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ABSTRACT

Fractal geometry methods allow one to quantitatively describe self-similar or self-affined landscape shapes and facilitate the complex/
holistic study of natural objects in various scales. They also allow one to compare the values of analyses from different scales (Mandelbrot 
1967; Burrough 1981). With respect to the hierarchical scale (Bendix 1994) and fractal self-similarity (Mandelbrot 1982; Stuwe 2007) of the 
fractal landscape shapes, suitable morphometric characteristics have to be used, and a suitable scale has to be selected, in order to evaluate 
them in a representative and objective manner.

This review article defines and compares: 1) the basic terms in fractal geometry, i.e. fractal dimension, self-similar, self-affined and random 
fractals, hierarchical scale, fractal self-similarity and the physical limits of a system; 2) selected methods of determining the fractal dimension 
of complex geomorphic networks. From the fractal landscape shapes forming complex networks, emphasis is placed on drainage patterns 
and valley networks.

If the drainage patterns or valley networks are self-similar fractals at various scales, it is possible to determine the fractal dimension by 
using the method “fractal dimension of drainage patterns and valley networks according to Turcotte (1997)”. Conversely, if the river and 
valley networks are self-affined fractals, it is appropriate to determine fractal dimension by methods that use regular grids. When applying 
a regular grid method to determine the fractal dimension on valley schematic networks according to Howard (1967), it was found that the 
“fractal dimension of drainage patterns and valley networks according to Mandelbrot (1982)”, the “box-counting dimension according to 
Turcotte (2007a)” and the “capacity dimension according to Tichý (2012)” methods show values in the open interval (1, 2). In contrast, the 
value of the “box-counting dimensions according to Rodríguez-Iturbe & Rinaldo (2001) / Kolmogorov dimensions according to Zelinka & 
Včelař & Čandík (2006)” was greater than 2. Therefore, to achieve values in the open interval (1, 2) more steps are needed to be taken than in 
the case of other fractal dimensions.
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1. Introduction

1.1 Introduction and objectives

Fractal aspects of complex nonlinear dynamic sys-
tems are ubiquitous in the landscape and in its studied 
phenomena (Table 1). Many natural features of the land-
scape have the appearance of a fractal; an example may 
be drainage patterns and valley networks or coast lines. 
Methods of fractal geometry have a mathematical basis 
which can be successfully applied in geomorphology. The 
behavior of complex natural phenomena, such as drain-
age systems, is at the forefront of research (Mandelbrot 
1982; Voss 1988; Turcotte 1997, 2007a, 2007b; Bartolo 
& Gabriele & Gaudio 2000; Rodríguez-Iturbe & Rinaldo 
2001; Saa et al. 2007; Stuwe 2007; Khanbabaei & Karam & 
Rostamizad 2013). Fractal dimensions and other fractal 
parameters in geomorphology are mainly used to quan-
titatively describe the topography of landscape fractal 
shapes and to build models of their development (Xu et 
al. 1993; Baas 2002).

In geomorphology, methods of fractal geometry were 
first applied in the study of the lengths of coastlines and 
the shape of drainage patterns and faults (Mandelbrot 

1967; Robert 1988; Nikora 1991). Currently, fractal 
parameters have been used in geomorphology (Table 1): 
1) while studying the spatial distribution of objects with 
different sizes (from microscopic to macroscopic objects); 
2) while describing objects of intricate shapes (e.g. coral 
reefs, valley networks, mountains, caves, sand dunes); 
and 3) while studying processes and their areal distribu-
tion (e.g. erosion, chemical and mechanical weathering). 
Fractal geometry thus provides a way to quantitatively 
describe self-similar or self-affined landscape shapes, 
enables new approaches to measurements and analyses, 
and allows the holistic study of natural objects in various 
scales and a comparison of analysis values of different 
scales (Mandelbrot 1967; Burrough 1981).

When characterizing the fractal shape of complex geo-
morphic networks it is necessary to know and understand 
the basic concepts of fractal geometry, such as the fractal 
dimension, hierarchical scale, fractal self-similarity or 
physical boundary of the system. This work is based on 
a review of international and national literature in order 
to: 1) define and evaluate basic terms of fractal geome-
try which are applicable to the fractal shapes of complex 
geomorphic networks; and 2) define and evaluate cer-
tain methods of determining the fractal dimension of 
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Tab. 1 Use of methods of fractal geometry in natural science (according to De Cola and Lam 2002a, 2002c).

Use of methods of fractal geometry in natural science

Discipline Object of study Discipline Object of study

Astronomy Shape of Moon impacts; shape of galaxies Botany Shape of tree branches and roots

Geology Thickness of layers of sedimentary rocks Anatomy
Shape of vascular and nervous system, 
description of air sacks

Meteorology
Shapes of clouds, transfer of air temperature 
and water vapor

Ecology Extension and concentration of pollution

Hydrology Shape of drainage patterns, water surface Landscape Ecology Description of land cover

Geomorphology Land surface, the extent of surface erosion Cartography
Shape of coast and shoreline of lakes,  
map generalization

Tab. 2 Definitions of terms of fractal geometry.

Author Definition

Dimension

Tichý (2012)

A dimension is a fundamental characteristic of geometrical shapes, which when scaling remains unchanged. 
A dimension can be generally expressed as: N = kD

where k is the reduction ratio, N is the minimum number of reduced shapes that can cover the original shape,  
and D is the dimension. In other words: 
A) if a line is reduced k-times, then to cover the original segment N = k2 new (reduced) lines are needed; 
B) if a rectangle is reduced k-times, then to cover the original rectangle N = k2 new (reduced) rectangles are needed; 
C) if a cuboid is reduced k-times, then to cover the original cuboid N = k3 new (reduced) cuboids are needed.

Initiator

Horák & Krlín & Raidl 
(2007)

An initiator is the part of the shape, which is, under the construction of a fractal, replaced by a generator.

Generator

Horák & Krlín & Raidl 
(2007)

A generator is the shape that under the construction of fractal, replace initiator, i.e. which forms the overall shape of 
the fractal object.

Topological dimension, also called the Lebesgue covering dimension

Čech (1959);
John (1978)

The topological dimension of n-dimensional Euclidean space is N. It is an integer dimension, which describes 
geometric objects. The topological dimension of a point = 0, the topological dimension of a line or curve = 1, the 
topological dimension of an area = 2. The topological dimension determines the minimum number of parameters 
needed to accurately determine the position of an object in the given space.

Fractal dimension, also called the Hausdorff–Besicovitch dimension

Hausdorff (1919 in 
Mandelbrot 2003); Baas 
(2002); Tichý (2012)

A fractal dimension indicates the segmentation level of an object using a non-integer dimension. The shape of a 
valley network is formed by lines embedded in the plane, and the fractal dimension describes to what extent the 
space on the plane of the line is filled, thus reaching values in the open interval (1, 2).

Affine transformation

Rodríguez-Iturbe & 
Rinaldo (2001); Turcotte 
(2007a)

Affine transformations include scale changing, i.e. resizing, rotation and displacement of the field, in which the 
fractal shape is captured.

Hausdorff measure

Turcotte (2007a)
A Hausdorff measure is any number in the open interval (0, ∞) for each set of Rn, which has the role of a generator, 
i.e. forms an overall shape of a fractal object.

complex geomorphic networks. From the complex net-
works emphasis is placed in this research on drainage 
patterns and valley networks.

1.2 Definition of a fractal

The term fractal was first used by B. B. Mandelbrot 
(1967), who defined it as a set, whose fractal dimension 
is greater than its topological dimension (Table 2). The 
difference between the fractal and the topological dimen-
sion thus indicates the level of segmentation of a given 

object. The more the fractal dimension differs from the 
topological dimension, the more segmented an object is 
(Mandelbrot 1967). For example the shapes of drainage 
patterns or valley networks are made up of lines (topolog-
ical dimension = 1), which are put on a plane (topological 
dimension = 2). The fractal dimension of the drainage 
patterns therefore describes to what extent the lines fill in 
the space on the plane and reach the values in the open 
interval (1; 2). The more the drainage pattern fills in the 
drainage basin, the more its fractal dimension approaches 
the value of 2 (Turcotte 1997).



AUC Geographica 101

1.3 Definition of landscape shapes forming complex  
 geomorphic networks

Landscape shapes, which are characterized by fractal 
geometry methods, include shapes forming complex geo-
morphic networks on the landscape, e.g. drainage patterns 
(Horton 1945), valley networks (Babar 2005), patterned 
ground polygons (Washburn 1979), or morphotectonic 
networks of lineaments (Kim et al. 2004). As watercours-
es join into drainage patterns, so the system of mutual-
ly interconnected valleys forms the valley networks, i.e. 
the system of linear depressions, each of which extends 
in the direction of its own thalweg (Davis 1913; Goudie 
2004). The basic units of the drainage patterns are there-
fore watercourses, and the basic units of valley networks 
are thalwegs. The shapes and density of drainage patterns 
and valley networks are the result of the geomorpholog-
ical development of the whole area and reflect the influ-
ence of the lithological-tectonic base (structure) and ero-
sion on the formation of the landscape (Stoddart 1997).

Six basic shapes of valley networks have been distin-
guished (Howard 1967; Fairbridge 1968; Demek 1987; 
Babar 2005; Huggett 2007): 1) dendritic networks (they 

are often formed in areas with a low vertical division 
without the influence of structures); 2) parallel networks 
(they are often formed in areas with a considerable incli-
nation of slopes or by the aggradation of large rivers; 
3) trellis networks and 4) rectangular networks (they 
occur in areas with a dominant influence of continuous – 
folds and discontinuous – faults tectonic deformations); 
5) radial networks (formed, for example, on volcanic 
cones); 6) annular networks (formed by destruction of 
vaults of sedimentary rocks).

1.4 Morphometric characteristics of complex  
 geomorphic networks

Complex geomorphic networks can be presentable 
and objectively evaluated by morphometric characteris-
tics. These characteristics describe hierarchical relations 
of units within the network and allow for a correlation 
between the sizes of several networks (Table 3) (Horton 
1945; Babar 2005; Huggett 2007). For example, morpho-
metric characteristics are commonly used in:
1) hydrology to describe drainage patterns (Horton 1945; 

Strahler 1957);

Tab. 3 Morphometric characteristics of valley networks according to Horton (1945), Turcotte (1997) and Mangold (2005).

Morphometric characteristics of valley networks

Name Calculation Definition

Number of order X valleys nX It has been determined as the number of all order X valleys in the valley network.

Valley network density D D = L / P
It has been determined as the ratio of the total lengths of thalwegs L to the valley network 
area P.

Frequency F F = N / P It has been determined as the ratio of the number of valleys n to the study area P.

Bifurcation ratio  
of valleys Rb

Rb = nX / nX+1

It indicates the rate of valley network branching. Where nX is the “number of valleys of the 
given order” according to the Gravelius ordering system (Gravelius 1914) and nX+1 is the 
“number of valleys of one order higher” in the given valley network.

Total length of order X 
valleys tX

It has been defined as the sum of lengths of all order X valleys in the valley network.

Total length-order ratio  
of valleys T

T = tX+1 / tX

Where tX is the “total lengths of valleys of the given order” according to the Gravelius 
ordering system (Gravelius 1914) and tX+1 is “the total length of valleys of one order higher” 
in the given valley network.

Average length of order X 
valleys lX

LX = tX / nX

Where tX is the “total length of valleys of the given order” according to the Gravelius ordering 
system (Gravelius 1914) and nX is the “number of valleys of the given order” in the given 
valley network.

average length-order ratio  
of valleys Rr

Rr = lX / lX+1

Where lX is the “average lengths of valleys of the given order” according to the Gravelius 
order system (Gravelius 1914) and lX+1 is the “average valley length of one degree higher 
order” in the same network.

Fractal dimension  
of valleys F

Fd = ln(Rb) / ln(Rr)
Where Rb is the “bifurcation ratio of valleys” and Rr is the “average length-order ratio of 
valleys”.

Valley junction angle
It express the angles at which the subsidiary (order X + 1) valleys run into the main (order X) 
valleys projected on a horizontal plane.

Frequency of valley  
junction angle H

H = U / P
It has been determined as the ratio of the number of valley junction angle U to the valley 
network area P.

Homogeneity of order X 
valleys

It has been defined by comparing the lengths of the longest and the shortest valleys of 
the given order. This characteristic is based on the analogy of homogeneity of the polygon 
lengths of the patterned ground. The valleys of a given order are homogeneous if the length 
of the longest order valley does not exceed three times the lengths of the shortest valley 
of the same order. If the valley network is not “homogeneous”, it is designated as being 
“variable”.
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2) geomorphology to describe valley networks (Table 3; 
Turcotte 1997; Babar 2005), morphotectonic net-
works of lineaments (Ekneligod & Henkel 2006), or to 
describe patterned ground (Washburn 1979);

3) botany to describe leaf venation (Zalensky 1904); 
4) transport geography to describe transport communi-

cations (Kansky 1963). 
The most commonly used morphometric characteris-

tics (Table 3) are based on the number of valleys, which 
are of course affected by hierarchical ordering – network 
order. In order to describe drainage patterns and valley 
networks, absolute and relative models of determining 
the network order system have been used. The absolute 
model, also called the Gravelius ordering system of drain-
age patterns (Gravelius 1914), describes the network away 
from the river mouth to the river springs (Figure 2A). 
The network is formed by the main/primary (order X) 
watercourse, into which the subsidiary/secondary (order 
X+1) watercourses flow, and into these watercourses later 
flow the tertiary (order X+2) watercourses, etc. (Gravelius 
1914). After the watercourse division (order X), a water-
course of a higher order (X+1) begins from two water-
courses above the river mouth, which has: A) a shorter 
length; B) a lower rate of flow; C) a greater angle towards 
the watercourse in front of the river point. By contrast, a 
watercourse of the same order (X) remains a watercourse 
which has: A) a greater length; B) a greater rate of flow; 
C) a smaller angle towards the watercourse in front of the 
river point (Gravelius 1914).

Relative models of network ordering systems describe 
the network away from the river springs to the estuary. 
1st order watercourses are parts of the watercourse from 
the river springs to the first node, i.e. the confluence of 
watercourses in the network. The most commonly used 
relative network order systems are:
1) Horton ordering system of drainage patterns (Hor-

ton 1945), where by joining two watercourses of the 
same order X the watercourse below the node obtains 
the order X+1 (in the direction from the river springs 
to the estuary), and at the same time the watercourse 
above of the node (in the direction from the river 
springs to the estuary) changes from order X to order 
X+1 which has: A) a greater length; or B) a smaller 
angle against the watercourse in front of the node 
(Figure 2B);

2) Strahler ordering system of drainage patterns (Strahler 
1957), where by joining two watercourses of the same 
order X the watercourse below the node (in the direc-
tion from the river springs to the estuary) obtains the 
order X+1, and where by joining two watercourses of 
different orders the watercourse below the node takes 
the number of the higher order of the watercourse 
above the node that is not increased (Figure 2C);

3) Shreve ordering system of drainage patterns (Shreve 
1966), where an addition of orders occurs (Figure 2D) 
by the joining of two watercourses, i.e. the order of 
each watercourse within the network indicates the 

total number of river springs within the network 
above this watercourse (in the direction towards the 
river springs).

2. Methods

Technical publications dealing with general fractal 
geometry and the application of its methods in various 
fields of science were selected to define and evaluate 
the basic terms of fractal geometry. The terms of fractal 
geometry were defined for an example of drainage pat-
terns and valley networks and subsequently the views 
by various authors on the river or valley networks were 
compared.

Various methods of determining the fractal dimension 
of networks were defined based on research of drainage 
patterns and valley networks. For each method the con-
ditions of use were described and subsequently their 
advantages and disadvantages compared to the other 
mentioned methods were evaluated. To evaluate the frac-
tal dimension calculations using regular grids the “frac-
tal dimension of drainage patterns and valley networks 
according to Mandelbrot (1982)”, the “box-counting 
dimensions according to Rodríguez-Iturbe & Rinaldo 
(2001) / Kolmogorov dimensions according to Zelinka & 
Včelař & Čandík (2006)”, the “box-counting dimension 
according to Turcotte (2007a)” and the “capacity dimen-
sion according to Tichý (2012)” were applied to the sche-
matic valley networks according to Howard (1967).

3. Results and discussion

3.1 Definitions of terms of fractal geometry

3.1.1 Self-similar and self-affined fractal
This is a large group of fractals, which is in particular 

used to describe and illustrate natural objects. The math-
ematical definition of self-similarity in the two-dimen-
sional space is based on the relation of points F and F´, 
where F(x, y) is statistically similar to point F´(rx, ry), 
and where r is the affine transformation (Table 2; Tur-
cotte 2007a). The self-similar fractals are isotropic, i.e. 
they have, in all respects, the same properties and the val-
ues of fractal parameters are logically not dependent on 
the orientation of x and y axes (Mandelbrot 1982, 2003; 
Rodríguez-Iturbe and Rinaldo 2001). Self-similar fractals 
are resistant to affine transformations, i.e. no matter how 
the cutout area, where the fractal landscape shape is dis-
played, will extend/diminish, rotate or shift, the fractal 
shape remains the same.

The mathematical definition of self-affinity in the 
two-dimensional space is based on the relationship of 
points F and F´, where F(x, y) is statistically similar to 
point F´(rx, rHay), where r is an affine transformation and 
Ha is the Hausdorff measure (Table 2; Turcotte 2007a). 
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Self-affined fractals are not isotropic (Mandelbrot 1982, 
2003), i.e. they do not have the same properties in all 
respects (Mandelbrot 1982, 2003) and the values of fractal 
parameters are dependent on the orientation of the x and 
y axes (Rodríguez-Iturbe and Rinaldo 2001). Self-affined 
fractals are not resistant against affine transformations, 
i.e. if the cutout of the area, in which the fractal landscape 
form is displayed, will increase/decrease, rotate or shift in 
any way, the fractal shape will change. 

The authors’ views on the shape of drainage patterns 
or valley networks differ in the world literature. Mandel-
brot (1982) describes the drainage patterns as self-simi-
lar fractals by using Horton’s laws (Horton 1945). Voss 
(1988) adapts the measurements and designates the 
drainage patterns as self-affined fractals. Kusák (2013) 
in his fractal analysis of the valley networks in the Ethi-
opian Highlands divides the shapes of valley networks 
into two groups: 1) the shapes defined by the relationship 
of the main valley and subsidiary valleys connected to 
it, i.e. dendritic, trellis and rectangular valley networks 
that meet the definition conditions of self-similarity; and 
2) the shapes defined on the basis of mutual relation of 
several major valleys, i.e. parallel, radial and annular val-
ley networks that meet the conditions of the self-affinity 
definition.

3.1.2 Hierarchical scale, fractal self-similarity, physical limits  
 of the system

At the beginning of each landscape research it is nec-
essary to determine the scale to which the given shapes 
are described. When the map scale is increased (decrease 
in the size of pixel/picture element, decrease in the study 
area), a greater number of smaller shapes is shown on 
the map, e.g. cirques, etc. Such shapes are independent 
of each other and have a non-hierarchical scale (Bendix 
1994). 

Complex geomorphic networks consist of con-
stantly recurring characteristic shapes, so called fractal 

self-similarity (Mandelbrot 1982; Stuwe 2007). The fractal 
shape can be divided into parts, each of which is (at least 
approximately) a copy of the whole shape. Fractal land-
scape shapes are thus defined in any resolution without 
giving the scale and their shape remains the same at any 
magnification or reduction (Baas 2002; Farina 2006). So 
the shapes in the given scale are affected by the whole 
of the superior scale and they alternatively influence the 
sub-whole of the hierarchically interior scale. According 
to Bendix (1994) the scale-independent shapes have a 
hierarchical scale. Self-similarity can in practice mean 
that when illustrating river drainage patterns without 
giving any scale, the flow of e.g. the Amazon is not recog-
nizable from any other water course (Figure 1). Tarbotton 

Fig. 1 Ordering systems of drainage patterns. Note: A – Gravelius 
ordering system of drainage patterns (Gravelius 1914); B – Horton 
ordering system of drainage patterns (Horton 1945); C – Strahler 
ordering system of drainage patterns (Strahler 1957); D – Shreve 
ordering system of drainage patterns (Shreve 1966).

Fig. 2 Fractal self-similarity of drainage patterns. Note: A – Amazon drainage pattern (drainage basin 6,915,000 km2); B – Berounka 
drainage pattern (drainage basin 8,855.47 km2).
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(1996) terms this property of fractal landscape shapes as 
the scale independence, Turcotte (1997, 2007a, 2007b) 
terms it as the scale invariance.

When measuring the length of a coast line it holds 
true that the length of the coastline increases with a more 
detailed scale (Mandelbrot 2003), i.e. the so-called Rich-
ardson effect (Zelinka & Včelař & Čandík 2006). In a 
mathematical sense, the geometrical structure in fractals 
is repeated up to infinity, i.e. the coastline would reach an 
infinite length at an infinitely large scale. With the fractal 
structure of landscape shapes there are certain bounda-
ries that cannot be overcome, so called physical limits to 
the system. For example, according to Tichý (2012) the 
ratio between the largest and the smallest part of a fractal 
(self-similar) landscape shape is a maximum of 500 : 1. 
However, figure 2 shows that the ratio between the shape 
of the Amazon’s drainage pattern and that of the Beroun-
ka is approximately 781:1. Due to the physical limits of 
the system, i.e. the limit that cannot be overcome in the 
landscape, geomorphology uses the fractal dimension of 
a final line (sensu Mandelbrot 2003).

3.2 Fractal dimension of drainage patterns  
 and valley networks

3.2.1 “Fractal dimension of drainage patterns and valley networks 
 according to Turcott (1997)”

Turcotte (1997, 2007a, 2007b) studied the use of frac-
tals to describe the landscape and on the basis of bifurca-
tion ratio Rb and the length-order ratio Rr (Table 2), he 
compiled a formula for calculating the fractal dimension 
D of drainage patterns and valley networks:

D = ln(Rb) / ln (Rr).

The value of a fractal dimension indicates the extent 
to which the area is filled with watercourses or valleys. 
Increasing the value of the fractal dimension of drain-
age patterns of the order X + 1 means that the number of 
watercourses of the order X + 1 has increased or that the 
length of watercourses of the order X + 1 has increased, 
and the drainage patterns therefore fill the study area to 
a greater extent. The fractal dimension of drainage pat-
terns and valley networks are different in various regions 
(due to the influence of the structural bedrock, tectonic 
activities) and even within a single region when changing 
the scale (Burrough 1981; Sung et al. 1998; Sung & Chen 
2004). 

However, Phillips (2002) describes the inaccuracies 
of the “fractal dimension of drainage patterns and valley 
networks according to Turcotte (1997)”. The formula for 
calculating the fractal dimension is based on the bifur-
cation ratio and length-order ratio, which are based on 
the first and the second of Horton’s law (Horton 1945). 
Horton’s laws describe drainage patterns as self-similar 
fractals, i.e. he gives the same values of bifurcation ratios 
and length ratios between all orders. Real drainage pat-
terns, however, are not self-similar (Voss 1988; De Cola & 

Lam 2002b). According to Phillips (2002), Horton’s laws 
are more mathematical abstractions than the real state of 
the drainage patterns. Phillips (2002) conducted an anal-
ysis of the drainage patterns in the southern Appalachi-
an Mountains with 30% of the drainage patterns having 
Fd < 1; 36% of the drainage patterns having 1 < Fd < 2; 
and 34% of the drainage patterns having Fd > 2. The “frac-
tal dimension of drainage patterns and valley networks 
according to Turcotte (1997)” is therefore not limited by 
an open interval (1; 2). Although the “fractal dimension 
of drainage patterns and valley networks according to 
Turcotte (1997)” is not limited by the open interval (1; 2), 
it is recognized in the world literature as a universal meth-
od for calculating the fractal parameters of drainage pat-
terns and it is used most in geographic studies (e.g. Sung 
et al. 1998; Sung & Chen 2004; Turcotte 2007a, 2007b). 

3.2.2 Determination of dimensions through the use of regular grids
Turcotte (2007a) studied self-affined fractal shapes and 

in determining the fractal dimension of shapes he over-
laps these shapes with a regular grid, where each cell in 
the regular grid has dimensions r and h. Turcotte (2007a) 
gave an example of a self-affined fractal structure, where 
in the first step, the original shape of the line (indicator), 
which can be overlapped by just one cell, is divided into 
four lines (generator) that can be overlapped by four cells 
of a regular grid (Figure 3A, 3B). In the second and third 

Fig. 3 Example of self-affined fractals according to Turcotte 
(2007a), modified. Note: A – zero initial condition of the shape of 
a self-affined fractal: an initiator, i.e. a straight line leading from 
point X(0, 0) to point Y(r, h), overlaid with one cell of a regular grid; 
B – the first step in the formation a self-affined fractal: generator, 
consisting of four lines, overlaid with four cells of regular grids;  
C – the second step in the formation of a self-affined fractal, 
overlaid with 16 cells of regular grids; D – the third step in the 
formation of a self-affined fractal, overlaid with 64 cells of regular 
grids.
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step, each line (initiator) is likewise divided into four lines 
(generator), which can be overlapped exactly by sixteen 
(Figure 3C) and sixty four (Figure 3D) cells of a regular 
grid, respectively.

A regular grid can also be used in determining the size 
and shape complexity of complex geomorphic networks 
and their fractal dimension, e.g. Mandelbrot (1982), 
Rodríguez-Iturbe & Rinaldo (2001), Zelinka & Včelař & 
Čandík (2006), Turcotte (2007a) or Tichý (2012) (Table 4). 
A complex geomorphic network, such as a drainage pat-
tern or valley network, is overlapped by a regular grid, 
the size of the cell side is usually defined in the inter-
val r (0, 1) (Rodríguez-Iturbe & Rinaldo 2001). The cell 
size r in each step gradually decreases, thus the regular 

grid overlapping the drainage pattern or valley network 
becomes more detailed. The closer r is to 0, the more 
accurate the value of the box-counting dimension. The 
value of the fractal dimension is not dependent on the 
base of the logarithm (Table 4). 

It was determined that the “fractal dimension of drain-
age patterns and valley networks according to Mandel-
brot (1982)”, the “box-counting dimension according to 
Turcotte (2007a)” and the “capacity dimension according 
to Tichý (2012)” reach values in the open interval (1, 2) 
(Table 4, Figure 5) in four steps using a regular grid, i.e. 
the first step r1 = 1, the second step r2 = 0.5, the third 
step r3 = 0.25, and the fourth step r4 = 0.125 (Table 4; 
Figure 4), on schematic valley networks according to 

Tab. 4 The method of determining the fractal dimension by application of the regular grid by different authors and their application of 
schematic valley networks by Howard (1967). 

Name Calculation Dendritic Parallel Trellis Rectangular Radial Annular

“fractal 
dimension 
of drainage 
patterns 
and valley 
networks 
according to 
Mandelbrot 
(1985)”

N2 / N1 = kD

After 
modification:

D = ln(k) (N2 / N1)
or

D = log(k) (N2 / N1)

D – fractal dimension; N1 –number 
of cells covering drainage pattern 
and valley network with sizes x1  
and y1; N2 – number of cells 
covering drainage pattern and 
valley network with sizes x2 = kx1 
and y2 = ky1; k – scaling factor, i.e. 
r1/r2, where r1 – length of the cell 
side of the regular grid which 
covers drainage pattern and valley 
network with N1 cells; r2 – length 
of the cell side of the regular grid 
which covers drainage pattern  
and valley network with N2.

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 33
N3 = 113
N4 = 286
D1 = 1.874
D2 = 1.776
D3 = 1.340

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 35
N3 = 120
N4 = 309
D1 = 1.959
D2 = 1.778
D3 = 1.365

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 35
N3 = 135
N4 = 438
D1 = 1.959
D2 = 1.948
D3 = 1.698

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 31
N3 = 104
N4 = 244
D1 = 1.784
D2 = 1.746
D3 = 1.230

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 32
N3 = 92
N4 = 231
D1 = 1.830
D2 = 1.524
D3 = 1.328

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 27
N3 = 79
N4 = 212
D1 = 1.585
D2 = 1.549
D3 = 1.424

“box-counting 
dimensions 
according to 
Rodríguez-
Iturbe & 
Rinaldo (2001) 
/ Kolmogorov 
dimensions 
according 
to Zelinka 
& Včelař & 
Čandík (2006)”

D = ln N(r) / ln 
(1/r)

or
D = log N(r) / log 

(1/r)

D – box-counting dimension / 
Kolmogorov dimension; r – length 
of one cell side of the regular grid, 
which covers drainage pattern 
and valley network; N(r) – number 
of cells of the regular grid, which 
covers drainage pattern and 
valley network. Calculation of 
ox-counting dimension is defined 
only for cell sizes lengths r (0; 1), 
and the closer the r is to 0, the 
value of box-counting dimension 
is more accurate. 

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 33
N3 = 113
N4 = 286
D1 – can not
D2 = 5.044
D3 = 3.410
D4 = 2.720

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 35
N3 = 120
N4 = 309
D1 – can not
D2 = 5.129
D3 = 3.453
D4 = 2.757

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 35
N3 = 135
N4 = 438
D1 – can not
D2 = 5.129
D3 = 3.538
D4 = 2.925

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 31
N3 = 104
N4 = 244
D1 – can not
D2 = 4.954
D3 = 3.350
D4 = 2.644

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 32
N3 = 92
N4 = 231
D1 – can not
D2 = 5.000
D3 = 3.262
D4 = 2.617

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 27
N3 = 79
N4 = 212
D1 – can not
D2 = 4.755
D3 = 3.152
D4 = 2.576

“box-counting 
dimension 
according 
to Turcotte 
(2007a)”

D = ln (N2/N1) / 
ln (r1/r2)

or
D = log (N2/N1) / 

log (r1/r2)

D – box-counting dimension;  
N1 – number of cells covering 
drainage pattern and valley 
network with sizes r1; N2 – number 
of cells covering drainage pattern 
and valley network with sizes r2.

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 33
N3 = 113
N4 = 286
D1 = 1.874
D2 = 1.776
D3 = 1.340

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 35
N3 = 120
N4 = 309
D1 = 1.959
D2 = 1.778
D3 = 1.365

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 35
N3 = 135
N4 = 438
D1 = 1.959
D2 = 1.948
D3 = 1.698

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 31
N3 = 104
N4 = 244
D1 = 1.784
D2 = 1.746
D3 = 1.230

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 32
N3 = 92
N4 = 231
D1 = 1.830
D2 = 1.524
D3 = 1.328

r1 = 1
r2 = 0.5
r3 = 0.25
r4 = 0.125
N1 = 9
N2 = 27
N3 = 79
N4 = 212
D1 = 1.585
D2 = 1.549
D3 = 1.424

“capacity 
dimension 
according to 
Tichý (2012)”

D = ln (N) / ln (n)
or

D = log (N) / 
log (n)

D – capacity dimension;  
N – number of cells covering 
drainage pattern and valley 
netrosk; n – number of cells 
forming the site of regular grid.

N1 = 9
N2 = 33
N3 = 113
N4 = 286 
n1 = 3
n2 = 6
n3 = 12
n4 = 24
D1 = 2.000
D2 = 1.951
D3 = 1.902
D4 = 1.780

N1 = 9
N2 = 35
N3 = 120
N4 = 309
n1 = 3
n2 = 6
n3 = 12
n4 = 24
D1 = 2.000
D2 = 1.984
D3 = 1.927
D4 = 1.804

N1 = 9
N2 = 35
N3 = 135
N4 = 438
n1 = 3
n2 = 6
n3 = 12
n4 = 24
D1 = 2.000
D2 = 1.984
D3 = 1.974
D4 = 1.914

N1 = 9
N2 = 31
N3 = 104
N4 = 244
n1 = 3
n2 = 6
n3 = 12
n4 = 24
D1 = 2.000
D2 = 1.917
D3 = 1.869
D4 = 1.730

N1 = 9
N2 = 32
N3 = 92
N4 = 231
n1 = 3
n2 = 6
n3 = 12
n4 = 24
D1 = 2.000
D2 = 1.934
D3 = 1.820
D4 = 1.713

N1 = 9
N2 = 27
N3 = 79
N4 = 212
n1 = 3
n2 = 6
n3 = 12
n4 = 24
D1 = 2.000
D2 = 1.839
D3 = 1.758
D4 = 1.685
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Fig. 4 Using a regular grid for the calculation of the fractal dimension of schematic valley networks according to Howard (1967). Note:  
A – dendritic valley network; B – parallel valley network; C – trellis valley network; D – rectangular valley network; E – radial valley network; 
F – annular valley network; 1 – the first step: r1 = 1, N1 (A, B, C, D, E, F) = 9; 2 – the second step: r2 = 0.5, N2 (A) = 33, N2 (B, C) = 35, N2 (D) = 31, 
N2 (E) = 32, N2 (F) = 27; 3 – the third step: r3 = 0.25, N3 (A) = 113, N3 (B) = 120, N3 (C) = 135, N3 (D) = 104, N3 (E) = 92, N3 (F) = 79; 4 – the fourth 
step: r4 = 0.125, N4 (A) = 286, N4 (B) = 309, N4 (C) = 438, N4 (D) = 244, N4 (E) = 231, N4 (F) = 212.
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Fig. 5 Value of fractal dimensions applied to schematic valley networks according to Howard (1967). Note: A – “fractal dimension of 
drainage patterns and valley networks according to Mandelbrot (1982)”; B – “box-counting dimension according to Rodriguez-Iturbe & 
Rinaldo (2001) / Kolmogorov dimension according to Zelinka & Včelař & Čandík (2006)”; C – “box-counting dimension according to Turcotte 
(2007a); and D – “capacity dimension according to Tichý (2012)”.

Howard (1967). This is in accordance with the definitions 
of a fractal dimension according to Hausdorff (1919 in 
Mandelbrot 2003), Baas (2002), and others. When Tur-
cotte (2007a) defines the calculation of his “box-counting 
dimension”, he refers to the definition of a “fractal dimen-
sion of drainage patterns and valley networks according 
to Mandelbrot (1982)”, and although this calculation 
is adjusted in the four steps, the values of both dimen-
sions are identical (Table 4; Figure 5). The values of the 
“box-counting dimension according to Rodriguez-Itur-
be & Rinaldo (2001) / Kolmogorov dimension according 
to Zelinka & Včelař & Čandík (2006)”, are greater than 

2 (Table 4; Figure 5). In each further step the value of 
the dimension decreases. Thus, in order for the dimen-
sion value to reach values of an open interval (1, 2) more 
steps are required than for the other mentioned fractal 
dimensions.

3.2.3 Cellular automata
Fonstad (2006) studied the relations between land-

scape ecology and geomorphology and he studied fractal 
landscape shapes by means of so-called cellular automa-
ta. Cellular automata are used for modeling the time and 
space of fractal systems. The study area is divided into 
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discrete cells (squares, triangles or hexagons), which form 
a regular grid (square, triangular or hexagonal), called a 
cellular network. The cell size is determined based on the 
parameters of a specific territory, i.e. it varies in differ-
ent studies. Cells in the network have values according 
to whether or not they contain the studied fractal shape, 
i.e. if the value of the cell is 1 (black), the fractal shape is 
present but if the value of the cell is 0 (white), the fractal 
shape is not present. In each step, the cell values change 
depending on the value of the individual cells and their 
surroundings.

Cellular automata were first used in geomorphology 
by Barca et al. (1986) during the research of landslides 
and erosion. Afterwards cellular automata were used 
in other geomorphological studies, for example on the 
areal extent of erosion, the spatial distribution of aeoli-
an sediments, or shapes of sand dunes. For the study of 
drainage patterns, cellular automata can be used only: 
1) in semi-arid or arid areas where there are temporary 
streams (no surface runoff during the year); or 2) in areas 
where the bedrock is composed of unconsolidated rocks, 
that allow river braiding, and where the river easily and 
quickly relocates its riverbed. In such areas, the cell val-
ues in cellular automata may change and the changes of 
drainage patterns can be modeled using cellular autom-
ata. However, in most cases of drainage patterns and in 
all cases of valley networks, the use of cellular automata 
is not possible, since the cells in the grid should always 
have the same values. Despite the fact that in most cases 
of drainage patterns and in all cases of valley networks 
the use of cellular automata is not possible (because the 
cells in the grid have the same values), the “fractal cel-
lar model according to Bi et al. (2012)” is considered 
to be inspirational and therefore will also be briefly 
analyzed.

3.2.4 “Fractal cellular model according to Bi et al. (2012)”
Bi et al. (2012) use a “fractal cellular model” to eval-

uate the fractal dimension of the landscape in the area 
of the Ordos Block (an area of 500,000 km2 with locat-
ed between the North China Platform and the Tibetan 
Plateau). This method can show the spatial variation of 
the fractal properties of the relief. It is a moving model, 
where “windows” of varying sizes are created which shift 
on the digital images of the area. The size of the squares 
sides W, which form a quadratic grid, is calculated from 
the relationship: 

W = 2n + 1,

where n is a positive whole number in the interval <1; 
10>. If n = 6 m, then the size of the shifting “window” is 
65 × 65 m. The “window” with a size of 65 × 65 m is shift-
ed: 1) from the upper left corner of the study area to the 
bottom right corner; 2) only about 33 m, so that the seg-
ments of the area always partially overlap. Fractal param-
eters are then examined in the parts of the relief that cap-
ture the shifting “window”. As with the cellular automata 

the areas in the “window” are designed as homogeneous 
units that can reach values of 1 (black) = there is a fractal 
shape and 0 (white) = there is not a fractal shape.

In general, calculating the size of the squares accord-
ing to Bi et al. (2012) can also be applied for the study of 
other fractal landscape shapes. For example, when stud-
ying drainage patterns or valley networks, we can substi-
tute n by the most numerous units in the network, i.e. the 
most frequent length of the rivers or valleys in the study 
area. In order to study the drainage patterns or valley net-
works, which consist of the largest number of 3 km long 
rivers or valleys, an area of 81 km2 is ideal (sensu Bi et al. 
2012). The fractal dimension can then be determined, for 
example using the “fractal dimension of drainage patterns 
and valley networks according to Turcotte (1997)”, and 
then it is possible to compare how the value of the fractal 
dimension varies in different parts of the basin or when 
resizing the “windows”.

4. Conclusion

Fractal landscape shapes are defined in any resolution 
without indicating the scale, i.e. the shape remains the 
same at any magnification or diminution (Baas 2002; 
Farina 2006), and they have a so-called hierarchical scale 
(Bendix 1994), where the shapes in the given scale are 
affected by the whole of the superior scale and they alter-
natively affect the subcomplex of a hierarchically lower 
scale. Self-similar and self-affined fractals are primarily 
used to describe and illustrate natural objects. Wherein, 
e.g. in determining the fractal shape of drainage patterns 
and valley networks, the results according to Mandelbrot 
(1982) and Turcott (1997), i.e. self-similar fractals, and 
according to Voss (1988), i.e. self-affined fractals, are 
different.

If the drainage patterns or valley networks are self-
similar fractals, then the fractal dimension can be best 
determined using the “fractal dimension of drainage pat-
terns and valley networks according to Turcotte (1997)”. 
Although this is not limited by the open interval (1, 2) 
many authors use it as a universal method for calculating 
the fractal parameters and it is frequently used. If there is 
also an area of interest, i.e. a catchment area or area of the 
valley network which is divided into sub-areas, e.g. using 
the method according to Bi et al. (2012), the resulting 
value of the “fractal dimension of the drainage patterns 
and valley networks according to Turcotte (1997)” would 
be more accurate.

If the drainage patterns or valley networks are self-
affined fractals, it is better to determine the fractal dimen-
sion by methods that use regular grids. When applying 
the method to determine the fractal dimension using a 
regular grid on a schematic valley network according to 
Howard (1967) it was determined that the “fractal dimen-
sion of drainage patterns and valley networks by Man-
delbrot (1982)”, “box-counting dimension according to 
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Turcotte (2007)” and “capacity dimension according to 
Tichý (2012)” show a value in the open interval (1, 2). In 
contrast, the value of “box-counting dimensions accord-
ing to Rodríguez-Iturbe & Rinaldo (2001) / Kolmogorov 
dimensions according to Zelinka & Včelař & Čandík 
(2006)”, was greater than 2, so to reach the values in the 
open interval (1, 2), more steps are needed than for the 
other fractal dimensions.
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RESUMÉ

Rešeršní článek: metody fraktální geometrie používané  
při studiích komplexních geomorfologických sítí

Metody fraktální geometrie umožňují kvantitativně popsat 
soběpodobné či soběpříbuzné tvary reliéfu, umožňují komplexní/
holistické studium přírodních objektů v různých měřítkách a srov-
nání hodnot analýz z různých měřítek (Mandelbrot 1967; Burrough 
1981). Vzhledem k hierarchickému měřítku (Bendix 1994) a frak-
tálové soběpodobnosti (Mandelbrot 1982; Stuwe 2007) fraktálních 
tvarů reliéfu tvořících složité sítě musejí být k jejich reprezentativ-
nímu a objektivnímu zhodnocení použity vhodné morfometrické 
charakteristiky a zvoleno vhodné měřítko.

Tento rešeršní článek definuje a porovnává: 1) základní termíny 
fraktální geometrie, tj. fraktálová dimenze, soběpodobné, soběpří-
buzné a náhodné fraktály, hierarchické měřítko, fraktální soběpo-
dobnost a fyzikální hranice systému; a 2) vybrané metody určení 
fraktální dimenze geomorfologických komplexních sítí. Z fraktál-
ních tvarů reliéfu tvořící komplexní sítě kladen důraz především 
na říční a údolní sítě. 

Pokud říční či údolní sítě tvoří v různých měřítkách soběpo-
dobné fraktály, je vhodné pro určení jejich fraktálních dimenzí 
užít „fraktální dimenze říčních a údolních sítí dle Turcotta (1997)“. 
Naopak pokud říční či údolní sítě tvoří soběpříbuzné fraktály, je 
vhodné pro určení jejich fraktálních dimenzí užít metody využíva-
jící pravidelné mřížky. Při aplikaci metod určení fraktální dimen-
ze pomocí využití pravidelné mřížky na schématické údolní sítě 
dle Howarda (1967) bylo zjištěno, že „fraktální dimenze říčních 
a údolních sítí dle Mandelbrota (1985)“, „sčítací dimenze dle Tur-
cotta (2007a)“ a „kapacitní dimenze dle Tichého (2012)“ dosahu-
jí hodnot v otevřeném intervalu (1; 2). Naopak hodnoty „sčítací 
dimenze dle Rodríguez-Iturbe & Rinalda (2001) / Kolmegorovovy 
dimenze dle Zelinky, Včelaře & Čandíka (2006)“ byly větší než 2, 
čili pro dosažení hodnot v otevřeného intervalu (1; 2), je třeba více 
kroků než u ostatních fraktálních dimenzí. 
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