79/49/28/

36/39

84/52/31/

38/40

84/57/31/

54/47

84/62/46/

54/57

86/68/46/

51/55

20 47/24/18/

23/19

59/34/11/

22/30

60/43/17/

26/26

63/43/16/

27/28

68/44/18/

34/29

70/51/19/

36/30

74/54/27/

38/37

77/64/28/

41/35

77/65/34/

45/47

0 35/31/14/

17/22

39/38/12/

18/24

36/24/19/

24/25

41/37/22/

16/27

45/34/21/

13/27

42/29/13/

21/27

47/27/16/

18/33

54/35/19/

21/30

54/28/18/

21/27

GTF

(M5)

80 56/15/3/

3/0

89/29/13/

5/5

98/47/18/

8/4

95/49/21/

2/4

96/44/30/

11/8

96/49/30/

14/2

96/53/27/

13/3

95/54/29/

13/8

93/51/23/

10/5

60 33/18/4/

3/2

89/45/16/

5/1

95/58/21/

10/6

98/67/25/

14/5

98/70/26/

13/5

97/63/37/

14/6

96/69/33/

11/9

97/67/34/

14/8

99/67/39/

15/14

40 33/17/9/

7/2

85/45/18/

5/2

94/62/22/

11/3

94/74/27/

14/5

94/75/33/

11/7

96/68/34/

16/8

96/72/46/

17/12

96/72/32/

22/9

98/77/43/

32/11

20 29/21/14/

5/1

73/42/17/

6/2

91/55/28/

10/5

95/70/25/

8/5

96/74/31/

13/8

99/75/40/

18/4

95/76/39/

19/7

100/81/31/

17/11

98/78/49/

23/8

0 36/29/11/

4/5

55/37/18/

7/6

64/53/16/

10/5

68/55/23/

20/5

73/48/27/

2/4

78/47/22/

13/5

76/45/12/

4/2

75/43/14/

4/5

77/37/15/

3/2

VFTF

(M5)

80 74/40/13/

7/5

91/40/20/

6/8

83/39/18/

5/4

67/24/9/

2/3

90/40/24/

9/7

88/40/29/

13/2

85/39/22/

9/2

88/48/28/

14/8

90/43/20/

8/5

60 58/66/34/

13/9

88/60/31/

11/4

92/57/26/

17/9

95/62/25/

13/6

92/53/18/

11/6

87/47/28/

14/6

93/55/26/

8/10

89/41/25/

10/7

93/42/27/

10/11

40 48/51/28/

16/3

79/33/22/

7/1

95/62/30/

16/3

95/60/27/

15/7

96/71/32/

13/8

97/61/28/

13/10

96/63/41/

14/14

93/55/20/

15/8

96/68/37/

25/11

20 40/26/24/

12/3

52/23/12/

5/3

85/34/21/1

1/7

95/57/24/

9/6

97/69/31/

13/10

99/71/42/

21/6

96/78/43/

22/9

100/82/32/

18/14

98/74/51/

27/10

0 35/16/11/

11/7

42/9/11/

3/2

66/27/8/

7/3

66/41/17/

16/6

78/48/25/

2/4

80/48/20/

13/7

80/50/13/

5/2

84/48/15/

5/5

82/41/16/

3/2
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Figure 15: Eckert V projection, contour lines of the analysis reliability, RES distance function.
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Figure 16: Eckert V projection, contour lines of the analysis reliability, VFTF distance function.
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Table 2: Results of 300 tests for Maps 1-8, a comparison of methods M5-M7 and 3 optimizing techniques (NLS,
DE, NM).

Map ∆X[m] ∆Y [m] Method Optimiz. EFF1 EFF2 N IT RES C RES A TIME

1

1 2

M7 NLS 96 12 8905 3.23 · 10−4 3.68 · 10−1 697

M6 NLS 94 14 4890 1.78 · 10−4 2.80 · 10−1 518

M5

NLS 99 24 4276 8.96 · 10−5 4.91 · 10−3 279

DE 100 7 56005 8.78 · 10−4 8.78 · 10−4 23838

NM 97 7 59587 1.01 · 10−4 1.16 · 10−4 1661

2000 15000

M7 NLS 95 3 9387 8.35 · 101 2.42 · 106 1561

M6 NLS 88 8 13499 7.32 · 101 6.32 · 106 1352

M5

NLS 95 48 14422 8.41 · 101 3.25 · 106 1324

DE 100 35 268852 8.53 · 101 8.53 · 101 114568

NM 99 15 11845 9.60 · 101 9.86 · 101 3798

2 0 3500000

M7 NLS 64 64 5698 1.76 · 106 1.98 · 1016 403

M6 NLS 89 70 4470 2.89 · 108 6.01 · 1012 556

M5

NLS 95 95 2944 2.59 · 106 3.02 · 1012 168

DE 100 100 103700 2.74 · 106 2.74 · 106 39280

NM 97 97 16393 2.68 · 106 1.05 · 1012 3551

3E 0 0

M7 NLS 91 91 2107 2.46 · 10−1 4.52 · 100 168

M6 NLS 95 95 2261 7.54 · 10−1 1.63 · 100 188

M5

NLS 94 94 1964 2.56 · 10−1 2.87 · 100 154

DE 100 100 10864 7.68 · 10−1 7.68 · 10−1 13517

NM 100 100 40860 6.67 · 10−1 6.67 · 10−1 1157

4W 0 0

M7 NLS 88 88 2357 3.31 · 10−1 3.84 · 100 232

M6 NLS 91 91 2700 6.64 · 10−1 9.04 · 100 259

M5

NLS 96 96 2062 3.63 · 10−1 1.69 · 100 187

DE 100 100 11474 6.06 · 10−1 6.06 · 10−1 14775

NM 100 100 52018 9.22 · 10−1 9.22 · 10−1 1722

5 0 0

M7 NLS 100 100 3007 8.89 · 10−1 8.89 · 10−1 325

M6 NLS 99 99 2482 8.84 · 10−1 1.08 · 100 312

M5

NLS 100 100 2400 8.89 · 10−1 8.89 · 10−1 273

DE 100 100 11376 8.89 · 10−1 8.89 · 10−1 19868

NM 100 100 51137 2.18 · 100 2.18 · 100 2255

6 0 0

M7 NLS 97 97 1932 1.83 · 10−1 2.07 · 102 350

M6 NLS 100 100 1424 1.88 · 10−1 1.88 · 10−1 210

M5

NLS 100 100 1610 1.88 · 10−1 1.88 · 10−1 263

DE 100 100 20992 3.77 · 10−1 3.77 · 10−1 21460

NM 100 100 35399 4.61 · 10−1 4.61 · 10−1 2413

7 0 0

M7 NLS 82 82 2101 6.72 · 10−1 9.78 · 101 355

M6 NLS 100 100 1595 6.08 · 10−1 6.08 · 10−1 227

M5

NLS 100 100 1664 7.10 · 10−1 7.10 · 10−1 247

DE 100 100 20563 1.41 · 100 1.41 · 100 23165

NM 100 100 33352 7.31 · 10−1 7.31 · 10−1 1160

8 0 0

M7 NLS 100 100 1814 2.62 · 10−1 2.62 · 10−1 251

M6 NLS 100 100 1265 4.49 · 10−1 4.49 · 10−1 208

M5

NLS 100 100 1736 2.62 · 10−1 2.62 · 10−1 234

DE 100 100 46278 2.61 · 10−1 2.61 · 10−1 40468

NM 99 99 49071 2.97 · 10−1 3.88 · 10−1 3990
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