Land Use Systems in the <mark>Brazilian Amazon</mark>

Gilvan Guedes Alisson Barbieri Bernardo Queiroz CEDEPLAR/UFMG

Eduardo S. Brondizio ACT/Indiana University

INDIANA UNIVERSITY

Setting the stage...

- The literature on LULCC suggests that **pasture** and **commodities** (meat and soy) are the most prevalent LU systems found in the Amazon (Moran & Ostrom, 2009).
- Among smallholders, however, we find a much more heterogeneous figure (Deadman et al., 2004).
- Annual crops are usually related to more impoverished and younger households
- Perennial crops are more likely to be found in older, multigenerational and financially-buffered households.
- Cattle ranching is mostly adopted by older households (empty nest): labor shortage / savings (Walker et al. 2000; Brondizio & Moran, 2012)

Setting the stage...

- In this presentation, we share some results on the partial impact of household and farm life cycles, as well as market integration, on land use systems in smallholders frontiers.
- We combine qualitative instruments (participatory sketch maps and in-depth interview) and quantitative methods (multivariate latent class models, non-linear regression, and SURE), applied on longitudinal data for 402 farm lots in the Eastern part of the Brazilian Amazon.

Setting the stage...

• Our results suggest that:

- proximity to markets and life cycles have significant non-linear effects on system choice
- landowners adjust their land use systems based on market stimulus, constrained by the viability of the type of soil
- market integration dominates HLC and OPLC → post-frontier stage.
- labor constraint is overcome by informal exchange of days of labor

Traditional Theories Challenged

- Low empirical support for household life cycle (HLC) effect on LULC in the Amazon (VanWey et al. 2007)
- Small-scale studies suggest rational individual behavior regarding perceived returns to capitals over frontier development (VanWey et al., 2012; Brondizio & Moran, 2008; Caldas et al. 2007; Murphy 2001)
- Connectivity to markets attenuates the role of life cycles as frontiers evolve to a post-frontier scenario (Sherbinin et al. 2008; Summer 2008; Browder & Godfrey 1997):
 - o Urbanization
 - Internal / circular migration
 - Endogenous institutions (family and social networks)

market integration in perspective

Life cycles and

Framework predictions

CYCLE DOMINANCE							
Stage of Frontier Development	Deforestation	Commercial Land Use	nmercial Subsistence nd Use Land Use				
Initial	HLC	NS	HLC				
Intermediate	HLC = OPLC	HLC = OPLC	HLC = OPLC				
Advanced	HLC < OPLC	OPLC	HLC = OPLC				
CYCLE INTERACTION							
Interaction	Deforestation	Commercial Land Use	Subsistence Land Use				
HLC * OPLC	-	/+++					
	MESO LEVEL INS	TITUTIONS					
Household Strategy	Deforestation	Commercial Land Use	Subsistence Land Use				
Diversifying livelihoods	-	NS	NS				
Agricultural productivity	-	+	-				
Agricultural extensification	+	+	NS				

Altamira Settlement Area

Altamira Settlement Area: Disappearing Forest...

2000's

From forest to farming: a changing landscape

Data & Analytical Sample

• Longitudinal stratified survey representative of the rural properties in the area (N = 3978)

• Original sample of **402 properties** (and owning households) in 1997/98

• Follow-up in 2005 (rural and urban areas)

 Attrition and list-wise deletion reduced our analytical sample to 258 properties

Analytical Strategy

- Participatory Sketch Maps used to inform the locally informed number of reference land use systems (bottom-up approach)
- Grade of Membership Model construction of multidimensional land use systems (type of crops, destination of agric. production, amount produced)
- Multinomial and Seemingly Unrelated Regression Models (partial effects of cycles and market integration)
- In-depth interview (qualitative illustration of unexpected results)

Cycles Interaction (Descriptive) Household Dep. Ratio X Land Use

Results

Multinomial Regression (N=258)

Variable	Pasture + Annual	Perennial + Pasture	Pasture + Cattle	Mixed			
HOUSEHOLD LIFE CYCLE							
Demographic household dependency ratio							
(dependents/adults)	-7.880**	0.388	-2.561	-5.446**			
Number of years living on the property (years)	-0.183***	-0.010	-0.121**	-0.086*			
CYCLES INTERACTION							
Years on the property x Dependency ratio	0.354**	-0.083	0.034	0.277***			
PROPERTY LIFE CYCLE							
Time since first occupation of the property	0.163	-0.053	-0.695	-0.409			
INTEGRATION INTO MARKETS							
Distance of the property to urban Altamira (ha.)	-0.00003***	-8.18e-06	-0.00005***	-7.42e-06			
Proportion of agricultural production sold (%)	-0.017*	-0.008	-0.007	-0.005			
MESO-LEVEL INSTITUTIONS							
No participation in unions/associations (0/1)	0.665	0.734	0.817	0.516			
Did any household member out-migrate? (0/1)	-0.385	0.028	-1.799**	0.250			
Did any migrant remit to the household? (0/1)	0.094	-0.191	-0.467	0.247			

Base system: Perennial.

Results

SURE Regression (N=258)

Variable	Perennial	Pasture	Annual				
HOUSEHOLD LIFE CYCLE							
Demographic household dependency ratio							
(dependents/adults)	12.86***	-26.83**	0.711				
ON THE PROPERTY LIFE CYCLE							
Number of years living on the property (years)	0.226**	-0.791***	-0.0232				
CYCLES INTERACTION							
Years on the property x Dependency ratio	-0.592***	0.812	-0.0440				
PROPERTY LIFE CYCLE							
Time since first occupation of the property	-1.131***	-1.009	0.158				
INTEGRATION INTO MARKETS							
Distance of the property to urban Altamira (ha.)	4.62e-05**	-0.000138**	-1.56e-05**				
Proportion of agricultural production sold (%)	0.0300**	-0.0408	0.000628				
MESO-LEVEL INSTITUTIONS							
No participation in unions/associations (0/1)	-1.574	1.843	0.649				
Did any household member out-migrate? (0/1)	0.727	-3.367	0.427				
Did any migrant remit to the household? (0/1)	0.187	-0.952	-0.0240				

OPLC > HLC (commercial land use) NOT SIGNIFICANT (subsistence land use)

OCYCLE INTERACTION NEGATIVE*** (perennials) / NEGATIVE^{NS} (pasture) NEGATVE^{NS} (annuals)

MARKET INTEGRATION (standardized betas)
 DISTANCE > HLC & OPLC (commercial land use)
 Direction of effect explained by spatial distribution of soil type (see backup slide)

So what?

- Cycle dominance suggests Altamira Settlement Area is in a transitory stage towards a postfrontier scenario.
- Cycle interaction suggests that the knowledge about the biophysical environment is increasingly important for commercial land use, regardless of the history of property use.

So what?

• Cohort effect:

- Older cohorts of smallholders seem to take advantage of the cumulative knowledge on the biophysical chars of the region (perennial production) → protective of forest.
- Newer cohorts tend to adopt more short-term strategies – low labor cost / high fungibility (cattle ranching) → negative externalities
- Older cohorts more likely to use capital from networks to diversify beyond agriculture

Acknowledgements

• This research is funded by:

 NIH-funded project "Amazonian Deforestation and the Structure of Households", grant R01-HD35811-09, a collaborative effort between Indiana University, Anthropological Center for Training and Research on Global Environmental Change and the Population Study Center, Campinas State University, Brazil.

Comments: Gilvan Guedes grguedes@cedeplar.ufmg.br

Backup Slides

Next steps

- General equilibrium model → increase in pasture and diversification beyond agriculture both have indirect impact on local and urban labor markets, migration flows and LULC.
- Meta-analysis with our other study sites:
 - In the Amazon: (1) Machadinho D'Oeste (Brazil);
 (2) Santarém/Belterra (Brazil); (3) Northern
 Ecuadorian Amazon
 - In Thailand: Nang Rong

Deforestation where? Arc of Deforestation

Importance of Cacao Production

The Participatory Sketch Map

How we created the land use systems variable (fuzzy)

- (1) Selection and treatment of variables: land use classes, destination of agricultural production (by crop); total produced (by crop);
- (2) **Use of** the model Grade of Membership (**GoM**)
- (3) **Boolean expressions** to create mixed types using gik to the extreme profiles;
- (4) Test of means and proportions to regroup mixed types;
- (5) creation of multicategorical variable, based on results from (2), (3), and (4).

Theoretical Framework: Cycles are not the same!

