The Mendel Formation: Evidence for Late Miocene climatic cyclicity at the northern tip of the Antarctic Peninsula

Daniel Nývtla,⁎ Jan Košler, Bedřich Mlčoch, Petr Mixa, Lenka Lisá, Miroslav Bubík, Bart W.H. Hendriks

A R T I C L E I N F O

Article history:
Received 31 May 2010
Received in revised form 9 November 2010
Accepted 13 November 2010
Available online 19 November 2010

Keywords:
Antarctic Peninsula
James Ross Island
Miocene
Climatic cyclicity
Diamictites
Quartz microtextures
Micropaleontology
40Ar/39Ar dating
James Ross Island Volcanic Group
Paleoenvironment

A B S T R A C T

A detailed description of the newly defined Mendel Formation is presented. This Late Miocene (5.9–5.4 Ma) sedimentary sequence with an overall thickness of more than 80 m comprises cyclothem deposition in terrestrial glacigenic, glaciomarine and marine environments. Subglacial till was deposited by a thick grounded Antarctic Peninsula ice stream advancing eastwards through the Prince Gustav Channel, crossing the northernmost part of present-day James Ross Island, with most of the material carried actively at the base of the warm-based glacier. The form of the Prince Gustav Channel originated before the Late Miocene and its present glacial over-deepening resulted in multiple grounded glacier advances during the Neogene and Quaternary. The sea prograded from the east and the glacier margin became buoyant, building a small ice shelf, below and in front of which glaciomarine and marine sediments were deposited. These sedimentary deposits are composed of material that was transported mostly by small glaciers and subsequently by the floating ice shelf and by calving icebergs towards the open sea. These environmental and glaciological conditions differ strongly from the present cold-based local glaciers of James Ross Island and the Antarctic Peninsula. These changes were triggered by the global sea level fluctuation connected with climatic changes due to Antarctic ice sheet build up and decay. This reveals Late Miocene obliquity-driven cyclicity with a ~41 ka period. The Mendel Formation sedimentary sequence is comprised of at least two glacial periods and one interglacial period. Sea level rise at the northern tip of the Antarctic Peninsula between glacial lowstand and interglacial highstand was more than 50 m during the late Miocene and was followed by a subsequent sea level fall of at least the same magnitude. The presence of well-preserved, articulated pectinid bivalves support “interglacial” open sea conditions. The re-deposition of palaeontological material was shown to be important for the Mendel Formation. Reworked pectinid shells revealed an open marine “interglacial” condition in this part of the Antarctic Peninsula during the Early to Mid Miocene (20.5–17.5 Ma). Unfortunately, relevant sedimentary deposits have not been found on land.

⁎ Corresponding author. Tel.: +420 543429265; fax: +420 543212370.
E-mail address: daniel.nyvtla@geology.cz (D. Nývtla).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Neogene glacialic and glaciomarine deposits have been found in several places in Antarctica during the last few decades. Different glacial lithostratigraphic units are known from East Antarctica, including the Sirius Group in the Transantarctic Mts. (e.g. Hambrey et al., 2003; Stroeven, 1997; Webb et al., 1996; Wilson et al., 1998), the Sørsdal Formation in Vestfold Hills (e.g. Harwood et al., 2000; Quilty et al., 2000), Pliocene sedimentary deposits in Heidemann Valley (Colhoun et al., 2010), the Pagodroma Formation in the Prince Charles Mts. (e.g. Hambrey and Mc Kelvey, 2000; Mc Kelvey et al., 2001), the unnamed glaciogenic succession in the Grove Mts. (Fang et al., 2005), and many others.

Initial Antarctic glaciation during the Oligocene was astronomically controlled (Päälike et al., 2006), and Oligocene glacialic deposits in the West Antarctic are known from the northernmost part of the Antarctic Peninsula (AP). The oldest glacialic sedimentary deposits are at the top of the La Meseta Formation on Seymour Island (Ivany et al., 2004, 2006) and are dated to the Oi-1 glaciation event (Päälike et al., 2006) – close to the Eocene/Oligocene transition (~34 Ma), however these results are disputed by others, as the dated palaeontological material may be reworked to much younger deposits (Gądzicki et al., 2004; Marensi et al., 2010). Other Oligocene glacialic sequences are known from King George Island as the Polonez Cove and Cape Melville
Formations: ~30 Ma and ~23 Ma (Birkenmajer, 1982; Birkenmajer and Gażdicki, 1986; Birkenmajer et al., 1991; Dingle et al., 1997; Troedson and Smellie, 2002). They correlate with galcial events of the uppermost Oligocene witnessed by $\delta^{18}O$ values from carbonates in ODP leg 199 in the equatorial Pacific (Pâlîke et al., 2006). Several younger glacial/interglacial sedimentary sequences occur below and within the James Ross Island Volcanic Group (JRIVG) in the James Ross Basin, namely on Seymour Island (e.g. Doktor et al., 1988; Gażdicki et al., 2004; Malagnino et al., 1981; Zinsmeister and de Vries, 1983); Cockburn Island (e.g. Andersson, 1906; Gażdicki and Webb, 1996; Hennig, 1911; Jonkers, 1998a; McArthur et al., 2006; Williams et al., 2010); Vega Island (e.g. Hambrey and Smellie, 2006; Lirio et al., 2007; Pirrie et al., 1991; Smellie et al., 2006, 2008); Tall Island (Pirrie and Sykes, 1987); and on James Ross Island (Andersson, 1906; Bibby, 1966; Carrizo et al., 1998; Clark et al., 2010; Concheyro et al., 2005, 2007; del Valle et al., 1987; Dingle and Lavelle, 1998; Hambrey and Smellie, 2006; Hambrey et al., 2008; Jonkers et al., 2002; Lirio and del Valle, 1997; Lirio et al., 2003; Marenssi et al., 1987; Nelson, 1966; Nelson et al., 2009; Nordenskjöld, 1905; Pirrie et al., 1997; Smellie et al., 2006, 2008; Strelin et al., 1997).

The Cenozoic sedimentary successions around Antarctica allow the reconstruction of palaeoenvironmental and palaeogeographical conditions in the terrestrial and surrounding oceans. These reconstructions are crucial not only for understanding climatic changes connected with advances and retreats of the East and West Antarctic ice sheets, but they are also important for modelling future climatic change in the Antarctic.

This paper aims to be a detailed multidisciplinary study of an extensive and thick sedimentary deposit in the Ulu Peninsula, on the northernmost part of James Ross Island (JRI). The stratigraphical, sedimentological, palaeontological, and age dating results from this region allow reconstruction of the palaeoenvironment and palaeoclimate for this part of JRI in a short time interval in the latest Miocene.

2. Timing of glaciogenic and glacimarine sedimentary units associated with the James Ross Island Volcanic Group on James Ross Island

Sedimentary deposits found in association with volcanic rocks of the JRIVG on JRI fall into different age intervals of the Neogene and Quaternary. The age of these units was determined mostly by 87Sr/86Sr dating, supported by a detailed evaluation of the sedimentary environment and/or by 40Ar/39Ar dating of associated lavas. It will be demonstrated that shell reworking is an important factor in the interpretation of Sr isotopic ages in the Mendel Formation.

3. Field sites and methods

3.1. Sedimentary field and laboratory methods

The sites investigated in this study lie in the northernmost part of the Ulu Peninsula, between Cape Lachman, Berry Hill and the Czech Antarctic Johann Gregor Mendel Base (Fig. 1). Six sections of the 13 natural exposures (see Fig. 1 for localities), with individual thicknesses between 6 and 20 m, have been studied using standard sedimentological analyses, such as lithofacies logging, textural, fabric, palaeoelof and striation measurements. Sedimentary units were sampled for sedimentary petrological analyses, such as clast shape and roundness, surface features, and statistical and microscopic analyses. Visible macrofossils and samples for microfossil analyses have also been collected together with the underlying volcanic rocks.

Facies analyses have been undertaken using the lithofacies designations for glacial and poorly sorted sediments modified for Antarctic glaciogenic and glacimarine sediments by M. Hambrey (Benn and Evans, 1998; Hambrey, 1994; Hambrey and McKelvey, 2000; Moncrieff, 1989). Geographic north values of clast fabric and palaeoelof measurements were used throughout this study. Three dimensional clast fabric analyses were undertaken on terrestrial glaciogenic units, measuring 25 elongated pebbles for each sample to distinguish individual subglacial till types (Benn, 1994; Lawson, 1979). The evaluation of clast shape is based on the Benn and Ballantyne (1993) modification of the Sneed and Folk (1958) equilateral ternary diagram and was undertaken on 25 basalt pebbles for each sample. All ternary diagrams were plotted using the spreadsheet program of Graham and Midgley (2000). The C$_{00}$ index gives the percentage of clasts with a c:a ratio of \sim0.4 (Ballantyne, 1982). Clast roundness is based on the discrimination into the six main groups of Powers (1953). The RA index is defined as the percentage of very angular and angular clasts; the arbitrary threshold value for Krumbein’s visual roundness of 0.25 has been adopted in this study. Overall clast form is expressed in covariant plots of the C$_{00}$ index versus RA index (Benn and Ballantyne, 1994).

Surface features (striae, facets, chatter marks or bullet-shapes) were also recorded. Macroscopic petrological analyses were undertaken for some units. Different petrologies have also been studied microscopically.

3.2. Quartz microtextures

The 0.25–0.5 mm fraction was separated for study of microtextures of quartz sand grains from diverse environments. The fraction was boiled for 20 min in 1% hydrochloric acid to remove calcium.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Mean 87Sr/86Sr</th>
<th>Error (+/-)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabot Point</td>
<td>0.70893</td>
<td>9.9</td>
<td>0.97/0.97</td>
</tr>
<tr>
<td>Fjordu Belén</td>
<td>(not given)</td>
<td>6.8</td>
<td>1.3/0.5</td>
</tr>
<tr>
<td>Eastern Forster Cliffs</td>
<td>0.708971</td>
<td>6.45</td>
<td>0.31/0.21</td>
</tr>
<tr>
<td>Rockfall Valley – Stoneley Point</td>
<td>0.708977</td>
<td>6.31</td>
<td>0.32/0.14</td>
</tr>
<tr>
<td>Rhinoa Cliffs</td>
<td>0.709007</td>
<td>5.77</td>
<td>0.23/0.30</td>
</tr>
<tr>
<td>Jonkers Mesa – Pecten Spur</td>
<td>0.709022</td>
<td>5.40</td>
<td>0.20/0.27</td>
</tr>
<tr>
<td>Forster Cliffs</td>
<td>0.709034</td>
<td>5.06</td>
<td>0.35/0.41</td>
</tr>
<tr>
<td>Eastern Forster Cliffs</td>
<td>0.709038</td>
<td>4.93</td>
<td>0.35/0.51</td>
</tr>
<tr>
<td>Rancheria Hill</td>
<td>0.709039</td>
<td>4.89</td>
<td>0.35/0.53</td>
</tr>
<tr>
<td>Cape Gage</td>
<td>0.709043</td>
<td>4.74</td>
<td>0.32/0.63</td>
</tr>
<tr>
<td>Forster Cliffs</td>
<td>0.709051</td>
<td>4.23</td>
<td>0.51/0.95</td>
</tr>
<tr>
<td>SW Croft Bay</td>
<td>0.709069</td>
<td>2.54</td>
<td>0.86/0.36</td>
</tr>
<tr>
<td>Terrapin Hill</td>
<td>(Not given)</td>
<td>1.95</td>
<td>1.12/0.52</td>
</tr>
</tbody>
</table>
carbonate, iron staining and adhering particles, and then washed in distilled water. Dilute sodium hexametaphosphate (calgon solution) was then added for shaking. The suspension was then boiled in a stannous chloride solution to remove any iron oxide coatings. Approximately 30–50 grains were randomly picked, mounted on double sided graphite adhesive fixed to aluminium specimen stubs for SEM viewing and gold-coated. SEM photographs were made for further interpretations. All morphological, mechanical and chemical features were noted and described according to the propositions of Bull (1986), Helland et al. (1997) and Fuller and Murray (2002).

3.3. 40Ar/39Ar dating

Irradiation for argon dating was undertaken at the McMaster Nuclear Reactor Facility, Hamilton, Canada. The samples at McMaster were irradiated for 16 h 50 m (50 MWH) with a nominal neutron flux of 4×10^{13} n cm$^{-2}$ s$^{-1}$. The nominal temperature of the irradiation site is 50 °C (M. Butler, pers. comm.). The production of isotopes of Ca and K was determined by irradiation of CaF and K$_2$SO$_4$ salts, giving values of $^{36/37}$Ca = 0.000298, $^{39/37}$Ca = 0.000702 and $^{40/39}$K = 0.0267, respectively. The samples were analysed at the 40Ar/39Ar Geochronology Laboratory at the Norwegian Geological Survey. Gas released during ablation was cleaned in the extraction line for 11 min using two pairs of SAES AP-10 getters, mounted in isolated sections of the line, each maintained with its own vacuum pump. The purified gas was then analysed in an MAP 215-50 mass spectrometer. The data for blanks, monitors and unknowns were collected on a Johnson electron multiplier with a gain setting of 1, while the magnet was automatically scanned over masses 35 through 41 in a cycled ‘peak-hop’ mode. Masses 37 through 40 were each measured in eight cycles and 10 counts per mass per cycle; mass 36 was measured with 20 counts per cycle. Sample data were corrected for blanks prior to being reduced with the IAAA (Interactive Ar–Ar Analysis) software package (Visual Basic programming for PC Windows) written by T.H. Torsvik and N.O. Arnaud and based in part on equations from Steiger and Jäger (1977), Dalrymple et al. (1981) and McDougall and Harrison (1999). Data...
reduction in IAAA incorporates corrections for interfering isotopes, mass discrimination (measured with an air pipette; 287.5), error in blanks and decay of \(^{37}\text{Ar}\).

3.4. \(^{87}\text{Sr}/^{86}\text{Sr} dating

The pecten shells were repeatedly cleaned in an ultrasonic bath in DI water and visually checked under the microscope for potential surface contamination. The Sr isotopes in the pulverised shells (~100 mg) were measured in a Finnigan 262 mass-spectrometer at the Department of Earth Science, University of Bergen. Chemical processing was carried out in a clean-room environment, using reagents purified in two-bottle Teflon stills. Samples were dissolved in 3 N \(\text{HNO}_3\) and Sr was separated by specific extraction chromatography using an Eichron Sr-Spec resin. Sr samples were loaded on a double Re-filament and analysed in static mode. The \(^{87}\text{Sr}/^{86}\text{Sr} isotopic ratios were corrected for mass fractionation using a \(^{88}\text{Sr}/^{86}\text{Sr} ratio of 0.1195. Repeated measurements of the NBS-987 standard in the course of this study gave an average \(^{87}\text{Sr}/^{86}\text{Sr} value of 0.710240 with an analytical uncertainty of ±0.000019 (2 sigma). Ages derived from
the isotopic composition of Sr in the pecten shells were calculated using the LOWESS 3:10 curve for Sr isotopic evolution in sea water (McArthur et al., 2001).

3.5. Micropalaeontology

Samples for micropalaeontology were processed by standard laboratory methods. More lithified samples were crushed using hydraulic press, soaked with a sodium bicarbonate solution, and finally washed on a 0.063 mm sieve. Microfossils were picked under a binocular microscope. The picked amount of residue exceeded 40 g per sample. All samples were extremely poor in microfossils and organic remnants.

4. Lithofacies description and interpretation

The interpretations are based on the lithofacies designation for Antarctic poorly sorted glacial sedimentary deposits (Benn and Evans, 1998; Hambrey, 1994; Hambrey and McKelvey, 2000), and six lithofacially different sediment types were defined. Lithofacies description is complemented by clast fabric, palaeoflow and striation measurements, microtextures of quartz sand grains and other sedimentary petrological methods (e.g. clast shape, roundness and surface features of gravels). Individual facies types present in the Mendel Formation are described below and in Figs. 2–7 and photographically illustrated in Fig. 8. The interpretation of the depositional environment is based on the lithofacies description and the evaluation of the sedimentary petrological data. Overall microtextural features are given in Fig. 9. SEM microphotographs of typical features are shown in Fig. 10. 3-D measurements of the fabric of clasts from terrestrial subglacial till units were plotted on contoured stereonets and a ternary diagram of their fabric shape using the method proposed by Benn (1994) is given in Fig. 11. A covariant plot of clast shape and roundness indices is given in Fig. 12.

4.1. Terrestrial sediments

4.1.1. Lodgement till

Lodgement till is the most common type of terrestrial sedimentary rocks found in the Mendel Formation; it was documented at the PC04-1, PC05-3, PC05-4, PC05-5, PC05-6, PC05-7 and PC05-8 sections. It is typically a massive or sometimes weakly stratified, matrix-supported, clast-rich, intermediate to sandy diamictite, occasionally with lenses of stratified sandy diamictites (Dmm, Dmws) and common striated clasts up to 1 m or more, and high amounts of erratic rocks (see Fig. 8B and D). The thickness of individual lodgement tills ranges from 3 to 7 m. They usually contain 30–50% of gravel clasts and 30–40% of them are striated (see Fig. 8E). Typically 90–95% of the gravel clasts are local (JRIVG) basalts, the rest is composed of local Cretaceous sandstone, siltstone or conglomerate and erratic phyllite, gneiss, or granitoid derived from the AP (see detailed petrographic descriptions of erratic rocks below). The relative volume of erratics varies between 1 and 5%. Most of the gravel clasts are subangular to subrounded (~80%); only ~12% of them are rounded. Basalt gravel clasts typically have...
intermediate to high values of general sphericity (c/a values between 0.4 and 0.7) with slight rod affinity and C40 indices of only 4–12% (see the individual lodgement tills in Figs. 2–7). The preferred orientation of the clast fabric is mostly medium, with S1 eigenvalues being 0.55–0.58 indicating a girdle to cluster clast fabric (see Fig. 11). The main eigenvector (V1) dips towards the W (275°–295°), and the second most significant eigenvector (V2) is perpendicular to the main one dipping towards the S (185°–201°). Some lodgement tills (units PC05-6/5, PC05-8/1) contain reworked fragments of pectinid shells, which have been used for strontium dating (see the dating results below). Lodgement tills have mostly sharp erosional bases with clast pavements above fine-grained sediments, but they can also grade gradually from underlying melt-out tills and can also bear evidences of melt-out processes and lenses of stratified sands or sandy diamictites.

Quartz grains in the sand fraction are mainly subangular to subrounded (Fig. 10.1). Rounded and angular grains are less common or sometimes almost absent. The relief of the grains is predominantly medium; less common is high relief and the presence of low relief is limited. Mechanical features are represented mainly by edge abrasion (Fig. 10.4), dish-shaped concavities (Fig. 10.1), straight steps and grooves (Fig. 10.4), large breakage (Fig. 10.4) and imbricated blocks (Fig. 10.1) or upturned or broken plates. Conchoidal fractures (Fig. 10.4) are less common and arcuate steps, striations, meandering ridges, V-shaped pits and curved grooves are absent or very rare. Chemical features are typical for medium to strong post-sedimentary weathering conditions. Extensive silica precipitation and grains with adhering particles (Fig. 10.2) are usually present. Solution pits and chemical V-shaped pits are rather rare or absent.

4.1.2. Subglacial melt-out till

A subglacial melt-out till was found to be the lowermost member of the Mendel Formation (unit PC05-3/2, PC05-4/2, PC05-6/1); it was also documented at the PC05-8 section. It is a well-stratified, matrix-supported, clast-rich, sandy diamictite (Dms), with ~20–25% gravel clasts and typical thicknesses of 1–3 m. Well-sorted sand lenses are common in subglacial melt-out tills. The lower boundary could be erosional (at the PC05-3 section above the pillow lava, see Fig. 8A), but sometimes also gradational, sometimes with striated clasts paves on the bottom surface due to the melt-out of finer particles from...
underlying units. The matrix of subglacial melt-out till is typically sandier and contains lower amounts of gravel clasts and less erratic rocks, than the overlying corresponding lodgement till. Flow structures are common as are lenses of well-sorted medium- to coarse-grained sands up to 10 cm thick, which can in certain places (unit PC05-6/2) grade to subglacial glaciolfluvial sands. The preferred orientation of the clast fabric is stronger than the lodgement tills, with S1 eigenvalues of 0.67–0.68 indicating clustered clast fabric (see Fig. 11). The main eigenvector (V1) dips towards the W (295°), or to the S (189°), with the second most significant eigenvector (V2) being perpendicular to the main one dipping towards the S (203°), or to the W (279°). Shell fragments reworked from older distal glaciomarine or marine sediments were found in unit PC05-6/1.

Subangular outlines of quartz grains in the medium sand fraction are most common in the subglacial melt-out till; subrounded and angular outlines are also quite common, but rounded grains are rare or absent. The relief of grains is mostly medium or rounded and angular outlines are also quite common, but rounded clasts are more common than angular ones. Basalt gravel clasts typically have intermediate to high values of general sphericity (c/a values between 0.4 and 0.7) with intermediate or slight rod affinity and C40 indices of 0–8%. JRIVG basalts dominate the clast lithology. The proportion of striated clasts (≥25%) is lower than in subglacial tills. The shapes of gravel clasts are similar to those of the clasts from subglacial tills, with mostly subangular to subrounded outlines and intermediate to high general sphericity. Nearly complete, sometimes articulated and well-preserved shells of Austrochlamys anderssoni were found in glaciomarine debris-flow units, suggesting their short transport distance.

4.2. Marine sediments

4.2.1. Glaciomarine debris-flow

Glaciomarine debris-flows are represented by massive clast-rich sandy to intermediate diamictites (Dmm) at the PC05-2 section. Unit PC05-2/10 has a sharp undulated basal contact with underlying sandy sediments (see Fig. 8F), fining upwards and ploughing by larger boulders through the unit was documented. They probably represent displaced proximal glaciomarine diamictites or even subglacial tills emplaced by slumping or debris flows. The glaciomarine debris-flows are ~1.3 m thick and contain only 15–20% gravel clasts. JRIVG basalt clasts dominate the clast lithology. The proportion of striated clasts (≥25%) is lower than in subglacial tills. The shapes of gravel clasts are very similar to those of the clasts from subglacial tills, with mostly subangular to subrounded outlines and intermediate to high general sphericity. Nearly complete, sometimes articulated and well-preserved shells of Austrochlamys anderssoni were found in glaciomarine debris-flow units, suggesting their short transport distance.

4.2.2. Proximal to intermediate glaciomarine diamictite to waterlain till

Glaciomarine diamictite is the most common marine sediment in the Mendel Formation and was found in the PC04-1, PC04-2, PC05-1, PC05-2, PC05-9 and PC05-10 sections (see Fig. 8H). It is composed of massive or weakly stratified, clast-rich, sandy to intermediate diamictites (Dmm, Dmsw) with the thicknesses between 1 and >7 m. They consist of 20–35% gravel clasts with erratic clasts between 3 and 6%. They consist of 20–35% gravel clasts with erratic clasts between 3 and 6%, 20–30% of striated clasts is present in glaciomarine diamictite. Most of the gravel clasts are subangular to subrounded (80–90%) – rounded clasts are more common than angular ones. Basalt gravel clasts typically have intermediate to high values of general sphericity (c/a values between 0.4 and 0.7) with intermediate or slight rod affinity and C40 indices of 0–8% (see the individual glaciomarine diamictites in Figs. 2–7). They are mostly homogeneous, but also show signs of cm-scale bedding. The base is mostly sharp and undulated and the material fines upward, the upper boundary being gradational. Cm-scale dropstones are located in the topmost 10 cm of the underlying laminated siltstones and sandstones. Silty drapes occur over some flat gravel clasts. Glaciomarine diamictites also commonly

Fig. 7. Sedimentary log with description and interpretation of depositional environment at the PC05-8 section of the Mendel Formation close to Mendel Base. For abbreviations and further explanation see Fig. 2.
bear traces of reworking by sliding or slumping. They cannot always be differentiated from subaqueous glacigenic (waterlain) tills.

Quartz sand grains have mainly subangular and angular outlines with predominant medium relief. Mechanical features are mainly edge abrasion, imbricated blocks (Fig. 10.5), large breakages and conchoidal fractures (Fig. 10.3 and 10.5). Other features present are different types of steps, grooves (Fig. 10.7) and ridges. Some older features such as different steps and V-shaped pits (Fig. 10.5 and 10.7) are covered by a new generation of mechanical features (Fig. 10.3). All these features are typical of glacial environments; however, very abundant pitting, typical for marine environments, is present on the surface of some grains.

4.2.3. Tuffaceous horizontally laminated sandstone to siltstone

Horizontally laminated coarse- to fine-grained sandstones or coarse-grained siltstones (SI, SI), partly rhythmically bedded, comprise a
Fig. 9. Different quartz microtextures throughout the samples from different environmental settings of the Mendel Formation: those from terrestrial glacigenic sedimentary deposits in the upper part; and glaciofluvial, glacian marine and marine sedimentary deposits in the lower part.
Typical microtextures of quartz grains of the Mendel Formation. 1. Subrounded quartz grain with high relief from lodgement till with traces of melt-out processes; PC05-8/1; A – large breakage; B – upturned plates; C – subrounded outline; D – dish shaped concavity; E – straight step; F – imbricated block. 2. Angular quartz grain with medium relief from lodgement till with traces of melt-out processes; PC05-8/1; A – solution and chemical V-shaped pits; B – edge abrasion; C – adhering particles. 3. Subrounded quartz grain with medium relief from proximal glaciomarine sediment with slumping traces; PC04-1/4; A – V-shaped pits; B – large breakage; C – old conchoidal texture; D – imbricated blocks; E – adhering particles. 4. Subangular quartz grain with high relief and distinct phases of glacial transport from lodgement till with traces of melt-out processes; PC05-8/1; A – straight grooves and meandering ridges from the first glacial transport phase, filled by post-depositional limited silica precipitation; B – fresh small conchoidal fracture; C – edge abrasion; D – large breakage. 5. Subrounded quartz grain with medium relief from proximal glaciomarine sediment with slumping traces; PC04-1/4; A – conchoidal fracture; B – V-shaped pits and solution steps; C – imbricated blocks; D – straight step. 6. Subangular grain with medium relief from laminated pro-delta sediment; PC04-1/5; A – chemical V-shaped pits; B – edge abrasion; C – subangular outline; D – imbricated block. 7. Subrounded originally fluvial quartz grain crushed by glacial grinding from proximal glaciomarine sediment with slumping traces; PC04-1/4; A – sharp edge; B – small conchoidal fracture; C – large breakage; D – V-shaped pits; E – straight grooves; F – curved grooves. 8. Subrounded grain with medium relief from subglacial melt-out till; PC05-3/2; A – V-shaped pits; B – curved grooves; C – large breakage. White line at left bottom of each figure is 0.2 mm long.

Fabric shape of clasts from terrestrial subglacial till units of the Mendel Formation based on Benn’s ternary diagram, compared with subglacial glacigenic deposits of Hambrey et al. (2008) and glacigenic debris flows of Nelson et al. (2009) from James Ross and Vega Islands.
significant part of the Mendel Formation (see Fig. 8C and G). They can be more than 5 m thick, with a gradational base and coarsening upward with common dropstones in the topmost 10 cm of each layer, but scarce in their distribution throughout. The top surfaces are sometimes erosional. Rhythmically bedded units (PC04-2/2 and PC04-2/4) contain laminae 1–10 cm thick, commonly 2–3 cm (see Fig. 8G). They are commonly planar-laminated, sometimes wavy or lacer-bedded, occasionally with loading structures. These tuffaceous laminites are composed mostly of sand and silt grains of quartz and basalt fragments, lower proportions of plagioclase, microcline, amphibole, clinopyroxene, epidote, palagonite glass, and some quartzite, olivine and mudstone with carbonate cement and small fragments of fossils indicating a dominant source in local Cretaceous sediments and Neogene basalts.

Morphological features on quartz grains of horizontally laminated sandstone and siltstone are represented mainly by subangular and angular outlines with medium to high relief, with some subrounded quartz grains. Mechanical features are poorly preserved and are mainly edge abrasion, imbricated blocks (Fig. 10.6) and large breakages. Conchoidal fractures are present but very badly preserved. Other features present are different types of steps, grooves, ridges and mechanical V-shaped pits (Fig. 10.6). The present mechanical and morphological features indicate previous glacial transport; the impact of the marine environment on the grain microtextures is limited. The most common and well preserved are chemical textural features such as chemical pitting and euhedral crystal overgrowths. Chemical solution, precipitation and adhering particles are present as well.

4.3. Lithofacies interpretation

The relative proportions of the different lithofacies have been calculated for the documented sections. The depositional sequence described here is composed mostly of massive to less stratified diamictites (nearly 76%). The sandy to silty lithofacies (Sp, Sl, Fh, Sh and Sr) are more important only in the middle part of the succession, representing 24% of the documented thickness. The individual lithofacies are interpreted in Figs. 2–7 and described above. The most common type of sedimentary deposits is lodgement till, partly with traces of melt-out processes (35%) and proximal to intermediate glaciomarine diamictites and waterlain till (33%). Horizontally laminated sandstone also forms a significant part (23%) of the succession. The other three sedimentary types (glaciomarine debris-flows, glaciofluvial sand and subglacial melt-out till) are less common and they account together for less than 10% of the succession. Sediments deposited in the marine environment prevail slightly (50%) over terrestrial deposits (41%). The overall sedimentary thickness of the whole succession of the Mendel Formation exceeds 80 m.

Diamictite units contain 15–50% of gravel clasts; there is a slight difference in clast content between individual lithofacies. A higher proportion occurs in subglacial terrestrial facies, where there are 25–50% gravel clasts, with the average ~35%. Typically massive lodgement tills contain more gravel clasts than stratified subglacial melt-out tills. The proportion of gravel clasts in subaqueous diamictites is mostly 15–40%, with the average ~25%. The proportion of erratic gravels in diamictite units is mostly 1–6%, with an average of 4%. Clasts are mostly subangular to subrounded, always with more rounded clasts than angular ones. Striated clasts are more common in terrestrial glaciogenic sediments (30–45%) than in subaqueous diamictites (20–30%). The fabric shape in subglacial melt-out tills is rather high, with S1 eigenvalues ~0.68 and moderate in lodgement tills with S1 eigenvalues in the range 0.55–0.58 (see Fig. 11). The preferred orientation of clasts has been documented, especially for subglacial melt-out tills, where clast fabric shapes with an almost cluster pattern occur. Lodgement tills have girdle to cluster fabric shapes. All of the documented diamictic facies show very low C40 and RA indices; nevertheless, terrestrial subglacial tills have slightly higher values (see Fig. 12).

A rather high proportion of arcuate and straight steps, conchoidal fractures and breakage blocks on surfaces of studied sand grains in most subglacial till units show the importance of brittle fracture. However, edge abrasion, as the most common mechanical feature, together with the mostly sub-angular to sub-rounded outline of particles implies that brittle fractures originated in older comminution processes. The share of particles with edge abrasion is even higher in subglacial melt-out tills and in glaciofluvial sandy layers, than in lodgement tills. This relates to the amount of water present in the final deposition of the material. On the other hand, the portion of particles with edge abrasion is much lower for glaciomarine and marine deposits, with glaciomarine debris-flows having the lowest share. Glaciomarine debris-flow sand grains also mostly have low relief. Chemical textures are most important on grain surfaces in marine laminated sandstones. The most common is chemical pitting and euhedral crystal overgrowth. All these features are typical of very intense post-depositional weathering.

The lower contact of the Mendel Formation dips towards the W (295°) with an average dip of 15°. This contact is well exposed on the basal surface, which is subglacially ploughed and striated. The clast fabric of the lowermost subglacial tills shows the main eigenvector (V1) dipping in the same direction (see Fig. 11) as the striation on the underlying basal surface. As the basal was overridden by an advancing terrestrial glacier it is not possible to distinguish the glacier advance direction, as it may have been from E towards W or in opposite direction. However, according to rather high proportions of erratic rocks (up to 6%) originating from the AP we interpret the basal parts of the Mendel Formation as being subglacially deposited by an advancing ice tongue of the Antarctic Peninsula ice sheet (APIS). The W–E direction is dominant in clast fabrics of most of the terrestrial subglacial till units examined (see Fig. 11); the same orientation (276–278°) is also typical for dips of erosional bases of other subglacial tills (see Figs. 3 and 6). The orientation of laminae in marine tuffaceous silicate sandstone and sandstone is towards the W and NW (289–288°); most sharp or undulating bases of glaciomarine diamictite or subaqueous debris flows dip in the same direction (272–299°) with dips of 5°–11° (see Figs. 4–6). This shows that the sea invaded from the E during glacier retreat with floating ice shelf build-up.

Detailed study of sedimentary rock units of the Mendel Formation shows changes in the depositional environment through the evolution of the succession (see Fig. 13). Sedimentation started as terrestrial glaciogenic in the subglacial environment; subglacial tills are only sometimes intercalated by thin layers of sub-en-glacial glaciofluvial sandstone. The thickest middle part of the succession was
deposited in a glaciomarine to marine environment in distances changing from the glacier margin. The glaciomarine diamicrites often bear evidences of subaqueous sliding and slumping; they have been deposited at various distances from the floating glacier margins with important ice-rafted component. The open marine laminated sandstone to siltstone was deposited in a pro-delta environment with a very limited glacial influence but are very probably coeval with the volcanic activity in the area, which was the most important source of the deposited material. Their top surfaces are sometimes erosional due to glacial or mass-movement erosion prior to the deposition of the subsequent unit, showing on a fluctuating floating glacier margin. The Mendel Formation terminates with terrestrial subglacial tills showing the advance of a grounded glacier.

5. Clast petrology

The gravel clasts found in the Mendel Formation can be divided in two groups according to their provenance; the most common are local JRI rocks including Cenozoic volcanic rocks and less common Cretaceous sedimentary rocks. The second group is made of erratic rocks originating from the AP and/or the Transantarctic and Ellsworth Mountains. The proportion of erratic gravels lies in the range of 1% to 6%, but it varies throughout the individual lithofacies (see above). The basic rock groups found in the gravel-to-boulder fraction in the Mendel Formation are summarised in Table 2 and shown in Fig. 14.

6. Dating of the Mendel Formation

The underlying basalt of Cape Lachman (sample JR-1) was dated using the \(^{40}\text{Ar}/^{39}\text{Ar}\) method to determine the maximum age of deposition of the Mendel Formation. The basal part of the Mendel Formation rests directly on pillow lavas and overlying tuffs, which form a part of the Cape Lachman volcanic complex composed of pillow lavas, hyaloclastic tuffs to breccias and numerous dykes that yielded an isochron age of 5.85±0.31 Ma (1 sigma including uncertainty on \(J\) value, 68% of the cumulative \(^{39}\text{Ar}\)) with an \(^{36}\text{Ar}/^{40}\text{Ar}\) intercept of 302.5±20.4 and a MSWD of 1.45 (See Table 3 and Fig. 15). Both the intercept and the low MSWD indicate that this age is well constrained and may be used as the maximum age of the Mendel Formation.

Six shell samples were analysed for \(^{87}\text{Sr}/^{86}\text{Sr}\) isotopic ratios (Table 4). The Sr isotopic data suggest that the sample taken from the PC04-1/2 unit is a reworked shell fragment from the underlying Cretaceous marine sediments. Its precise age cannot be derived from the Sr evolution curve, but based on the measured Sr isotopic ratio, it is between 84.9 and 130.2 Ma. There are four possible age intervals for this sample: 84.9–85.7 Ma, 97.2–104.0 Ma, 120.6–122.5 Ma, and 128.3–130.2 Ma. It is more likely that the dated shell fragment was reworked from the nearby Santa Marta Formation (Crame et al., 1991, 1999; Scasso et al., 1991), because it agrees with the age of belemnites dated at 85.5–86.1 Ma by McArthur et al. (2000) and rocks from other three above-mentioned age intervals can only be found in the western parts of JRI (Riding and Crame, 2002).

The other three pectinid shell samples were collected from terrestrial subglacial till units, and they were re-deposited from older glaciomarine or marine sediments. The \(^{87}\text{Sr}/^{86}\text{Sr}\) age data indicate that the source sediments were deposited in an open marine interglacial setting in the lower Miocene (20.7–17.3 Ma). Sedimentary sequences of this age have not been found on JRI so far. The two samples from the PC05-1 section (correlated with PC05-2/10 unit) represent nearly complete, partly articulated and well-preserved shell fragments of Austrochlamys anderssoni. This indicates only limited transport of these...
shells before their deposition and coeval living with subaqueous glacial deposition. The age may therefore be regarded as the depositional age for the middle part of the Mendel Formation at ~28 m, in the glaciomarine/marine part of the succession. The ages are 5.93 ± 0.09 / 0.24 Ma and represent the only ages of the middle part of the Mendel Formation at ~28 m, in the glaciomarine/marine part of the succession. The ages are 5.93 ± 0.09 / 0.24 Ma and represent the only ages of the middle part of the Mendel Formation.

7. Micropalaeontology

Biostratigraphical and palaeoenvironmental evidence of microfossils was limited by the extremely poor microfossil content of the Mendel Formation. Of the eight samples washed for microfossils, only two contained foraminifers (PC05-3/2, PC05-8/1), none of them contain any nanofossils. The total number of recovered foraminifers was just 3 specimens, together with one ostracod. The extreme scarcity is due to the terrestrial and glacial nature of the sedimentary deposits. The marine microfossils are reworked from older marine sediments. On the other hand, the samples from sediments interpreted here as being deposited in the pro-delta marine environment with less glacial influence (e.g. sample PC05-2/1), does not contain any obvious marine microfossils. A reason for that may be the low salinity caused by melt-water input below and in front of the floating ice shelves during deposition of the rock.

Mineralised wood fragments are the most common fossil remnants. Most of them are coalified, but pyritised and silicified fragments also occur. The wood fragments apparently originate from different plant taxa. Fossil woods are commonly reported from the Upper Cretaceous on JRI (e.g. Cantrill and Poole, 2005), and this is a very probable source of wood fragments within the Mendel Formation, the other possibility may be the Miocene interglacial origin at the northern AP. However, further work is needed to solve the question of plant macro- and micro- (incl. the pollen and palynomorphs) fossils.

Among marine microfossils fragmentary, abraded and re-crystallised echinoid spines are most frequent. They are straight, narrow, possess a striation on the surface and radial structure on the cross section. Such types are characteristic of regular echinoids populating shallow seas worldwide.
corresponds well with the type description and figure of this species, though there are no recent records on its spatial and stratigraphic distribution. Generally, representatives of the genus live in cold and turbid waters on muddy substrates (also in Antarctic waters). The stratigraphic range of the genus is Cretaceous–Holocene.

Nonionella bradii was originally found in modern benthic communities of upper bathyal habitats of the Ross Sea. Specimens from sample PC05-8/1 are close to the form from the Pecten conglomerate of Cockburn Island (Gaźdicki and Webb, 1996). The stratigraphic range is Oligocene–Holocene.

Globocassidulina sp. is a damaged test with broken older chambers found in sample PC05-3/2 and differs from representatives of the genus common in the Austral realm. It is possible that the specimen represents juvenile *Cassidulinoides* sp. Cassidulinid foraminifers

Fig. 14. Microphotographs of the typical local and erratic rocks from the Mendel Formation. A. Vesicle in basalt filled with silty sediments. B. Olivine basalt. C. Woody tissue constituting rarely interstitial material in pebbles from the Whisky Bay Formation. D. Phyllite with crenulation cleavage highlighted by organic pigment. E. Biotite orthogneiss. F. Muscovite–biotite granite. Scale bar at right bottom of each figure is 0.2 mm long.
represent dominant elements of Cenozoic benthic foraminifer communities of Antarctica.

The tests of *H. asanoi* and *Globocassidulina* sp. are filled with greenish, clay-like sediment that does not show any similarity to the lithology of the samples. This is a further indicator of possible reworking from older, very probably Cretaceous, sediments.

A single ostracod was recovered from sample PC05-3/2. It is a relatively well-preserved large right valve of *Rostrocytheridea* sp. Our species can be related to *Rostrocytheridea hamiltonensis* described recently by Fauth et al. (2003) from the Campanian of JRI, but it differs by possessing fine longitudinal ribs at the ventral side of the valve and by lacking any denticulation. Generally *Rostrocytheridea* is typical of the Cretaceous in the Austral realm.

Other marine microfossils recovered from the Mendel Formation were thick organic-walled brown-red cysts that can be assigned to the genus *Tasmanites* (Prasinophyta). Representatives of *Tasmanites* are reported from marine sediments through the Phanerozoic. Teleostean teeth and fragmentary sponge spicules rarely occur, but do not possess practical importance.

8. Formal lithostratigraphy

During the geological mapping in the northernmost Ulu Peninsula, sedimentary rocks representing former ‘pecten conglomerates’ of Andersson (1906) or ‘tuffaceous conglomerates’ of Nelson (1966) have been found and subsequently mapped in detail in the area between Cape Lachman, Berry Hill and Mendel Base (Fig. 1). They represent sediments deposited in open marine, glaciomarine and terrestrial glacigenic environments. The presence of these deposits was mentioned by various English and Argentinean geologists (e.g. Bibby, 1966; Hambrey and Smellie, 2006; Strelin et al., 1997), but they have not been studied in detail. A new formal name – Mendel Formation – is herein proposed for the sedimentary succession, because according to the data described here it does not correspond to any of the other Neogene sedimentary formations found on JRI (Drift Refugio San Carlos of Rabassa, 1983; Hobbs Glacier Formation of Pirrie et al., 1997; Belén Formation of Lirio et al., 2003; Gage Formation of Lirio et al., 2003; Terrapin Formation of Lirio et al., 2003).

Table 3

Complete data table for sample JR-1. (1) 39Ar ($\times 10^{-16}$ mol), (2) Cumulative 39Ar gas released during the experiment (%), (3) 40Ar* = % radiogenic 40Ar of total 40Ar released. J-value 0.005951. In bold steps 3–7, on which the calculated isochron age is based.

<table>
<thead>
<tr>
<th>JR-1/step</th>
<th>40/39</th>
<th>38/39</th>
<th>37/39</th>
<th>36/39</th>
<th>39Ar*</th>
<th>J39Ar2</th>
<th>40Ar*</th>
<th>40Ar/39K</th>
<th>Age \pm 1 sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.642</td>
<td>0.037</td>
<td>0.293</td>
<td>0.014</td>
<td>3.843</td>
<td>1.17</td>
<td>11.60</td>
<td>0.54</td>
<td>5.77 \pm 1.36</td>
</tr>
<tr>
<td>2</td>
<td>1.879</td>
<td>0.024</td>
<td>0.300</td>
<td>0.005</td>
<td>35.207</td>
<td>11.85</td>
<td>22.20</td>
<td>0.42</td>
<td>4.48 \pm 0.15</td>
</tr>
<tr>
<td>3</td>
<td>1.174</td>
<td>0.021</td>
<td>0.260</td>
<td>0.002</td>
<td>57.535</td>
<td>29.32</td>
<td>46.50</td>
<td>0.55</td>
<td>5.86 \pm 0.14</td>
</tr>
<tr>
<td>4</td>
<td>0.956</td>
<td>0.020</td>
<td>0.232</td>
<td>0.001</td>
<td>54.990</td>
<td>46.01</td>
<td>55.50</td>
<td>0.53</td>
<td>5.69 \pm 0.05</td>
</tr>
<tr>
<td>5</td>
<td>0.929</td>
<td>0.020</td>
<td>0.212</td>
<td>0.001</td>
<td>45.194</td>
<td>59.73</td>
<td>56.40</td>
<td>0.52</td>
<td>5.61 \pm 0.12</td>
</tr>
<tr>
<td>6</td>
<td>0.938</td>
<td>0.019</td>
<td>0.290</td>
<td>0.001</td>
<td>37.729</td>
<td>71.18</td>
<td>56.70</td>
<td>0.53</td>
<td>5.70 \pm 0.07</td>
</tr>
<tr>
<td>7</td>
<td>1.038</td>
<td>0.020</td>
<td>0.278</td>
<td>0.002</td>
<td>28.399</td>
<td>79.81</td>
<td>49.60</td>
<td>0.51</td>
<td>5.52 \pm 0.09</td>
</tr>
<tr>
<td>8</td>
<td>1.151</td>
<td>0.019</td>
<td>0.249</td>
<td>0.002</td>
<td>20.895</td>
<td>86.15</td>
<td>60.20</td>
<td>0.69</td>
<td>7.43 \pm 0.13</td>
</tr>
<tr>
<td>9</td>
<td>1.500</td>
<td>0.019</td>
<td>0.290</td>
<td>0.003</td>
<td>26.530</td>
<td>94.20</td>
<td>38.30</td>
<td>0.58</td>
<td>6.17 \pm 0.20</td>
</tr>
<tr>
<td>10</td>
<td>2.482</td>
<td>0.022</td>
<td>0.305</td>
<td>0.006</td>
<td>10.390</td>
<td>97.36</td>
<td>34.20</td>
<td>0.85</td>
<td>9.09 \pm 0.50</td>
</tr>
<tr>
<td>11</td>
<td>3.342</td>
<td>0.022</td>
<td>0.416</td>
<td>0.009</td>
<td>8.711</td>
<td>100.00</td>
<td>22.80</td>
<td>0.76</td>
<td>8.17 \pm 0.80</td>
</tr>
</tbody>
</table>

Fig. 15. Age spectrum for sample JR-1 (2 sigma error bars). Five steps cover 68% of cumulative 39Ar. Isochron age (inset) for these steps is 5.85 ± 0.31 Ma (1 sigma, including uncertainty on J value). 39Ar/40Ar intercept 302.5 ± 20.4 with MSWD of 1.45. Top panel displays K/Ca (dashed) and 39ArCl/39ArK (solid) as a function of cumulative 39Ar.
The Mendel Formation is named after the nearby Czech Johann Gregor Mendel Base, which is named for the famous scientist Johann Gregor Mendel – founder of the science of genetics – and is located on the Holocene marine terrace at the western tip of the sedimentary succession between Cape Lachman and Bibby Point, Ulu Peninsula, James Ross Island.

8.2. Boundaries and age

The Mendel Formation overlies Cretaceous marine strata (Whisky Bay and Hidden Lake Formations of the Gustav Group; Crame et al., 1991; Pirrie et al., 1997; Riding and Crame, 2002) in its southern and southwestern part; at the neck of Cape Lachman in the north it overlies a subglacial volcanic sequence built of pillow lavas, hyaloclastite tuffs to breccias and dykes of one of the oldest phases of the JIRIVG (Nelson, 1966; Smellie et al., 2008). This volcanic sequence was correlated with the Lachman Crags basal delta by Smellie et al. (2008) and a minimum age of 5.32±0.16 Ma was reported based on the 40Ar/39Ar method. Unfortunately, the available sections of the Mendel Formation reveal only the contact with basalt at the PC05-3 section in the northern part of the sedimentary succession (see Fig. 1). The contact between basalt and the overlying Mendel Formation diamictite at the PC05-3 section is erosional, sharp and undulating. At this time the maximum potential age of the Mendel Formation, based on dating the pillow lava (JR-1) using 40Ar/39Ar dating puts the age at 5.85±0.31 Ma (Table 3, Fig. 15). This is older than the Davies Dome basal delta, which has an age of 5.04±0.04 Ma as reported by Kristjánsson et al. (2005). Because the age reported by Smellie et al. (2008) for the Cape Lachman volcanic rocks (sample DJ.1715.1; 5.32±0.16 Ma) is a minimum age, the validity of the correlation of the Cape Lachman volcanic rocks with the Lachman Crags basal delta (Smellie et al., 2008) cannot be evaluated based on these constraints alone. There are no outcrops showing the contact with Cretaceous rocks in the west; however, reworked Cretaceous fossils can be found in the lower diamictites of the PC04-1 section, indicating a position close to the Cretaceous basement.

The lower basaltic lava at Berry Hill, which marks the southern limit of the Mendel Formation, corresponds to the lava dated by Kristjánsson et al. (2005) to 5.04±0.04 Ma in the southern part of Lachman Crags. Remnants of the basalt Lachman Crags volcanic delta dated by Smellie et al. (2008) with a minimum age of 5.32±0.16 Ma, also lie above the Mendel Formation. Numerous basaltic plute boulders up to 1 m wide and only few cm thick cover the surface of the Mendel Formation. As they are not present in the sediments of the Mendel Formation, they must represent remnants of a subaerial volcanic phase younger than the Mendel Formation, but older than the basalt Lachman Crags delta. In the east, at the neck of Cape Lachman, the sedimentary succession is covered by subglacial till with abundant erratic material (with granitoid boulders up to 3 m in the a-axis) derived from the APIS and deposited during the last glacial maximum (MIS 2 prior to ~12 ka BP; unpublished data of the authors) by the (APIS) flowing through the northern Prince Gustav Channel towards Erebus and Terror Gulf (Camerlenghi et al., 2001). Sediments of the Mendel Formation and Late Pleistocene to early Holocene glaciogenic deposits are covered by (glacio)lacustrine deposits with a surface ~16–18 m asl on the eastern coast of the neck of Cape Lachman (Hjort et al., 1997; Ingólfssson et al., 1992). This ice-contact lacustrine deposition is of early Holocene age (~9.5 ka BP; Ingólfssson et al., 1992). A small westmeastern part of the Mendel Formation is covered by a younger Holocene marine terrace (with a surface ~8–10 m asl), where the Mendel Base is built. In the south, the Mendel Formation is covered by Holocene blocky slope deposits with a small amount of matrix containing blocks of hyaloclastite breccias and basalts on the northern and northwestern slopes of Berry Hill, which in some places form protalus ramparts. The upper lower-lying part was transformed by paraglacial processes into sorted polygons on the flat surface and to sorted stripes and SOLification lobes on the slopes of Berry Hill. These forms and deposits are younger than the deglaciation of this area, which enabled the paraglacial activity. The age of the complete deglaciation is not known exactly, but there are data of lake sedimentation starting at ~9.5–6 ka BP from the wider area of the northern Ulu Peninsula (Hjort et al., 1997; Ingólfssson et al., 1992) and some data for neoglacial advances of local glaciers at ~5–4.2 ka BP (Björck et al., 1996; Hjort et al., 1997). The area covered by the Mendel Formation was not affected by any important neoglacial advance of local glaciers beside the small glacier on the southeastern slope of Berry Hill according to geological and geomorphological mapping (see Fig. 1). The upper contacts were not studied on any of the documented sections, as they are obscured by scree or there are no outcrops available in the relevant areas. The Mendel Formation occurs in the alitudinal range 0–155 m.

Two shells of Austroclammys anderssoni from the PC05-1 section were dated using the Sr evolution curve for sea water (McArthur et al., 2001). This sample can be correlated with the Sr evolution section described, which is located in the same erosional valley. Shells are well preserved and nearly complete and originate from massive clast-rich sandy to interbedded diamictite. They were dated at 5.93±0.09/−0.11 and 5.65±0.15/−0.24 Ma (Table 4). Their physical appearance allows these ages to be interpreted as depositional ages of the studied part of the Mendel Formation. Beside samples of these ages, three other dateable pectinid shell samples were collected from terrestrial subglacial till units (PC05-6/1, PC05-6/5, PC05-8/1) of the Mendel Formation. Their 87Sr/86Sr ages fall into the lower Miocene (20.6–17.4 Ma), and they represent re-deposition from older sediments, as evidenced by their presence in terrestrial glaciogenic sediments and their strongly fragmentary nature. The other dated shell fragment (from PC04-1/2 unit) represents reworked Cretaceous fossil material, a conclusion which is supported by abundant reworked macrofossil finds. According to the review of the ages listed above, the Mendel Formation was deposited during the late Miocene between 6.16 Ma and 5.23 Ma, taking into account 2 sigma uncertainties. Nevertheless, its deposition most probably occurred during a much shorter time in the middle of this interval.

8.3. Distribution

The extent of the Mendel Formation based on detailed geological mapping is shown in Fig. 1. It must continue below the Holocene marine terrace, where Mendel Base is built. Its distribution below sea
level is not known, but it could continue further west in Prince Gustav Channel and east in Herbert Sound. Sedimentary rocks of the Mendel Formation on the eastern cliff of the neck of the Cape Lachman are unfortunately buried by scree in the upper part and/or by snow-patches in the lower part of the cliff and they have therefore not been studied in detail.

8.4. Type section and thickness

The section with visible lower contact and subglacial tills is PC05-3, which lies close to sea level at the neck of Cape Lachman (S 63.79287°; W 57.81103°). Section PC05-2 (S 63.80385°; W 57.87252°), which was documented on slopes of a deeply incised stream valley in front of a small ice accumulation close to Mendel Base, represents the open marine and glaciomarine type section of the Mendel Formation. The maximum visible thickness is at the PC04-1 section, where a thickness of nearly 20 m was documented; the overall calculated sedimentary thickness of the whole succession must exceed 80 m (see Fig. 9). The base at the northern coast lies approximately at sea level, and the surface ascends to an altitude of ~155 m in its southern part on the slopes of Berry Hill. We know little about the nature of the base of the Mendel Formation, but it is possible that it is undulating and rises towards the S and SE. If the base of the Mendel Formation were planar, then the maximum thickness may reach 160 m, but this statement is rather speculative and may only be proved by geophysical methods.

8.5. Lithology

The Mendel Formation is composed of terrestrial glaciogenic and glaciofluvial, glaciomarine and open marine sedimentary rocks. Terrestrial sedimentary deposits are composed of lodgement tills, subglacial melt-out tills and glaciofluvial sandstone, all of them subglacial or englacial in origin. Marine sedimentary deposits include glaciomarine debris-flows, glaciomarine diamictites to waterlain tills and tuffaceous horizontally laminated sandstones or siltstones. The whole succession constitutes a cycle of sedimentation starting as terrestrial glaciogenic grading through glaciomarine sedimentation towards marine pro-delta sedimentation and back to terrestrial glaciogenic deposition. A detailed lithofacies and sedimentary petrological description with environmental interpretation is given in the section “Lithofacies description and interpretation” (Section 4 above) and in Figs. 2–7.

8.6. Palaeontology

The present palaeontological finds are scarce. Macrofossil assemblages composed of well-preserved and nearly complete and sometimes articulated shells of Austrochlamys anderssoni were found in massive clay-rich sandy to intermediate diamictite (PC05-1 – correlated with PC05-2/10) and were used for \(^{87}Sr/^{86}Sr\) dating. Their articulated and complete nature indicates short transport before deposition and coeval existence of these molluscs with subaqueous glacial deposition, and must have been glacially reworked, shell fragments were found only in the terrestrial glacigenic units of the Mendel Formation and therefore represent reworked assemblages of a presently unknown origin. However, further work especially on palynomorphs, bryozoans and diatoms is needed to supplement the overall palaeontological knowledge of the Mendel Formation.

9. Discussion

9.1. Timing of Mendel Formation deposition

The prevailing olivine basalt and eruptive members of the basalt sequence found in the Mendel Formation relate to the early phase of volcanic activity at JRI (Nelson, 1966; Smellie, 1999; Smellie et al., 2008) during the late Miocene. The oldest dated in situ volcanic rocks in the northern part of the Ulu Peninsula are 6.16 ± 0.08 Ma old and form the Stickle Ridge lower delta (Smellie et al., 2008). The oldest \(^{40}K/^{40}Ar\) ages of volcanic rocks from the JRIVG were from a basalt clast from diamictite at the Fjordo Belén, JRI dated at 5.2 ± 0.5 Ma (Jonkers et al., 2002) and a basalt clast from the Miocene diamictite of Seymour Island, recently dated using the \(^{40}K/^{40}Ar\) method at 12.4 ± 0.5 Ma (Marenssi et al., 2010). In the northern Ulu Peninsula a basalt clast from glaciomarine diamictite was sandwiched between Cretaceous sediments of the Santa Marta Formation and JRIVG located close to the Crame Col and Medusa Cliffs dated using the \(^{40}K/^{40}Ar\) method at 7.13 ± 0.49 Ma (Sykes, 1988).

The prevailing hyaloclastite tuff cone with associated pillow lavas of Cape Lachman is macroscopically different than any of the Lachman Crags volcanic rocks. At the time of the sedimentation of the Mendel Formation, the Lachman Crags basal delta did not exist, as volcanic rocks of the Lachman Crags lie stratigraphically above the Mendel Formation sedimentary rocks surrounding Berry Hill. Therefore, we assume that the Cape Lachman volcanic rocks predate and the Lachman Crags delta postdates the Mendel Formation, in spite of the \(^{40}K/^{40}Ar\) ages lying within the 2 sigma uncertainty interval. Summarising these ages with the \(^{87}Sr/^{86}Sr\) dating of pectinal shells, it seems that the possible depositional age of the Mendel Formation is 6.16–5.23 Ma; however, it was very probably deposited during a much shorter time in the middle of this interval, most likely between 5.9 and 5.4 Ma.

9.2. Stratigraphy and sedimentary environments

The Mendel Formation differs from the Hobbs Glacier Formation (Hambrey et al., 2008; Pirrie et al., 1997) not only in the thickness of the sedimentary succession, but especially by the cycle of sedimentation from terrestrial through glaciomarine and open marine back to terrestrial deposition. The thickness of the Mendel Formation (> 80 m, or maybe up to 160 m) could be compared with the Cape Gage Formation of Lirio et al. (2003), for which the overall thickness may reach up to 50 m (J. M. Lirio, pers. comm. 2005) and with the thick conglomerate at Stickle Ridge (up to 150 m) or Rhino Cliffs (64 m) described by Nelson et al. (2009).

It is evident from the position of Mendel Formation above the Cape Lachman volcanic rocks, that Cape Lachman was a volcanic island separated from JRI by an ~2 km wide channel during the deposition of the Mendel Formation in the late Miocene. The other evidence for this is the recent marine terrace, which extends for some hundreds of meters on both sides of the neck of Cape Lachman during low tide. The exposure of pillow lava basalts and small Mendel Formation diamictite relics can be seen in the sea more than 200 m away from the coast and is only little covered by young marine mud drape. This terrace originated as a glacial erosional surface in volcanic rocks on which the sedimentary deposits of the Mendel Formation were deposited. The erosional signs below sea level are similar to those found at the base of the Mendel Formation (PC05-3 section) on the western cliff of the neck of Cape Lachman. The levelling of the surface is very probably marine in origin, but glacial erosion was the agent of (foraminifers etc.) were obtained solely from terrestrial glaciogenic units of the Mendel Formation and therefore represent reworked assemblages of a presently unknown origin. However, further work especially on palynomorphs, bryozoans and diatoms is needed to supplement the overall palaeontological knowledge of the Mendel Formation.
the final surface sculpting. Softer dianmites and tuffaceous sandstone have recently been removed from the sea floor on both sides of the Cape Lachman neck by marine erosion, and the former erosional surface has been re-exposed in the late Holocene after the fall of the sea level to its present position.

The tuffaceous sandstone to siltstone units in the Mendel Formation are not genetically connected with hyaloclastite breccias as Hambrey et al. (2008) demonstrated from other localities at James Ross Island. We interpret these tuffaceous horizontally laminated partly rhythmically bedded sandstone and siltstone, as being deposited in a marine prodelta setting with low glacial influence as described by Pirrie and Sykes (1987). This interpretation is due to the presence of dropstones released from floating icebergs rather than the low concentration turbidity current deposition and direct ash-fall into the water body proposed later by Pirrie et al. (1997). Its tuffaceous nature and the presence of clasts of palagonite glass do not imply isochronism with local volcanic phases, but rather a reworking of volcanic material deposited in a setting rather distal from the volcanic source.

In addition to the prevailing local volcanic material incorporated in the Mendel Formation sediments, clasts of Cretaceous sediments of the James Ross Basin are also present. They consist of gravel conglomerates, which are likely to belong to coarse-grained members of the Whisky Bay Formation (late Albain to late Turonian). The conglomerates are accompanied by a variety of siltstone to sandstone and concretions derived from late Cretaceous formations of the James Ross Basin, which either underlies the Mendel Formation (Whisky Bay and Hidden Lake Formations) or lies in the vicinity (Santa Marta Ross Basin, which either underlies the Mendel Formation (Whisky Bay and Hidden Lake Formations) or lies in the vicinity (Santa Marta Ross Basin). The reworking of material from underlying and/or adjoining Cretaceous formations was proved by the 87Sr/86Sr dating of reworked shells and by the presence of foraminifers and mineralised wood fragments of Cretaceous origin.

9.3. Provenance of erratic material

A small part of the gravel clasts (mostly 1–6%; but an important proportion of large boulders, see Fig. 8B) in the dianmites is not local, but of erratic rocks composed of magmatic, contact and regional metamorphic rocks. A broad spectrum of granitoids, diorites, tonalites and gabbros may be derived from the Antarctic Peninsula Batholith (Mount Reece and Mount Bradley being the closest area with their outcrops) see; e.g. Atkenhead (1975), Leat et al. (1995), Scarrow et al. (1998). Biotite gneiss and chert are thought to form a contact aureole of the Antarctic Peninsula Batholith. This sequence is also likely to contain phyllite originating from the Trinity Peninsula Group, a low-grade flyschoid sequence of the Permian–Triassic accretion prism (e.g. Hyden and Tanner, 1981; Trouw et al., 1997).

The origin of gravels of regionally metamorphosed rocks, orthogneisses and amphibolites appears to be mysterious. High-grade metamorphic rocks form the Silurian-Triassic basement of the Antarctic Peninsula sensu stricto and are exposed in rare outcrops on the AP (cf. Hervé et al., 1996; Millar et al., 2002). However, the same rocks have also been found in more distant areas, such as the Transantarctic or Ellsworth Mountains, and have been glacially transported up to the South Shetland Islands (e.g. Polonez Cove and Cape Melville Formations on King George Island; Birkenmajer, 1987; Dingie and Lavelle, 1998; Troedson and Smellie, 2002). The far travelled erratics, for which the Transantarctic or Ellsworth Mountains origin is assumed, have very probably been transported in icebergs, which were carried along the AP by ocean currents controlled by the cyclonic Weddell Gyre (Diekmann and Kuhn, 1999; Swithinbank et al., 1980) from the Filchner-Ronne Ice Shelf area.

9.4. Ice dynamics and extent

Three-dimensional clast fabric analyses allowed differentiation between subglacial lodgement and melt-out tills. Subglacial melt-out tills show generally better-developed cluster clast fabric shapes than lodgement tills, which have girdle to cluster fabric shapes. This difference has been shown in numerous studies around the world (e.g. Bennett et al., 1999; Dowdeswell and Sharp, 1986; Larsen and Piotrowski, 2003). Fabric shapes of subglacial till units in the Mendel Formation also differ from glaciogenic debris flows described by Nelson et al. (2009), where more variable fabric shapes may be found. Terrigenous glaciogenic units also have lower CR and RA indices due to longer active (sub)glacial transport, which generally reduces disc- and rod-like clasts and decreases the general sphericity of subglacial clasts (e.g. Bennett et al., 1997; Nývlt and Hoare, in press).

The generally high proportion of striated clasts (typically 30–45% in terrestrial glaciogenic sediments and 20–30% in subaqueous dianmites), together with the degree of clast roundness (mostly subangular to subrounded) and the prevailing silty to fine-sandy matrix point mainly to warm-based glacier, active subglacial transport and glacial ploughing as very important factors (Benn and Evans, 1998). The importance of brittle fractures on quartz sand grains in subglacial tills, which is mostly attributed to glacier crushing (Mahaney, 1995), was shown by the study of quartz microtextures. However, they are commonly masked by edge abrasion, which is the most common mechanical superficial microtexture, implying that brittle fractures originated by older comminution processes. They are not necessarily only glacial in origin. Grain breakages require grain to grain contacts during transport (Fuller and Murray, 2002) and may have originated in submarine density flows at the slope or slope apron depositional environment (the environments interpreted for the underlying Cretaceous formations, e.g. Svojtka et al., 2009) or in the subaqueous volcanic environment. However, their glacial origin is more probable, and they are commonly taken to be indicators of subglacial transport at the base of thick ice sheets (with thickness usually greater than 1000 m), rather than under thin valley glaciers (Mahaney, 1995). Subsequent edge abrasion and clast rounding is connected with active transport of material in warm-based subglacial conditions, where surface abrasion causes particle rounding (Benn and Ballantyne, 1994) and fractures are less common due to less common grain to grain contacts owing to the water present. Edge abrasion is not typical of glaciomarine and marine deposits, where intense post-depositional weathering is present. This was shown to be typical of Late Pliocene glaciomarine deposits in the Bellingshausen Sea off Alexander Island by Cowan et al. (2008). They explained the presence of highly weathered grains, with a low proportion of crushed and abraded grains, by material transport by small glaciers that did not completely inundate the topography; therefore, much debris transported supraglacially or englacially was deposited without being substantially modified (Cowan et al., 2008). This shows a complex transport history of the grains before their final deposition; however, glacial transport dominates the shaping of the grain surfaces, as shown by Mahaney et al. (1996) for different tills from Antarctica.

Warm-based subglacial environments and active subglacial ploughing of particles were very common features for all Neogene glacial sequences associated with the JRIV, as was recently shown by Hambrey and Smellie (2006), Smellie et al. (2006), Hambrey et al. (2008) and Nelson et al. (2009), but these environmental conditions differ strongly from recent cold-based local glaciers of JRI. Volcanic activity may have been an important agent for melting out of dianmites from basal glacier layers, as was mentioned by Smellie et al. (2006, 2008). An other important observation is the mostly interglacial affinity of glaciomarine and marine sequences of the Mendel Formation due to the inheritance of well-preserved Austroclamys anderssoni. The species of Austroclamys anderssoni (formerly Zygochlamys anderssoni – see Jonkers, 2003 for a detailed taxonomic appraisal) disappeared from Antarctic waters at the Pliocene–Pleistocene transition (Berkmann et al., 2004; Jonkers, 1998b), and lived mostly in relatively warmer conditions than were present around Antarctica during Quaternary interglacials and required ice-
free marine conditions even during winters (Berkmann et al., 2004; Williams et al., 2010). The idea of glacier expansion during relatively warm periods was recently proposed also by Nelson et al. (2009) for other Neogene pectinid-bearing glacigenic debris flows from different parts of JRI. Williams et al. (2010) showed interglacial conditions for a slightly younger Cockburn Island Formation (4.4–4.8 Ma, McArthur et al., 2006) with sea-ice free NW Weddell Sea even during winter times.

The grounded APIS advanced eastwards through Prince Gustav Channel and crossed the northernmost part of the present JRI between the recent Lachman Crags and Cape Lachman. The form of Prince Gustav Channel evidently originated before the late Miocene, and its present pronounced glacial over-deepening with depth up to 1000 m in its northern part (Camerlenghi et al., 2001) resulted in multiple advances of grounded glaciers through this trough valley during the Neogene and Quaternary. The eastwards advance and transport of AP material is in good agreement with the results of Nelson et al. (2009), who found higher proportions of AP derived erratics (7–8%) in the NW part of JRI and interpreted some of these sediments (at Stoneley Point) as being deposited by the advancing APIS. Other locally derived glacialic debris flows examined by Nelson et al. (2009) contain less than 1% of erratic gravel clasts originating from the AP and were deposited by a local ice cap or its outlets. Hambrey et al. (2008) found evidence of the advance of a grounded AP glacier at Pirrie Col on Vega Island, which lies towards the SE of the Mendel Formation. Sedimentary records from the marine and glaciomarine parts of the Mendel Formation show sea advance from the east connected with glacier retreat towards the AP area, which appeared during warmer interglacial conditions with rising sea level. The open marine warm conditions and deposition of marine laminates were interrupted by advancing and retreating floating ice shelves, below or in front of which glaciomarine damicite and subaqueous debris flows were deposited. The floating ice shelf was later replaced by a grounded ice stream advancing in W–E direction.

9.5. Climatic implications

Sediments of Mendel Formation reveal changes in the depositional environment; sedimentation began as terrestrial glacialic, continued as glaciomarine to marine and terminated again as terrestrial glaciogenic. These changes also indicate different depositional distances from the glacier margin of the grounded glacier and floating ice shelf. Coeval volcanic activity may have been an important explanation for the high proportion of volcanic material deposited in the Mendel Formation, but probably not as important for the change of subglacial conditions to warm-based, as was proposed by Smellie et al. (2006, 2008). The warm-based or polythermal glacier regime was induced by the generally warmer late Miocene climate (Zachos et al., 2001a). On the other hand, the regional climatic trend revealed by opal depositional rate from Site 1095 in the Bellingshausen Sea off Alexander Island (Hillenbrand and Ehrmann, 2005) shows cooling during the latest Miocene between 6.9 and 5.6 Ma. However, the climate was still warmer than present, and cooling was interpreted only as a regional trend by Hillenbrand and Ehrmann (2005). Similarly, Billsups (2002) concluded from isotopic records from Site 1088 at the Agulhas Ridge that the Southern Ocean cooled during the latest Miocene, and the cooling provided the initial conditions for the early Pliocene warming. Bart et al. (2005) reported at least 12 grounded glacier advances to the shelf edge on the opposite side of the AP during the Late Miocene (7.9–5.12 Ma); however, their closer correlation is not possible due to the lack of dating of the West AP grounding events.

Sedimentary deposits of the Mendel Formation show evidence of late Miocene climatic cyclicity. The benthic stable oxygen isotope record shows, that late Miocene and Pliocene climate change was driven by the obliquity cyclicity with a ~41 ka period (Lisiecki and Raymo, 2007; Naish et al., 2009). The Mendel Formation sedimentary sequence is composed of at least two glacial and one interglacial interval; therefore, the whole sequence of the Mendel Formation may have been deposited within less than 100,000 years, but a longer time is more probable. The rapid warming between 5.6 and 5.0 Ma (Hillenbrand and Ehrmann, 2005) is connected with a major rise in relative sea level, which may be compared with the eustatic curve of Haq et al. (1987). Fielding et al. (2008) suggested a sea level rise of ~100 m between 6 and 5 Ma in the McMurdo Sound region. From the sedimentary record of the Mendel Formation, it can be shown that the sea level rise at the northern tip of the AP between glacial lowstand and interglacial highstand was >50 m during the late Miocene (5.9–5.6 Ma) and that it was followed by a subsequent sea level fall of at least the same magnitude.

Micro- and macro-fossils obtained from the sedimentary rocks of the Mendel Formation represent a pseudo-association – a mixture of reworked fossils from various sources. The allochthonous nature of the marine microfossils is evident from the fact that many of them were recovered from non-marine sedimentary rocks – in terrestrial subglacial tills. Neogene foraminifera and palynomorph assemblages in the area of JRI and the adjoining islands are described by Gañacki and Webb (1996); Pirrie et al. (1997); Jonkers et al. (2002); Concheyro et al. (2005, 2007), and by Nelson et al. (2009). All of these authors report on re-working of late Cretaceous micro- and macro-fossils into Neogene microfossil associations, as is also the case in the Mendel Formation. Scarse foraminifera finds in the Mendel Formation may be stratigraphically assigned to the Oligocene–Miocene. It is probable that the source of some re-deposited microfossils is the same as the source of the pectinid bivalves (dated at 20.5–17.5 Ma). However, the original deposits have not been found in this part of Antarctica so far. The presence of pectinids is evidence of open marine interglacial sedimentation in this part of AP also during the early Miocene. This is concurrent with data from DSDP Site 270 log in the Ross Sea, where a limited amount of ice was recorded for the period 20–17 Ma (Barrett, 1999). A recent compilation of Cenozoic deep marine benthic foraminifera oxygen isotopic record (Zachos et al., 2001a) shows that after the first longer colder period during the Oligocene (34–26 Ma), a warmer period began with Late Oligocene warming at ~26 Ma, continued until the end of the mid–Miocene climatic optimum ~13 Ma ago (Zachos et al., 2001a) and was connected with high sea level (Haq et al., 1987) and higher atmospheric levels of CO2 (Tripati et al., 2009). This warmer period is interrupted only during the Mi–I glaciation event centred at 23.0 Ma (Pålæke et al., 2006; Roberts et al., 2003; Zachos et al., 2001b). The East Antarctic Ice Sheet was partial or ephemeral during this warm period and was re-established by 10 Ma, after the gradual cooling since ~14 Ma (Lewis et al., 2008; Williams et al., 2008; Zachos et al., 2001a). Further micro- and macro-palaentological work is needed to resolve these questions.

10. Conclusions

Hereewith we define the Mendel Formation, a sedimentary rock sequence appearing in the northern part of JRI, which is sandwiched between volcanic rocks of the JRIVG. Its broad depositional age is 6.16–5.23 Ma but was most likely to have been deposited between 5.9 and 5.4 Ma. This time interval is given by ages of underlying and overlying volcanic rocks supported by stratigraphic dating of pectinid bivalves from the middle part of the sedimentary sequence. The Mendel Formation contains subglacial tills, sub- or ex-glacial glaciomarine sediments, glaciomarine damicites, subaqueous debris flows and laminated tufaceous sandstone to siltstone, which were deposited in terrestrial glaciogenic, glaciomarine and open marine sedimentary environments. Its cyclic sedimentary deposition in diverse sedimentary environments, position within the JRIVG, and its formation thickness (>80 m), differentiates the Mendel Formation from previously defined sedimentary formations cropping out in the JRI archipelago.
Glacier crushing features indicate subglacial transport at the base of an ice sheet more than 1000 m thick. These fractures are, however, mostly masked by edge abrasion and other features, which are connected with subglacial ploughing of material in warm-based subglacial conditions. Subglacial tills were deposited by a thick grounded APIS, with most of the material carried actively at the base of the glacier. These environmental and glaciological conditions differ strongly from the present cold-based local glaciers of JRI and the AP. The glaciomarine and marine sedimentary material was carried towards the glaciomarine/marine environment by small glaciers, where a significant part of the material was transported and deposited supraglacially or englacially without being modified by active glacial processes. The material was subsequently carried by a floating ice shelf and by calving icebergs towards the open sea away from the AP.

During the deposition of the Mendel Formation, Cape Lachman was a small volcanic island separated from JRI by an ~2 km wide channel. A significant proportion of erratics derived from AP or from southerly areas was found in diamictic units of the Mendel Formation. A grounded APIS advanced eastwards through the Prince Gustav Channel and crossed the northernmost part of the present JRI. The form of Prince Gustav Channel originated before the late Miocene and its present pronounced glacial over-deepening with depths up to 1000 m resulted in multiple grounded glacial advances through this valley during the Neogene and Quaternary. After the retreats of the grounded ice stream, the sea advanced from the E and the glacier margin began floating, building a small floating ice shelf, which was later replaced by a grounded ice stream advancing in W–E direction. Coeval volcanic activity was an important factor inducing warm-based or polythermal subglacial conditions for other glaciomarine sediments at JRI, but not for the environmental changes documented in the Mendel Formation caused by global sea level fluctuation due to Antarctic ice sheet build up and decay connected with advances and retreats of the APIS and the associated ice shelf in the northern Prince Gustav Channel. This illustrates Late Miocene climatic cyclicity, which was driven by the obliquity ~41 ka period. The Mendel Formation sedimentary sequence is composed of at least two glacial periods and one interglacial period. The sea level rise at the northern tip of the AP based on the Mendel Formation sediments between the glacial lowstand and interglacial highstand was >50 m during the late Miocene and was followed by a subsequent sea level fall of at least the same magnitude. The age of the Mendel Formation is compatible with the age of the Mendel Formation sediments between the glacial lowstand and interglacial highstand was >50 m during the late Miocene and was followed by a subsequent sea level fall of at least the same magnitude. The age of the Mendel Formation is compatible with 6.9–5.6 Ma during the Miocene (5.6–5.0 Ma) found in the circum-Antarctic waters around the AP.

The appearance of well-preserved, and sometimes articulated pectinid bivalves of *Austrochlamys anderssoni* in the glaciomarine part of the Mendel Formation is evidence for sedimentation during warm interglacial periods with the open sea and on limited reworking of the shells before deposition. They therefore testify to less extensive glaciation along the AP in the Miocene “interglacials” and prevailing glaciation deposition below or in front of floating ice shelves. Reworked pectinid shells indicated an open marine “interglacial” condition in this part of AP during the Early to Mid Miocene (20.5–17.5 Ma). This timing is compatible with warmer circum-Antarctic and glacial conditions from different marine records. Unfortunately, the origin of the molluscs is obscure, as relevant sedimentary rocks have not been found on land.

Acknowledgements

This study was financially supported by R & D projects VaV/660/1–03 and VaV SP II 149/23/07 of the Ministry of the Environment of the Czech Republic. The fieldwork at JRI was undertaken by DN, JK, BM and PM mostly during the austral summers of 2004, 2005 and 2007. We thank Juan Manuel Lirio for providing unpublished information from his research on JRI and for help with searching the relevant Argentinean literature. Fuerza Aérea Argentina is also thanked for logistic support during the field campaigns. The work of LL was supported by Institutional research of the Institute of Geography, ASCR, v.v.i. no. Z 3013 0516. We are very grateful for the constructive comments of Mark Williams and both journal reviewers, which substantially helped to clarify this paper.

References

event recorded in the Cockburn Island Formation, Antarctic Peninsula. Palaeogeography, 242, 126–136.

