
TECHNICAL REVIEW

A practical guide to methods of parentage analysis

ADAM G. JONES, CLAYTON M. SMALL, KIMBERLY A. PACZOLT and NICHOLAS L. RATTERMAN

Department of Biology, 3258 TAMU, Texas A&M University, College Station, TX 77843, USA

Abstract

The use of molecular techniques for parentage analysis has been a booming science for over

a decade. The most important technological breakthrough was the introduction of microsatel-

lite markers to molecular ecology, an advance that was accompanied by a proliferation and

refinement of statistical techniques for the analysis of parentage data. Over the last several

years, we have seen steady progress in a number of areas related to parentage analysis, and

the prospects for successful studies continue to improve. Here, we provide an updated guide

for scientists interested in embarking on parentage analysis in natural or artificial popula-

tions of organisms, with a particular focus on computer software packages that implement

various methods of analysis. Our survey of the literature shows that there are a few estab-

lished methods that perform extremely well in the analysis of most types of parentage stud-

ies. However, particular experimental designs or study systems can benefit from some of the

less well-known computer packages available. Overall, we find that parentage analysis is fea-

sible and satisfying in most systems, and we try to provide a simple roadmap to help other

scientists navigate the confusing topography of statistical techniques.
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Introduction

Parentage analysis is a cornerstone of research in molecu-

lar ecology. Patterns of parentage play a central role in

the study of diverse ecological and evolutionary topics,

such as sexual selection (Yezerinac et al. 1995; Jones &

Avise 1997a,b), patterns of dispersal and recruitment

(Dow & Ashley 1996; Hardesty et al. 2006), estimation

of quantitative genetic parameters (Kruuk et al. 2000;

Garant & Kruuk 2005) and conservation biology (Haig

1998; Planes et al. 2009). However, parentage analysis is

still a relatively young discipline. The molecular ecology

revolution arguably started in the late 1960s with the

advent of allozyme electrophoresis (Hubby & Lewontin

1966). In the early days of molecular ecology, parentage

analysis was nearly impossible, with some notable excep-

tions (Ellstrand 1984; Gowaty & Karlin 1984), because of

the low levels of polymorphism characteristic of protein-

based markers. The study of parentage started to gain

steam with the discovery that DNA probes could be used

in humans and other organisms to reveal variation at

minisatellite loci, a technique known as ‘DNA finger-

printing’ (Jeffreys et al. 1985). This multi-locus DNA

fingerprinting approach was rapidly adopted by

avian behavioural ecologists (Burke & Bruford 1987),

resulting in tremendous insights into extra-pair mating

(Westneat & Sherman 1997; Petrie & Kempenaers

1998). However, technical and statistical limitations

slowed the spread of DNA fingerprinting applications

outside of birds and mammals. Several years after

the development of DNA fingerprinting, the discovery of

microsatellite markers (Tautz 1989), also known as

simple sequence repeats, blew the taxonomic doors wide

open and started the current golden age of parentage

analysis.

The introduction of microsatellite markers resulted in

a complete parentage analysis overhaul, because they

were the first easily assayable single-locus, codominant,
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hypervariable markers (Avise 2004; Pemberton 2009).

Even though multi-locus DNA fingerprinting was rela-

tively simple methodologically, the banding patterns

were extremely difficult to handle from a statistical

standpoint, so parentage analysis had to be calibrated by

the expected number of shared bands among different

classes of relatives for any particular population or

species. Microsatellites, on the other hand, followed the

rules of Mendelian segregation, and key parts of the sta-

tistical theory related to parentage analysis had already

been developed (Thompson 1975, 1976a; Meagher 1986;

Meagher & Thompson 1986; Devlin et al. 1988). Thus, the

field of parentage analysis was intellectually prepared for

microsatellites, and plenty of empirical questions were

waiting for answers. In this review, we explore how far

we have come since the early days of microsatellite-based

parentage analysis by answering a few key questions. For

example, are microsatellites still the marker of choice?

What kind of sampling strategy produces the best

results? What type of parentage analysis technique is

appropriate for a given system? And what are the

remaining challenges in parentage analysis?

Types of parentage analysis

In a previous review, Jones & Ardren (2003) categorized

parentage analysis techniques into four categories: exclu-

sion, categorical allocation, fractional allocation, and

parental reconstruction. In the last 6 years, a number of

new techniques have been developed and each category

of techniques could warrant an entire review article of its

own. Thus, rather than belabouring the details of the

methods, we describe the statistical approaches in a non-

technical way and refer the reader to specific articles that

describe the nuts and bolts of each technique. In this arti-

cle, we focus on the practical side of parentage analysis;

so the main goal is to review techniques that have been

implemented in computer software packages that are

accessible to beginning researchers in the field of molecu-

lar ecology. Over the last several years, noteworthy

improvements in methods have resulted in the addition

of two new categories of statistical techniques that can

now be fruitfully applied in the context of parentage

studies. We call these two categories ‘full probability par-

entage analysis’ (Hadfield et al. 2006) and ‘sibship recon-

struction’ (Thomas & Hill 2002). Here, we briefly

describe the six categories of parentage analysis tech-

niques and give shorter definitions in Box 1.

Exclusion

The logic behind exclusion is remarkably simple.

Given the rules of Mendelian inheritance for diploid

organisms, a parent and an offspring will share at

least one allele per locus for a codominant marker

(Chakraborty et al. 1974). If a putative parent fails to

share an allele with the offspring of interest, then that

parent can be eliminated from consideration as a true

parent. However, despite the simplicity of the exclu-

sion approach, some pitfalls are possible. First, any

marker characteristic that prevents inheritance from

appearing strictly Mendelian to the observer could

result in false exclusions of true parents. Microsatellite

markers are especially vulnerable to these types of

phenomena. For example, a germ-line mutation will

result in an offspring with an allele that is not present

in the parent (Ellegren 2004; Eckert & Hile 2009), and

null alleles (i.e., nonamplifying alleles) can result in a

true parent and its offspring appearing homozygous

for different alleles (Pemberton et al. 1995; Dakin &

Avise 2004). Scoring errors result in the same type of

problem (van Oosterhout et al. 2004; Hoffman & Amos

2005). Second, complete exclusion may be difficult if

the population under consideration consists of a large

number of offspring and putative parents. Even with

highly polymorphic markers, it may be prohibitively

expensive to genotype enough loci to achieve exclu-

sion of all but the true parent for every offspring in

the population. The solution to the first problem actu-

ally compounds the second and vice versa. To accom-

modate genotyping errors and mutations, most

exclusion studies require mismatches at two loci

before an exclusion is considered valid. This solution

is a good one, as long as mutations and scoring errors

are rare, but its successful implementation requires

more powerful markers than would be required in the

absence of scoring errors and mutation. Despite these

considerations, complete exclusion is the gold standard

of parentage studies; every parentage study is implic-

itly striving towards this goal.

Categorical allocation

Categorical allocation is the most commonly used

method of parentage analysis. As in the case of exclu-

sion, this approach requires at least one focal off-

spring and a set of candidate parents. Categorical

allocation was developed as an answer to situations

in which complete exclusion may not be feasible

(Meagher & Thompson 1986). Since then, the categori-

cal allocation approach has been updated and refined,

resulting in a very useful technique for parentage

assignment (Marshall et al. 1998; Gerber et al. 2000).

The most obvious benefit of this approach is that it

provides a method to choose the single most likely

parent from a group of nonexcluded putative parents.

The logic stems from the observation that different

parental genotypes may differ in their probability of

� 2009 Blackwell Publishing Ltd

T E C H N I C A L R E V I E W 7



having produced the genotype of the focal offspring

(Meagher & Thompson 1986). Most current categorical

allocation approaches use a likelihood approach, but

a Bayesian approach also can be used (Box 2). Either

approach boils down to Mendelian transition proba-

bilities (Marshall et al. 1998), which describe the prob-

ability of obtaining a certain offspring genotype given

the proposed parental genotypes. For example, if an

offspring has an unknown father and paternal allele

‘120’, a male homozygous for the allele (i.e. with

genotype 120 ⁄ 120) is more likely to have produced

that allele than a male heterozygous for the allele

(e.g. genotype 120 ⁄ 136). Clear descriptions of the full

logic behind the likelihood approach are presented by

Meagher & Thompson (1986) and Marshall et al.

(1998). Nielsen et al. (2001) provide an excellent

description of the calculation of Bayesian posterior

probabilities in the context of parentage analysis.

A positive feature of categorical allocation is that the

use of likelihoods or posterior probabilities results in

a framework in which scoring errors or mutations

can be accommodated very easily by modifying the

transition probabilities accordingly (Marshall et al.

1998; Kalinowski et al. 2007). Much like strict exclu-

sion, the categorical allocation approach can be

applied when one parent is known a priori for the

focal offspring or when neither parent is known. In

addition, this approach can be used to assign single

parents or parent pairs. These different applications

require different likelihood equations (Marshall et al.

1998), but they are all slight variations on the same

theme. Overall, categorical allocation is a powerful,

flexible approach to parentage analysis that has pro-

ven its worth in countless studies.

Box 1: Six approaches to parentage analysis

Exclusion – The exclusion method takes advantage of the fact that in diploid, sexually reproducing organisms, each

parent shares at least one allele per locus with each of its offspring. In this approach, the genotypes of candidate par-

ents are compared with that of a focal offspring. Any candidate parent who fails to share at least one allele with the off-

spring at any locus is eliminated from consideration. In practice, most exclusion studies actually require at least two

mismatching loci between the candidate and the offspring to account for typing errors or mutations.

Categorical Allocation – If complete exclusion is impossible, then a parentage allocation approach (also known as par-

entage assignment) can be used to choose among the remaining nonexcluded candidate parents. In categorical assign-

ment, the entire offspring is assigned to the candidate parent with the highest likelihood or posterior probability of

being the true parent. Categorical assignment approaches can handle scoring errors or mutations and can include

methods for determining confidence in parentage assignment.

Fractional Allocation – In the fractional allocation approach, likelihoods or posterior probabilities are determined in

the same way as in the categorical assignment methods. Each offspring is then assigned partially to each of the nonex-

cluded candidate parents on the basis of their relative likelihoods of parentage. Even though a fractional assignment

has no biological meaning, from a statistical standpoint, this approach may have better properties than categorical

allocation.

Full Probability Parentage Analysis – The full probability approach estimates patterns of parentage in a modelling

framework. Many different models are possible, but this approach has the potential to estimate simultaneously pat-

terns of parentage and other population-level variables of interest. This approach makes better use of the data by

incorporating any uncertainty in the parentage analysis into the estimation of the variables of interest.

Parental Reconstruction – The parental reconstruction technique uses the genotypes of offspring in full- or half-sib

families to reconstruct parental genotypes. For full- or half-sib progeny arrays, all of the offspring will share at least

one parent. The genotype of the shared parent may be available from the sampling scheme or can be reconstructed by

identifying a pair of alleles, for which every offspring inherited at least one of the members of the pair. The genotypes

of the unknown parents can be determined by examining associations of alleles originating from the unknown parents

across loci. Available techniques are based on parsimony (i.e. assuming the minimum number of parents), maximum

likelihood or Bayesian approaches. Once the genotypes are reconstructed, they can be compared with the genotypes

of candidate parents to assign parentage.

Sibship Reconstruction – If no parents are available and known groups of full- or half-sibs cannot be sampled, then

sibship reconstruction is the last resort in the realm of parentage analysis. This technique requires a sample of individ-

uals, some of which are full- or half-sibs. The algorithms use patterns of relatedness or maximum likelihood tech-

niques to group individuals into different classes of relationship, often full-siblings, half-siblings and unrelated

individuals. Once half-sib or full-sib groups are identified by these approaches, the parental genotypes can be recon-

structed and used for parentage analysis.
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Box 2. Assignment by likelihood or posterior probabilities

One possible division between approaches to parentage separates likelihood-based methods and Bayesian methods,

although the distinction is relatively minor. Nevertheless, possible approaches to choose the best candidate parent

from a group of nonexcluded individuals are worth discussing. Here, we assume that the mother is known and the

goal is to choose the correct father from a pool of candidate males (which may or may not include the father). The

equations are easily generalized to the cases where neither parent is known and either a single parent or parent pairs

are the targets of assignment.

The likelihood approach uses a likelihood ratio to ask whether the current candidate male under consideration is

more likely to be the parent of the offspring than a male chosen at random from the population. Here, we follow the

logic of Marshall et al. (1998), which was based on the work of Meagher (1986). The likelihood ratio is the probability

of the data given hypothesis one (H1) divided by the probability of the data given hypothesis two (H2), where H1 is

the case in which the candidate male is the true father and H2 is the case in which the candidate male is unrelated to

the offspring in question. The likelihood ratio is then given by

LðH1;H2jgm; gf; goÞ¼
Tðgojgm; gfÞPðgmÞPðgfÞ

TðgojgmÞPðgmÞPðgfÞ
¼Tðgojgm; gfÞ

TðgojgmÞ
;

where the numerator represents the likelihood under H1 and the denominator gives the likelihood under H2 (Marshall

et al. 1998). The genotypes of the mother, alleged father (i.e., candidate male) and offspring are given by gm, gf and go

respectively. The transition probabilities, T(go|gm,gf) and T(go|gm), represent the Mendelian probabilities of obtaining

the offspring genotype given the mother and alleged father’s genotypes or just the mother’s genotype. These transi-

tion probabilities are easily derived, and an exhaustive list is given by Marshall et al. (1998). Finally, the expected fre-

quencies of the maternal and alleged father genotypes are given by P(gm) and P(gf). The likelihood ratio is calculated

on a per-locus basis and multiplied across independent loci. The natural logarithm of the multilocus likelihood ratio

is called the LOD score (Meagher 1986). This simple likelihood ratio statistic serves as the basis for all likelihood-based

categorical assignment techniques.

The alternative to a likelihood ratio is a posterior probability. The logic behind this approach is described well by

Nielsen et al. (2001), so we present their equation here. We allow Oi, Mi and Fi to represent the multilocus genotypes

of offspring i, known mother i, and alleged father i. Furthermore, A is a matrix of allele frequencies for all loci, and we

assume to have sampled n males from the total N males present in the breeding population. If Ik(i) is the event that the

potential father k is the actual father of offspring i, then

PðIkðiÞjMi;F;A;NÞ¼
PðOijMi;FkÞPn

j¼1PðOijMi;FjÞþðN�nÞPðOijMi;AÞ
:

The numerator of this equation is the probability of obtaining the offspring genotype given the known maternal

genotype and the genotype of the candidate male (Nielsen et al. 2001), and this probability can be determined by

assuming linkage equilibrium and Mendelian segregation (Thompson 1975). The term on the left in the denominator

is the combined probability of paternity for all of the other sampled males, whereas the term on the right takes into

account unsampled males. This equation has the advantage that it explicitly shows the dependence of assignment

techniques on knowledge of the proportion of potential fathers sampled. In addition, the posterior probability

approach includes information from all males in the population. The posterior probability approach, like the likeli-

hood approach, can be used for categorical allocation or fractional allocation. However, posterior probabilities have

the distinct advantage that they can be expanded very naturally to accommodate prior information or the estimation

of other population-level variables. Consequently, this posterior probability approach serves as the basic framework

for full probability parentage analysis (Box 3).

Fractional allocation

Given the apparent strengths of categorical allocation,

why not stop here? The answer to this question is that

different parentage studies have different goals and other

techniques may outperform categorical allocation in cer-

tain contexts. Fractional allocation is similar to

categorical allocation in many ways. The main difference

is that categorical allocation assigns the entire offspring

to the most likely male, whereas fractional allocation

assigns a given offspring partially to each nonexcluded

candidate parent based on their relative likelihoods or

posterior probabilities (Devlin et al. 1988; Nielsen et al.

2001; Hadfield et al. 2006). Thus, in categorical allocation,
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the number of offspring for a candidate parent must be

an integer, but in fractional allocation a candidate parent

may be assigned a noninteger number of offspring. At

face value, then, it appears that fractional allocation will

seldom arrive at the absolute truth as it can be shown

from first principles that each parent must have an inte-

ger number of offspring. Under many circumstances,

however, categorical allocation will also fail to arrive at

the complete truth, and fractional allocation may possess

better statistical properties for many problems that

involve the estimation of population-level variables, such

as the relative fitnesses of genotypic classes or variances

in reproductive success (see Devlin et al. 1988; Nielsen

et al. 2001). For fractional allocation, likelihoods and pos-

terior probabilities are calculated in the same way as for

categorical allocation (Box 2). However, while categorical

allocation approaches rely mainly on likelihood equa-

tions (Marshall et al. 1998; Gerber et al. 2000; Duchesne

et al. 2005), Bayesian posterior probabilities are more

often used for fractional assignment (Nielsen et al. 2001;

Hadfield et al. 2006). In practice, likelihoods and poster-

ior probabilities are very similar, so the preference of one

over the other for a particular application represents

more of a historical bias than a statistical reality. Regard-

less, despite showing some early promise, fractional allo-

cation is seldom used in empirical studies.

Full probability parentage analysis

Even though we are treating parentage analysis as if it is a

worthy goal in its own right, the truth of the matter is that

parentage analysis often is interesting only because it

allows the researcher to infer something about a popula-

tion-level process (Jones & Ardren 2003; Hadfield et al.

2006; Pemberton 2009). The full probability parentage

analysis techniques embrace this point of view (Nielsen

et al. 2001; Hadfield et al. 2006). This method estimates the

population-level parameters of interest simultaneously

with the parent-offspring relationships in a single model-

ling framework that interfaces very naturally with the frac-

tional allocation techniques (Roeder et al. 1989; Smouse

et al. 1999; Morgan & Conner 2001; Nielsen et al. 2001). In

addition, a Bayesian approach also permits the inclusion

of prior data, such as dominance rank or spatial location of

candidate adults, increasing the prospects for successful

assignment (Neff et al. 2001; Hadfield et al. 2006).

An important advantage of the full probability

approach is that uncertainty in the parentage analysis is

included in the estimation of the population-level vari-

ables of interest. In categorical assignment approaches,

for example, the estimation of such variables is a two step

process, in which the patterns of parentage are estimated

first and then, given those patterns of parentage, the pop-

ulation-level variable of interest is estimated. Thus, dur-

ing the estimation of the variable of interest, any

uncertainty in parentage is ignored, possibly resulting in

an elevated level of confidence in the estimate (Hadfield

et al. 2006). The full probability approach includes any

uncertainty in parentage assignments in the analysis,

resulting in a more accurate assessment of confidence in

estimates of variables of interest. In addition, the ability to

include prior information opens the possibility to make

better use of the available data (Neff et al. 2001). For exam-

ple, categorical and fractional assignment techniques

make the implicit assumption that (in the absence of geno-

typic data) all parents included in the analysis are equally

likely to be the true parents of a given offspring. Full prob-

ability models can relax this assumption by taking into

account relevant ecological information, such as territori-

ality, spatial location, breeding status and so forth.

Full probability parentage analysis approaches can take

several forms, all of which are fairly involved. The basic

approach is to specify a model of the probability of parent-

age that includes other explanatory variables in addition

to the genotypes of parents and offspring (Box 3). The rela-

tionships between some of these variables and the proba-

bility of parentage could be known with certainty and this

knowledge would affect prior probabilities of parentage

for certain individuals in the population. Other variables

could have unknown relationships with parentage and the

estimation of these relationships would be a part of the

analysis of the model (Box 3). For example, if something is

known about dominance status, then dominant males

might be expected to have a different share of paternity

compared with subordinate males. However, the differ-

ence in reproductive success among the two groups may

be unknown (Nielsen et al. 2001). The full probability

approach allows the model to include the possibility that

dominant males systematically produce a different num-

ber of offspring than subordinate males, while leaving the

exact difference between the two groups a variable that

can be estimated during the analysis of the genetic data

(Nielsen et al. 2001; Hadfield et al. 2006). In principle, this

approach can be expanded to accommodate almost any

parameter of interest.

Full probability parentage analysis appears to be a

promising approach, but it has yet to be widely embraced

by molecular ecologists. Part of the problem is that the

specification of the model is difficult, and it may require

undocumented assumptions about the relationships

between particular variables and mating success. For

example, Hadfield et al. (2006) assumed that the relation-

ship between a male’s probability of paternity and his

distance from an offspring can be modelled using an

exponential function. If this assumption is incorrect, the

parentage assignment could be compromised. For many

taxa, there may be insufficient data to construct a well-

supported full probability model. The other potential pit-
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fall with full probability models is that the practice of

plugging data into a complex analytical technique that

spits out an answer with confidence limits is potentially

dangerous. Especially for parentage analysis, we advo-

cate an approach in which researchers carefully examine

the assignments and consider whether there are logical

inconsistencies in the data set or not. Blind application of

the full probability model could hide defects in the data

set from the user. Thus, even if full probability models

are the method of choice, we encourage this approach to

be augmented by examination of the actual probabilities

or likelihoods of parentage, which should be inspected

by the researcher for inconsistencies or unexpected pat-

terns. Any strange results should be subjected to addi-

tional scrutiny, possibly entailing the collection of

additional genetic data.

One extremely important point to keep in mind in the

interpretation of full probability models, or any other

technique involving assignment, is that all of the tech-

niques we have described so far will converge on the

same answer if the genetic data are sufficiently strong. If

parents can be identified for all offspring in the data set

with certainty, then any parameter of interest can be justi-

fiably estimated from the parentage assignments. In a

perfect world, exclusion, categorical assignment, frac-

tional assignment and full probability models would all

produce the same answer. From a practical standpoint, a

good approach might be to analyse the data using at least

Box 3. Full probability parentage analysis

A potentially powerful approach to parentage analysis is to estimate population-level variables of interest at the same

time as the patterns of parentage. Here we give an intuitive description of the logic behind this type of approach

without delving too deeply into the mathematics and jargon. This approach is a natural extension of the posterior

probability approach to parentage allocation described in Box 2. The example that we will use to illustrate full proba-

bility models comes from Hadfield et al. (2006), who have developed a flexible, general framework for the implemen-

tation of this method.

The logic is most easily seen by considering the basis of the model given by Hadfield et al. (2006). This model of

parentage in the Seychelles warbler includes dominance status of the females and distance between males and off-

spring. For each offspring, imagine a table with a row for each breeding female and a column for each breeding male.

Each entry in the table is the probability that the corresponding male and female were the parents of the offspring in

question. In the Seychelles warbler, the entries in this table can be given by the following equation (Hadfield et al.

2006, equation 2):

PðaðiÞm ¼j; a
ðiÞ
f ¼ kÞ / hsjð1� hÞ1�sj

Pnm

m¼1

hsmð1� hÞ1�sm

e�d
ðiÞ
k

k

Pnf

f¼1

e
�d
ðiÞ
f

k

YL

l¼1

PðOl;ijFl;k;Ml;jÞ
Pnm

m¼1

Pnf

f¼1

PðOl;ijFl;f ;Ml;mÞ
:

This expression gives the relative probability of female j and male k being the parents of offspring i. The first term

is the dominance model for females, with sj indicating whether the female is dominant or not (1 = dominant,

0 = subordinate) and h as an unknown parameter that represents the ability of dominant mothers to outcompete sub-

ordinate mothers. The parameters nm and nf are simply the numbers of mothers and fathers in the population. The

second term in the equation is the distance model, where d
ðiÞ
k gives the distance of male k from offspring i, and k is

an unknown parameter that determines the rate at which probability of paternity drops off as a function of distance.

The final term is the probability of parentage based on the genetic data, similar to the posterior probability in Box 2,

with L representing the number of loci.

Given the model, the challenge is then to choose values of h, k, and a pair of parents for each offspring that maxi-

mizes the joint probability across all offspring given the data. As the solution involves explicit probabilities for all pos-

sible sets of parents for every offspring in the data set and the estimation of the parameters of interest requires

integration across uncertainty in parentage assignments, this problem can be computationally intensive. One solution

is to use a Markov Chain Monte Carlo approach (Hadfield et al. 2006), which produces point estimates for the parame-

ters of interest as well as an indication of the level of statistical uncertainty for each estimate. Other approaches also

may be feasible depending on the precise model.
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two different methods and compare the results across the

different analyses. Any large discrepancies may indicate

the need for additional genetic data.

Parental reconstruction

Parental reconstruction techniques take advantage of the

fact that we sometimes have prior knowledge that certain

groups of individuals probably originated from the same

family. For example, we could collect an amphibian egg

mass for which all of the offspring had the same mother

(Myers & Zamudio 2004), a male defending a nest full

of eggs (Jones et al. 1998b; Neff 2001), or a group of

offspring developing inside the body of a parent

(Tatarenkov et al. 2008; Mobley & Jones 2009). In these

and similar cases, when a progeny array is known to

include only half- and full-sibs, the genotypes of the

parents can be reconstructed from the genotypes of the

progeny (Jones & Avise 1997b; DeWoody et al. 2000a,b).

If one parent is known, then the alleles of the unknown

parents can be determined by subtracting the known par-

ent’s alleles from the offspring genotypes. The number of

alleles from unknown parents per locus in the progeny

array provides some indication of the number of

unknown parents. In addition, associations of alleles

across loci can allow the reconstruction of the unknown

parents’ genotypes (Jones 2001, 2005). For example, if the

alleles 122 and 134 from an unknown parent are segregat-

ing at a locus in the progeny array and they are always

associated with alleles 222 and 230 from an unknown

parent at a second locus, then logic would suggest that

the genotype of one of the unknown parents consisted of

122 ⁄ 134 at the first locus and 222 ⁄ 230 at the second. For

progeny arrays with no known parents, the problem is

not much more difficult. Provided the progeny array

includes only full- and half-sibs, all offspring will share

at least one parent. For any given locus, the genotype of

the shared parent can be inferred by identifying a pair of

alleles for which every offspring has at least one allele

from the pair. Once the genotype of the shared parent is

identified, the inference of the other parents follows the

logic above.

Parental reconstruction can work extremely well if

markers are sufficiently polymorphic. Several

approaches have been implemented. One approach is a

brute-force exhaustive algorithm that tests every possible

genotype consistent with the alleles in the progeny array

to identify the minimum number of parents necessary to

explain the array and their genotypes (Jones 2001, 2005).

Other approaches use Bayesian or maximum-likelihood

techniques to identify likely partitions in the progeny

arrays between half-sib groups originating from different

unknown parents (Emery et al. 2001; Wang 2004). As in

the case of assignment techniques, these different paren-

tal reconstruction techniques all converge on the same

answer when the molecular markers are sufficiently

powerful.

Parental reconstruction has several favourable charac-

teristics that allow it to complement other parentage anal-

ysis techniques nicely. For example, the genotypes

recovered often are sufficiently rare that parents can be

matched to progeny arrays with extremely high confi-

dence (Jones et al. 2002). In addition, parental genotypes

can be reconstructed from progeny arrays in the absence

of a pool of candidate parents (Emery et al. 2001; Jones

2005), allowing the mating behaviour of an uncollected

gender to be inferred, provided the sample of progeny is

sufficiently complete. Finally, the genotypes in the family

groups provide an internal mechanism for identifying

suspicious genotypes that may be the result of scoring

errors, mutations or null alleles (Wang 2004). As the

progeny are known to be relatives, any unexpected geno-

types can be viewed askance and subjected to greater

scrutiny. Thus, even though not all of these methods

accommodate genotyping error, the internal checks

within the progeny array make it possible to eliminate

the vast majority of the errors from the data set. These

favourable characteristics lead us to suggest that when-

ever possible, scientists should endeavour to sample in a

way that retains any information about family structure

in the offspring of interest.

Parental reconstruction, while extremely useful for

some purposes, does have some drawbacks. First, it

requires highly polymorphic markers, and many systems

may not have sufficiently polymorphic loci for the tech-

nique to work well. Second, parental reconstruction is

much more effective on large progeny arrays. If an

unknown parent has fewer than 8–10 offspring in the

progeny array, the prospects for successful reconstruc-

tion diminish considerably. This latter constraint also

prevents the method from being effective in families with

an extremely large number of parents per progeny array

(i.e. more than about half a dozen). The rationale behind

this limitation can be seen by considering binomial prob-

abilities. When the number of offspring from a particular

parent in a progeny array is less than about six, there is a

reasonable probability that only one of a heterozygous

parent’s two alleles at a locus will segregate in the prog-

eny array, a situation that would preclude correct recon-

struction of the parental genotype. Thus, parental

reconstruction has enjoyed good success in organisms

with large brood sizes, but has been less useful in species

with small families, such as birds or mammals.

Sibship reconstruction

The final category of techniques that we discuss, sibship

reconstruction, used to be on the fringe of parentage anal-
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ysis (Blouin 2003; Jones & Ardren 2003), but the algo-

rithms have been improving and now can provide recon-

structed parental genotypes or use candidate genotypes

to guide the sibship reconstruction procedure (Almude-

var & Field 1999; Thomas & Hill 2002; Ashley et al. 2008).

Sibship reconstruction comes into play when a group of

offspring can be collected from the population, but fam-

ily groups cannot be identified a priori even though the

sample is known to contain some full- and half-sibs. The

underlying idea is to use genotypic data of the individu-

als in the sample to partition individuals into groups of

full siblings or groups of full siblings and half siblings.

Methods for sibship reconstruction have recently

been reviewed elsewhere (Ashley et al. 2008), so we give

only a brief overview here. Current techniques for sib-

ship reconstruction fall into two major categories. The

first category includes likelihood-based methods, in

which the algorithm attempts to partition the sampled

individuals into sibling groups in a way that maximizes

the probability of the data (Smith et al. 2001; Thomas &

Hill 2002; Wang 2004). For example, one way of com-

puting likelihoods is to determine the probabilities of all

half-sib families, some of which are nested within full-

sib families, given the rules of Mendelian inheritance

across all possible parental genotypes that could exist in

the population assuming Hardy-Weinberg equilibrium

(Wang 2004). A second category of sibship reconstruc-

tion techniques includes combinatorial approaches

(Almudevar & Field 1999; Berger-Wolf et al. 2007;

Ashley et al. 2008), which take advantage of a strong

focus on Mendelian segregation to retain sibling groups

that adhere to Mendel’s laws. The distinction between

combinatorial and maximum likelihood approaches is

blurred, however, as both take advantage of Mendelian

segregation, and essentially all implementations of these

methods are sufficiently computationally challenging

that stochastic optimization techniques are required to

obtain a solution in a timeframe relevant to a typical

human lifespan.

Sibship reconstruction can be useful in the context of

parentage analysis when a large group of offspring can

be collected, but they are not associated with any particu-

lar parent and not in family groups. If a pool of candidate

parents is available, then an assignment technique can be

used, with sibship reconstruction serving as a comple-

mentary approach. If candidate parents are not available,

then sibship reconstruction could allow some inference

of patterns of parentage through the comparison of

reconstructed genotypes.

A parentage analysis roadmap

Assuming that parentage analysis is the right approach

for the empirical question at hand, one of the most

important questions concerns experimental design. Now

that we have seen the various methods available, what

kinds of considerations are necessary to increase the

probability of success in parentage analysis? How can we

collect samples to ensure that the best statistical method

is available for our data set? Clearly, the sampling design

is one of the most important factors determining the effi-

cacy of a study (Jones & Ardren 2003; Pemberton 2009),

but the unfortunate reality is that many systems are

limited because of various unfavourable biological prop-

erties of the organisms. Another major consideration is

the choice of molecular markers. For most parentage

issues, we would like to have many loci with extremely

high levels of polymorphism per locus, but again the bio-

logical reality might be that a particular study system has

less than adequate markers. Regardless, successful par-

entage analysis requires an investment in reliable mark-

ers and suitable quality control (Jones & Ardren 2003;

Pemberton 2009).

The importance of good sampling

In Fig. 1, we present a flow chart that indicates the

types of analyses that will be available given various

characteristics of a system. We start with the question

of whether a pool of candidate parents can be identi-

fied and sampled or not. For example, if individuals of

one gender can be collected with their offspring, is

there an accessible group of candidate parents that

likely mated with the known parents? If candidates can

be identified, then all methods of parentage analysis

are a possibility. In the absence of candidate parents,

the options are fairly limited. If half- or full-sib groups

can be identified and these groups are relatively large,

then parental reconstruction remains an option. If only

small family groups can be collected, then it still may

be possible to look for evidence of multiple mating

within family groups, an approach that we do not

review here, but that can be tackled with parental

reconstruction or sibship reconstruction methods

among others (DeWoody et al. 2000a,b; ; Neff et al.

2002; Sefc & Koblmüller 2009). If offspring cannot be

collected in family groups, however, sibship reconstruc-

tion may be the only suitable method. If sibship recon-

struction or parental reconstruction succeeds, then the

reconstructed parental genotypes can be compared to

learn something about mating patterns of breeders,

including adults for whom tissue samples could not be

obtained.

Parentage analysis is normally applied to systems in

which candidate parents can be collected, so most tech-

niques assume that there will be a sample of adult geno-

types. From a parentage analysis standpoint, the ideal

study would involve large family groups of progeny col-
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lected with a shared parent, as would be possible for

fruits collected from a plant (Teixeira & Bernasconi 2007)

or pregnant female live-bearing fishes (Neff et al. 2008),

plus a complete sample of all potential breeders in the

population. Such a complete sample can be extremely

difficult to obtain in natural populations, but it allows all

parentage analysis techniques to be applied, resulting in

excellent prospects for success. For this type of sample,

our approach would be to use parental reconstruction to

determine genotypes of the unknown parents, match

them to the pool of candidate parents and verify the

matches using an assignment or exclusion approach

(Jones et al. 2002). In many systems, however, large

groups of related progeny do not occur, so parental

reconstruction would not apply. In addition, depending

on the goals of the study, it may require a prohibitively

large amount of genotyping to assay more than a handful

of offspring per family. Nevertheless, the prospects for

parentage inference are still good as long as candidate

parents are available, because exclusion and assignment

would still be options. In all of these cases, particularly if

the parentage analysis techniques indicate <95–100%

confidence in assignments, the full probability models

should be considered as an option for estimating popula-

tion-level variables of interest.

The bottom line is that the most difficult part of a

parentage study is the sampling of specimens. Unfortu-

nately, it also is the most important part of a study.

Every effort should be made to ensure that samples

from the field are as complete as possible. One point

that we should emphasize is that all the above tech-

niques are more powerful when one parent is known

with certainty for each offspring than when neither

parent is known, so the ability to collect offspring with

a parent facilitates parentage analysis. If an adequate

sampling scheme is not possible for an organism of

interest, scientists should seriously consider whether or

not their question of interest can be addressed in a

more tractable system.

Molecular markers

In principle, any variable genetic marker that is stably

transmitted from parents to offspring can be used for par-

entage analysis. However, certain types of markers are

better suited to this application than others (DeWoody

2005; Pemberton 2009). Successful parentage analysis

requires either highly polymorphic markers or a very

large number of markers with low to moderate levels of

polymorphism. Even though many kinds of markers have

Fig. 1 A flow chart showing the different parentage analysis techniques available for various types of sampling schemes. Start in the

upper left corner and answer the questions to see which analysis techniques are available in your study system. The best case scenario is

shown in the lower left corner: a system in which large families can be collected with a pool of candidate parents. This type of sample

allows all parentage analysis techniques to be applied. As samples depart from this ideal, the options become fewer and fewer, until

parentage analysis is no longer even possible (lower middle). In this worst case scenario, it may still be possible to look for evidence of

multiple paternity or multiple maternity depending on the nature of the sample. Techniques for detecting multiple mating are many and

varied, and they are beyond the scope of this review. However, parental reconstruction techniques, even when applied to a few

offspring, typically will be able to distinguish progeny arrays arising from single mating from those arising from multiple mating. Even

though it is not addressed in this figure, parentage analysis is more efficient when one parent is known with certainty (e.g. when mothers

or fathers can be collected with offspring that are known to be theirs).
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been used in parentage analysis over the years, a few tech-

niques have distinguished themselves as the most useful.

The overall best marker for parentage analysis in

almost every situation is the microsatellite (Pemberton

2009). These markers are highly polymorphic, co-domi-

nant, PCR-based and repeatable. Even though the devel-

opment of microsatellites is somewhat involved, this

approach is feasible for most types of organisms. Our

advice for anyone embarking on parentage analysis is to

invest in the development of a suite of reliable microsat-

ellites. Most microsatellites used for parentage analysis

are di-, tri-, or tetra-nucleotide repeats, meaning that the

repeated motif consists of either two, three or four base

pairs. Tetra-nucleotide microsatellites in particular are

appealing, because different alleles are usually separated

by four base pairs, making them more easily separable

on a gel, and tetra-nucleotides compared with di-nucleo-

tides suffer from less ‘stuttering’ (Walsh et al. 1996),

which results in bands slightly larger or smaller than the

true allele on the gel.

While microsatellites will be the marker of choice for

most studies, two other types of markers, single nucleo-

tide polymorphisms (SNPs) and amplified fragment

length polymorphisms (AFLPs), are viable choices. We

will leave the details of the methods to other reviews

(Morin et al. 2004; Meudt & Clarke 2007), but both of

these techniques take a different approach to the problem

than microsatellites. While microsatellites usually oper-

ate in the realm of few highly polymorphic loci, AFLPs

and SNPs get the job carried out with very many loci,

each of which has low levels of polymorphism. Usually,

each technique reveals only two alleles per locus. In the

case of SNPs, the alleles are codominant, whereas AFLPs

are dominant markers. In other words, AFLPs do not

allow the heterozygote to be distinguished from one of

the homozygous classes. The AFLP technique has been

around for over a decade, but for some reason has been

used mainly for parentage analysis in plants (Gerber et al.

2000; Sezen et al. 2009). These markers have the advan-

tage that they require very little development, as the tech-

nique can be applied to almost any organism by using a

commercially available kit. In contrast, SNP markers

have been gaining popularity with the proliferation of

genomics data. They depend on known DNA sequences

in which particular nucleotide positions have been

shown to be polymorphic. Thus, SNPs are more easily

obtained for model organisms, and for those organisms

many hundreds of loci may be available. On a per-locus

basis, SNPs are more easily assayed than microsatellites.

Some researchers have predicted that SNPs will be the

marker of choice for parentage analysis in the future

(Anderson & Garza 2006). However, one consideration

for AFLPs or SNPs is that some approaches to data analy-

sis are precluded by the low per-locus levels of polymor-

phism. For example, existing techniques of parental

reconstruction for a particular brood would perform

poorly with these markers, because for a di-allelic locus, a

single parent heterozygous at all loci is compatible with

all offspring. In other words, for a di-allelic locus, when

one parent is known with certainty, the minimum number

of unknown parents for a progeny array will always be

one. A similar type of argument suggests that sibship

reconstruction will not work well with AFLP or SNP data.

These considerations lead us to agree with Glaubitz

et al. (2003) and predict that microsatellites will remain

the marker of choice for parentage analysis for quite some

time. We expect SNPs to increase in popularity for exclu-

sion or parentage assignment in model systems or heavily

managed systems for which genomic data are available,

but SNPs probably will not be widely used by garden

variety molecular ecologists. We also predict that AFLPs

will diminish in popularity, but they will still be useful for

quick and dirty parentage studies for species in which

development of microsatellites is not warranted. We

would like to add one caveat, which is that it may be pos-

sible to increase the utility of SNPs by using tightly linked

loci in an experimental design that allows linkage phase

to be assessed (Jones et al. 2009). In this situation, the

linked SNPs become a sort of ‘super locus’, potentially

with many alleles, provided the rate of recombination is

low enough that haplotypes are stably inherited. This

philosophy also could be applied to microsatellite loci in

species with low levels of polymorphism to increase the

utility of the markers (Jones et al. 1998a,b; Estoup et al.

1999). This ‘super-locus’ situation is the only one in which

linked loci are recommended for parentage analysis.

Except for this special case, loci that are in linkage disequi-

librium should be avoided because the statistics of parent-

age analysis typically assume independence among loci

(Jones & Ardren 2003; also see Devlin et al. 1988).

A brief comment on exclusion probabilities

Studies of parentage often report exclusion probabilities

for their molecular markers. These values represent the

probability that an unrelated candidate parent (i.e. a

genotype chosen at random from the population) will be

eliminated from consideration as a true parent by the

locus in question (Chakraborty et al. 1988). Three differ-

ent exclusion probabilities are typically calculated: one

parent known, neither parent known and parent pairs

known (Jamieson & Taylor 1997). Exclusion probabilities

are not especially useful because they assume an absence

of mutations and scoring errors. They also are derived

for single-offspring parentage tests, so they do not correct

for experiment-wide error that arises from the hundreds

of comparisons comprising a typical parentage study.

Some progress has been made on deriving more informa-
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tive exclusion probabilities (Wang 2007; Baruch & Weller

2008) and developing other criteria for choosing loci

(Matson et al. 2008). However, the traditional exclusion

probabilities are easy to calculate and they provide a

comparative measure of marker information content, so

we recommend reporting exclusion probabilities for each

marker along with other summary statistics such as alle-

lic richness or heterozygosity. The exclusion probability

should not be used as a measure of confidence in a par-

entage analysis, as this goal can be better accomplished

by using methods that have been implemented in various

software packages. In addition, many of these programs

provide simulation-based approaches for assessing the

expected power of a set of markers to resolve parentage

in particular systems (Marshall et al. 1998; Jones 2001;

Duchesne et al. 2005).

Other considerations

Genotyping errors, mutations and null alleles

With a good sampling design and a nice battery of

molecular markers in hand, the stage is set for a suc-

cessful study, but a few other details require attention.

Characteristics of the markers and the fact that they

are analysed by fallible humans can result in inconsis-

tencies that present problems for parentage analysis.

The most important class of inconsistencies concerns

genotyping errors and mutations. Genotyping errors

occur when a genotype is misread, fails to amplify, or

spuriously produces a misleading result. Mutations on

the other hand are a real biological phenomenon in

which the allele inherited by the offspring changed in

some way from the allele present in the parent. In the

very large studies typical of parentage analysis, espe-

cially for highly variable markers, both types of prob-

lems arise and result in apparent incompatibilities

between true parents and their offspring. Care must

be taken to accommodate such errors in the parentage

analysis (Marshall et al. 1998; Hoffman & Amos 2005).

In exclusion or parental reconstruction, for example, a

common practice is to exclude parents or invoke an

additional parent only if the result can be verified by

at least one additional locus. However, such an

approach may be overly conservative, possibly result-

ing in many incorrect inclusions, so care must be

taken to ensure that sufficient power is available to

tolerate such a conservative approach. On the other

hand, categorical or fractional assignment, full proba-

bility models and sibship reconstruction approaches

can accommodate error by building a model of error

into the calculation of likelihoods or posterior proba-

bilities (Wang 2004; Koch et al. 2008). Very little has

changed with respect to how genotyping errors and

mutations are handled in most parentage analyses in

the last 6 years, so we refer the reader to Jones & Ar-

dren (2003) for more information.

Another potentially major problem in parentage anal-

yses stems from nonamplifying alleles, otherwise known

as null alleles (Dakin & Avise 2004). Such alleles can

result in a mismatch between a parent and an offspring,

but the mismatch will invariably involve apparently

homozygous genotypes that are actually heterozygous

for the null allele. For the most part, null alleles are not

handled well by parentage analysis programs. However,

they usually can be detected either as a departure from

Hardy-Weinberg equilibrium at the null-bearing locus or

as a non-Mendelian pattern of segregation in known

family groups (Chakraborty et al. 1992; Brookfield 1996;

Kalinowski & Taper 2006). As loci with null alleles are

usually identifiable, they tend not to be a major problem

for parentage analysis. Jones & Ardren (2003) provide a

lengthier discussion of null alleles that is still valid.

The most noteworthy development related to geno-

typing error, mutations and null alleles over the last sev-

eral years came from Wang (2004), who introduced a

model for handling errors that includes two types of

errors, allelic dropouts and stochastic errors. This model,

which is similar to that of Kalinowski et al. (2006a,b), can

accommodate null alleles, which are basically systematic

allelic dropouts, as well as microsatellite mutations and

scoring errors, which fall into the stochastic error cate-

gory. The method also permits the rate of error to differ

among loci. Wang’s (2004) approach has been imple-

mented in sibship reconstruction algorithms (Wang 2004)

as well as in full probability parentage analysis (Koch

et al. 2008). However, further testing will be necessary

before we know how much of an increase in the accuracy

of parentage analysis to expect from this way of handling

errors and null alleles.

Family structure in the candidate parents

Sometimes the pool of candidate parents will include

relatives of one another or of the offspring of interest.

As most inference techniques assume that the candidate

parents are unrelated to one another and to the offspring,

except for parent-offspring relationships, the presence of

family structure in the population can be problematic

(Double et al. 1997; Olsen et al. 2001). This problem

has been investigated in some detail in various studies

(Marshall et al. 1998; Nielsen et al. 2001; Duchesne et al.

2008), and parentage analysis usually is not seriously

impacted unless very close relatives of the offspring are

included in the pool of candidate parents. Nonexcluded

full siblings of the offspring, for example, actually can

have higher likelihoods of parentage than the true

parents (Thompson 1975, 1976a,b; Thompson & Meagher
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1987). If many close relatives of the offspring are likely to

be in the pool of candidate parents, complete exclusion

or parental reconstruction techniques, which are rela-

tively insensitive to family structure in the population,

may be necessary to reliably diagnose the true patterns of

parentage (Jones & Ardren 2003).

Assessing confidence in parentage analysis

Perhaps the most important development in parentage

analysis since the discovery of microsatellites has been

the implementation of techniques capable of assessing

confidence in the assignments. The first comprehensive

approach, which remains the most popular, was devel-

oped by Marshall et al. (1998). Their error-handling

approach has been updated recently (Kalinowski et al.

2007) for the computer program CERVUS 3.0, but the

method remains otherwise unchanged. The approach

is to simulate populations of breeders and their off-

spring given a user-specified rate of genotyping error

and proportion of candidate parents sampled. Parent-

age is assigned on the basis of LOD scores (Box 2). A

test statistic, D, is calculated for each assignment. For

a given offspring, if only one candidate parent has a

positive LOD score, D is the LOD score, but if two or

more candidates have positive LOD scores, then D is

the difference between the two highest LOD scores.

The approach is to compare the distribution of D val-

ues for correct assignments in the simulation to that of

false assignments, and to pick a critical value for D
that gives a desired level of confidence in assignment.

This critical value chosen from the simulation is then

used to determine confidence in assignment for the

actual analysis of the empirical data set. This approach

not only yields an experiment-wide error rate for the

assigned individuals, but it also indicates for each

focal offspring, whether the parent is confidently

assigned or not.

Even though the Marshall et al. (1998) approach is

effective and popular, several alternatives also exist. For

example, the use of Bayesian posterior probabilities is on

the rise (Box 2). These methods give the posterior proba-

bility of each assignment on an offspring by offspring

basis (Nielsen et al. 2001; Koch et al. 2008). Posterior

probabilities seem to offer great promise, but some work

remains to be carried out. First, algorithms should pro-

vide a posterior probability cut-off value that gives a

desired level of experiment-wide error, as the Marshall

et al. (1998) approach does. Second, the posterior proba-

bility approach should be compared with the likelihood

approach by taking advantage of simulated data sets or

experimental populations. Some work along these lines

has been carried out (Koch et al. 2008), but the issue is far

from complete resolution.

The third major approach to assess confidence for a

parentage analysis algorithm is to use simulations to esti-

mate an experiment-wide expected error rate without

attributing confidence to any particular assignment

(Jones 2001, 2005; Duchesne et al. 2005). This approach

involves the simulation of data sets under user-specified

parameters. These simulated data sets are then subjected

to the parentage algorithm, and the number of success

and failures gives a measure of the expected rate of suc-

cess. Methods that use this approach should be employed

only when experiment-wide confidence can be shown to

be high.

We address the approaches used for confidence

assessment in more detail for particular programs in the

Appendix. Additional details regarding some of the older

programs can be found in Jones & Ardren (2003). Pro-

grams that do not use one of the aforementioned

approaches (i.e. simulation-based determination of criti-

cal values for a test statistic, posterior probabilities, or

experiment-wide error rates determined by simulation)

should be used with caution. For example, some pro-

grams use ad hoc methods or make no attempt to correct

for experiment-wide error, making the interpretation of

results difficult.

Two key variables requiring attention

The discussion of confidence in parentage assignment

leads to the consideration of two variables in parentage

analysis that are so important, especially for assignment

techniques, that they warrant their own section. As the

determination of confidence in parentage assignment is

based on a model, an incorrectly parameterized model

will result in incorrect estimation of confidence. From the

work that has been conducted so far, the two most impor-

tant user-supplied parameters seem to be the rate of

genotyping error and the proportion of candidate parents

sampled, both of which can be difficult to determine.

A complete, convincing study of parentage now

usually will require some estimate of genotyping error

(Hoffman & Amos 2005). Various techniques can be used

to detect genotyping errors. The simplest situation occurs

in parental reconstruction, where the known relatives

serve as a reference (Wang 2004) and any unusual alleles

can be investigated in detail or subjected to repeated

genotyping. In the absence of progeny arrays, if one par-

ent is known with certainty, then mismatches between

the known parents and their offspring can provide a

measure of the rate of genotyping error. Otherwise, geno-

typing error should be estimated by repeated typing of a

subset of individuals (Hoffman & Amos 2005; Johnson &

Haydon 2006). Merely knowing the error rate is not suffi-

cient, however. Scientists should take steps to reduce

errors as much as possible, because the presence of errors
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in the data set, even if the error rate is known, can sub-

stantially reduce the power of parentage analysis (Mar-

shall et al. 1998).

The proportion of candidate parents sampled is the

other key variable that can dramatically affect the proba-

bility of having a pleasing parentage analysis experience.

Exclusion or parental reconstruction, given enough

power and a data set with few errors, is relatively insensi-

tive to the proportion of candidate parents sampled. For

these techniques, offspring with unsampled parents will

simply have no compatible parents in the pool of candi-

dates. With less powerful markers, however, assignment

techniques come into play and the evaluation of confi-

dence requires some knowledge of the number of unsam-

pled candidate parents. Incorrect specification of this

parameter will result in incorrect estimates of confidence

in assignment, possibly to an extreme degree (Marshall

et al. 1998; Nielsen et al. 2001; Oddou-Muratorio et al.

2003). Solutions to this problem include ecological esti-

mates of the breeding population size via a mark-recap-

ture study or estimates of the number of breeding

individuals from the genetic data (Ramakrishnan et al.

2004). Another option that makes use of the genetic data

is to use a full probability parentage approach in which

the number of candidate parents is estimated along with

the patterns of parentage (Nielsen et al. 2001; Signorov-

itch & Nielsen 2002; Koch et al. 2008). How well this

approach actually performs is a subject for future testing.

Regardless, scientists have an obligation to include

uncertainty in breeding population size in their results

by performing analyses under parameter values that

span the range of possibilities for their study system

(Koch et al. 2008).

One caveat regarding the importance of these two

variables is that poor estimates usually will not affect the

rank order of the candidate parents as far as relative like-

lihoods are concerned. Rather, the rank order of compati-

ble parents will stay the same, but the confidence in

assignment will be incorrectly calculated. Thus, if the rate

of genotyping error or the number of candidate parents

cannot be determined, additional genotyping could

compensate for any error introduced by the lack of

knowledge of these variables. In other words, with more

informative genotypic data, parentage analysis becomes

less sensitive to error in estimating genotyping error and

the number of candidate parents.

Launching into the software

We summarize the current software available for parent-

age analysis in Tables 1–3. Table 1 includes the software

packages that we suggest as a starting point for anyone

embarking on parentage analysis. The programs in

Table 1 are for the most part user friendly and most have

been used widely enough to demonstrate that they work

well. A typical molecular ecologist could get by with just

programs from Table 1. We have categorized the pro-

grams by what we perceived to be their main use, but we

also indicate other possible applications. For example,

CERVUS is designed for categorical assignment, but it also

can be used for strict exclusion. Similarly, COLONY is a sib-

ship reconstruction program designed to analyse many

families simultaneously, but it can also assign parents if

parental genotypes are specified and it performs parental

reconstruction when applied to a single family (or multi-

ple families at once). Nevertheless, our categorizations

can be interpreted as recommendations. In other words,

while COLONY can assign parents to offspring, we would

not use it for this purpose over CERVUS.

In Table 2, we provide a list of ‘niche programs’

possessing unusual features that make them suitable

for analysis of data sets that differ in particular ways

from the norm. For example, FAMOZ is a categorical

allocation program that can accommodate dominant

markers, so it might be the program of choice for an

AFLP data set. Other researchers have access to gen-

der-linked markers or are working in haplo-diploid

systems. These cases can be handled by NEWPAT for

exclusion involving sex-linked markers, and MATESOFT,

which estimates parental genotypes in haplo-diploids.

A few other niche programs are listed in Table 2 as

well. Finally, in Table 3, we provide a list of other

programs that may be useful for the adventurous ana-

lyzer of parentage. Most of the programs in Table 3

perform functions that can be more effectively accom-

plished using a program from Table 1. No doubt some

of the authors of these programs will feel that their

program should be moved up to Table 1 or Table 2,

so we now pass the ball into their court and ask for

empirical data showing that their program outper-

forms other programs in some important way.

In the Appendix, we provide a brief description of

each program listed in Tables 1–3. These descriptions are

short, so they do not capture the full suite of capabilities

for some of the programs. However, we hope that the

Appendix will provide a starting place for individuals

interested in finding more information about any of these

parentage programs.

The future of parentage analysis

The future of parentage analysis looks at least as bright

as the present. Despite the complexities we have cov-

ered in this review, the bottom line is that the tech-

niques currently available work extremely well, and

parentage analysis is completely feasible in most sys-

tems. Nevertheless, if the recent past can serve as a

guide, we should expect some important developments

� 2009 Blackwell Publishing Ltd
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over the next decade even though the conceptual core

of parentage analysis will not change. Since the last

review of parentage analysis methods (Jones & Ardren

2003), there have been some key advances. Most nota-

bly, full probability parentage analysis and sibship

reconstruction have progressed enough that they can

be seen as legitimate approaches to some types of par-

entage analysis problems. In addition, many of the

existing techniques have made slight adjustments to

various aspects of their algorithms to improve perfor-

mance.

Where should we focus our effort in the coming years

with respect to parentage analysis? The comparison of

various parentage algorithms is starting to become a

cottage industry (Slate et al. 2000; Oddou-Muratorio et al.

2003; Slavov et al. 2005; Herlin et al. 2007; Duchesne et al.

2008; Sefc & Koblmüller 2009), and this trend should con-

tinue because too few such studies have yet been con-

ducted to produce clear generalities. Even now, very few

of the methods have been rigorously tested on simulated

data sets or in experimental populations with known pat-

terns of parentage. In the future, comparisons of

approaches should not only endeavour to establish

which techniques provide the closest estimate of the true

patterns of parentage but they also should focus on the

estimation of variables of interest (Araki & Blouin 2005;

Charmantier & Reale 2005). For example, if the goal is to

characterize a sexual selection differential on a pheno-

typic trait, does one method produce a better, less-biased

estimate than another? Similarly, if the goal is to estimate

quantitative genetic parameters, is there a preferred

method for parentage assignment? Perhaps the full prob-

ability parentage model is the one to be used under these

circumstances, but we will not know for certain until we

have more empirical and simulation data comparing

methods.

Another goal in the development of parentage analy-

sis software should be to make the software packages

user friendly. Why is CERVUS (Marshall et al. 1998) such a

popular program for parentage analysis? The answer is

partly that it implements a sound approach and partly

that it is so easy to use. Particularly as models become

more complex, as in the case of full probability parentage

analysis, user friendliness becomes a bigger and bigger

issue. If the program has hidden assumptions, and the

user is unaware of them because of a weak interface, the

potential for misuse of the program increases dramati-

cally. We encourage developers to create stand-alone

programs rather than programs that are dependent on

some other platform (such as the R statistical language)

and to use standard data formats (such as the GENEPOP

format; Raymond & Rousset 1995). Detailed user manu-

als also are essential.

Finally, we want to end by stressing again the most

important factors that contribute to a successful study.

The most difficult part of a parentage study is to obtain

appropriate samples from the population of interest, so

an investment of time and effort in the design of the

study and in field work will pay dividends. If the field

sampling is inadequate, no amount of molecular data or

technical sophistication will make up for this shortcom-

ing. An equally important requirement for success in par-

entage analysis is to have a reliable set of molecular

markers. The identification of polymorphic markers with

a low rate of genotyping error should be a goal of any

study. With a good set of markers in hand and adequate

samples from the field, most molecular ecologists should

find parentage analysis to be a painless, rewarding expe-

rience.
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Appendix

In this appendix, we provide brief descriptions of the pro-

grams listed inTables 1–3. The userguidesand publications

pertaining to each program provide more information, but

this appendix should be a useful starting place. Programs

are listed in alphabetical order, and we usually only discuss

the most recent versions of each program.

CERVUS

CERVUS is the most popular categorical allocation pro-

gram. It calculates a LOD score for each possible parent-

offspring pairing and uses this value to assign parentage

across a group of offspring. Simulations are used to

determine critical values for D (the difference between

the LOD scores of the two most likely candidate par-
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ents) that produce a desired level of confidence in

assignments. The likelihood expressions incorporate a

genotype replacement model, in which the probability

of a replacement is based on the allele frequencies in the

population (Marshall et al. 1998; Kalinowski et al. 2007),

to account for genotypic mismatches in the data set

brought on by mutation or experimental error. To facili-

tate these calculations, the user is asked to enter a rea-

sonable per locus error rate for the data set. CERVUS has

no formal framework for handling null alleles, but it

does detect their presence and estimate their frequencies

by examining departures from Hardy-Weinberg equilib-

rium, so the user can make informed decisions about

whether to exclude affected loci in an analysis or not.

Another feature of CERVUS allows the user to simulate

inbreeding by incorporating information about related-

ness among inbreeding parents and the rate of mating

between relatives. CERVUS can assign one parent at a time

or parent pairs. In the case of parent-pair analyses, the

gender of the parents may be known or unknown.

Although the parent assignment framework in CERVUS is

most powerful when all candidate parents have been

sampled, the program also accommodates open systems

in which a proportion of the potential parents are miss-

ing from the sample. CERVUS also reports results in such

a way that it can be used easily for complete exclusion

as well.

COLONY

COLONY uses maximum likelihood to assign both sibship

and parentage relationships. In this program, offspring

are first clustered into paternal families and maternal

families using a simulated annealing approach to maxi-

mize the group likelihood value. Under this method, all

individuals are considered and partitioned simulta-

neously, resulting in higher power than is found in pair-

wise likelihood. Candidate parents are then assigned to

the clusters at 95% confidence. If no candidate parents

are available, or if no suitable candidate parents are

found, the program will reconstruct parental genotypes.

The straightforward user interface accommodates input

of known relationships between individuals and con-

firms agreement between data sets and user-specified

parameters. The program allows monogamy or polyg-

amy, diploidy or haplodiploidy and codominant or dom-

inant markers. The error model simultaneously handles

two types of errors: null alleles or allelic dropout (type 1)

and other stochastic error (type 2) such as mutation or

random typing errors. This model assumes that error

occurs independently across loci. Specified error is then

incorporated in the group-likelihood calculations. Several

freeware programs are available to organize the tab-

delimited output into pedigree diagrams. This program

works best with highly polymorphic markers, as less

informative markers can result in incorrectly assigned

parents.

FAP

FAP uses an exclusion approach to provide information

on three different topics: (1) the predictive power of a

given set of loci for assigning offspring to parental

pairs, (2) actual assignment of offspring to parent pairs,

and (3) identification of potentially problematic or mis-

scored loci. The program is most suitable for the case in

which all parents of the offspring are in the pool of can-

didate parents and does not allow null alleles to be

used at any loci. The program predicts the resolving

power of a given set of loci by simulating all possible

parental pairings. The power of exclusion is then mea-

sured by the number of potential parental pairs that

give rise to identical progeny genotypes. A subset of

generated offspring genotypes is assigned to families

and the percentage assigned to a single family provides

a metric of the resolution power across the entire sam-

ple. Additionally, the proportion of progeny assigned

without ambiguity to each family is used as a metric of

the resolution power across families. Offspring are

assigned to families by genotype matching; the geno-

types of the actual offspring are matched to the geno-

types produced in all of the pairwise combinations of

parental genotypes in the previous step. There are two

ways that FAP tolerates genotyping errors and muta-

tions: allele mismatches and allele sizes. First, there is

an option to allow for alleles to be mismatched between

parents and offspring: the number of loci can range

from zero to n – 1, where n is the number of loci used

in the analysis. Second, to account for error in allele size

measurement there is an option to tolerate a range of

sizes of the alleles being matched between parents and

offspring. The output of the program indicates which

alleles were not matched and thus identifies the poten-

tially problematic loci.

FAMILYFINDER

FAMILYFINDER uses graphical algorithms to assemble full

sib groups based on pairwise likelihood ratios. Signifi-

cance is established by comparing the pairwise likelihood

ratio to simulated ratios of known relatedness. Pairs of

individuals with a significant pairwise likelihood ratio

are connected by a line. After all pairs of individuals are

evaluated, full-sib groups can be identified as a group of

individuals (each individual is a node) completely inter-

connected by lines. The program then uses connected

component and minimum cut algorithms to search for

and remove weak connections between the groups,
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which are assumed to be spurious. This program

works best with large full sib families and many,

highly polymorphic markers. FAMILYFINDER runs through

UNIX ⁄ LINUX.

FAMOZ

FAMOZ seems to be the software of choice for categorical

allocation involving data sets with dominant marker loci.

FAMOZ can also include co-dominant and cytoplasmic

markers in a single analysis, making it a good choice for

studies involving multiple types of molecular data. Con-

fidence is assessed by running simulations similar to

those found in CERVUS, except that FAMOZ uses the raw

LOD score rather than D; and errors also are handled

using methods similar to those in CERVUS. Finally, FAMOZ

includes a subroutine to calculate gene flow into the

study population based on the results of the parentage

assignment. FAMOZ requires the ToolCommandLan-

guage ⁄ Toolkit (TclTk) platform (Gerber et al. 2003), so it

is slightly more difficult to run than some of the other

parentage analysis tools.

FAMSPHERE

FAMSPHERE excludes parent pairs (or single parents if one

parent is known a priori) for individual offspring on the

basis of genotypic data. The user can define a positive

integer as the radius R, which is assumed to be

proportional to mutation ⁄ genotyping error. In the case of

multiple nonexcluded parent pairs or single parents,

FAMSPHERE utilises a distance-based graphical method to

allocate the parents.

GERUD

GERUD is a program that reconstructs parental genotypes

from progeny arrays. The progeny array must contain

only half- and full-sibs, with or without a known parental

genotype. If neither parental genotype is known, GERUD

will find all genotypes that could represent a shared

parent among all progeny. The program then uses an

exhaustive algorithm that tests all possible parental geno-

types against the progeny array to find the minimum

number of genotypes necessary to explain the array. This

approach is guaranteed to find the minimum number of

parents, and it takes into account associations of alleles

across loci. In addition to determining the minimum

number of parents, GERUD reports their genotypes. The

program also includes a simulation routine, which uses

allele frequencies to determine the probability that the

minimum number of parents reported by GERUD will

represent the true number of parents and the proportion

of genotypes expected to be correctly reconstructed.

KINALYZER

KINALYZER uses a combinatorial optimization approach to

create full sibling groups. The objective of the combinato-

rial optimization approach is to find the solution in

which the fewest number of full-sib groups are pro-

duced. The software is web-based and has an easy user

interface. Data can be analysed using either the

Minimum Two Allele Set Cover approach or the Consen-

sus algorithm. The Minimum Two Allele Set Cover algo-

rithm groups individuals as siblings if they follow the

rules of Mendelian inheritance at all loci. The Consensus

algorithm removes loci one at a time from the data to find

partial solutions, and then reincorporates the removed

loci. The consensus result is calculated by finding the kin

groups common to all the partial solutions and iteratively

incorporating additional groups and individuals. This

algorithm is more tolerant to low allelic variation and

error. The program does not group half-sibs.

KINGROUP

KINGROUP is a JAVA based program that uses maximum

pairwise likelihood to group relatives. The program pro-

vides several algorithms (descending ratio, exhaustive

descent, Simpson, and others) to group related individu-

als. Candidate partitions are built by adding single indi-

viduals to existing groups. In the descending ratio

algorithm, those partitions with the highest likelihood

value are retained for the next iteration. In the exhaustive

descent algorithm, all candidate partitions are retained

for future iterations. KINGROUP can also accommodate ha-

plo-diploid organisms.

KINSHIP

KINSHIP is a useful program for calculating pair-wise relat-

edness values among all pairs of individuals in a sample.

It also can be used to identify potential parent-offspring

pairs. KINSHIP provides a confidence score for individual

assignments, but does not adequately address statistical

confidence, severely impairing its usefulness for parent-

age assignment.

MASTERBAYES

MASTERBAYES is a package implemented in the R statistical

programming language for the evaluation of full proba-

bility parentage models. The approach is to specify a

model, which can include multiple parts and parameters

in addition to the patterns of parentage. The goal is to

determine values of the parameters, including the par-

ent-offspring relationships that maximize the overall pos-

terior probability. MASTERBAYES uses a Markov Chain
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Monte Carlo approach to find the best solution. In princi-

ple, nearly any full probability model could be imple-

mented by using MASTERBAYES, so the approach is quite

flexible. For example, MASTERBAYES can include a robust

model for handling genotyping errors, mutations, and

null alleles, and it can also simultaneously estimate the

proportion of candidate parents in a way similar to the

approach used by PATRI. However, familiarity with R is a

necessity for using MASTERBAYES effectively, so it may not

experience as wide of usage as a stand-alone program

like CERVUS.

MATESOFT

MATESOFT is designed for haplo-diploid systems. The pro-

gram has four capabilities: (1) Constructing maternal

genotypes given the genotypes of a group of sisters, (2)

constructing paternal genotypes from a queen and her

offspring (possibly using the reconstructed maternal

genotype from step 1), (3) calculation of mating

frequency statistics (i.e., paternity skew, contribution of

each father for multiple-sire families, proportion of

doubly mated females in the population, and effective

mate number for females), and (4) calculation of mating

frequency statistics for an inseminated female with

stored sperm. The program is fairly straightforward and

easy to use, though limited in the ability to accommodate

genotyping errors, null alleles and mutations.

ML-RELATE

ML-RELATE uses maximum likelihood estimates of related-

ness to classify pairs of related individuals as unrelated,

half-sibs, full-sibs, or parent-offspring relationships. The

output lists all levels of relatedness that could apply to a

given pair of individuals. The significance of a given level

of relatedness between two individuals can be tested by

the user on a pair-by-pair basis. The input for this pro-

gram requires both the genotypes of sampled individuals

and population level allele frequencies. Null alleles can be

accommodated; the user can either specify which loci con-

tain null alleles or test for null alleles using a Hardy-Wein-

berg test for heterozygote deficiency. When null alleles

are specified, the program uses a maximum likelihood

estimate to incorporate the frequency of null alleles in the

calculations.

NEWPAT

NEWPAT is an exclusion-based approach that finds a niche

by allowing sex-linked markers in the analysis. NEWPAT

accommodates errors by allowing the user to specify

the number of mismatches necessary for exclusion.

Its method for handling confidence in individual

assignments has yet to be validated, but it does provide a

simulation-based approach for assessing experiment-

wide confidence in exclusion.

PAE

PATERNITY ANALYSIS IN EXCEL (PAE) is a categorical alloca-

tion program that converts raw fragment analysis data to

the proper format and assigns paternity (maternity) auto-

matically, all in Microsoft Excel spreadsheets. PAE uses

the same likelihood expressions as CERVUS 2.0, which

should be upgraded to use the more up-to-date model

implemented in CERVUS 3.0. The PAE program requires

very specific sample nomenclature, so the use of this pro-

gram must be anticipated during the early stages of data

collection.

PAPA

PAPA is a categorical allocation program for inferring par-

ent pairs in closed systems. It boasts a streamlined, user-

friendly interface in addition to an excellent manual and

help files. This software can also help optimize the num-

ber of loci required for desired assignment confidence via

the ‘pre-parental’ simulation module. PAPA can incorpo-

rate prior information about known mating patterns

using the ‘crossing ⁄ matching plans’ option. The gender

of candidate parents may be known or unknown for par-

ent pair assignments.

PARENTAGE

PARENTAGE is a Bayesian parental reconstruction program.

It applies to full- or half-sib families and indirectly calcu-

lates the posterior probability of parentage in the array

by fitting probability models to the data. The program

uses a Markov Chain Monte Carlo approach to explore

the sample space, which is constrained to include the

parental genotypes possible given the observed offspring

genotypes. The program uses an infinite alleles’ model to

incorporate mutation and mis-scored alleles. This pro-

gram can be seen as the maximum-likelihood equivalent

of GERUD, so it may provide better estimates of parental

reconstruction when markers are less informative.

However, PARENTAGE has the potential to overestimate the

number of parents contributing to a progeny array, while

GERUD does not. As markers become sufficiently informa-

tive, both approaches should converge on the same

answer.

PARENTE

PARENTE performs categorical assignment for single par-

ents or for parent pairs by using co-dominant marker
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data. PARENTE was one of the first programs to perform

parent-pair assignment, but CERVUS has now implemented

such a procedure. PARENTE uses posterior probabilities for

assignment, and it allows for errors and missing parents

in the pool of candidates. PARENTE also can take into

account the ages of the candidate parents when perform-

ing assignments.

PASOS

PASOS employs a likelihood framework to allocate parent

pairs among a group of offspring, and it accommodates

open systems. Simulations incorporating user-defined

parameter values are conducted before parent-pair allo-

cation to establish experiment-wide assignment confi-

dence and to optimize the subset of loci ultimately used

for allocation. Error modelling in the simulations is

achieved first through a user-defined maximum offset

tolerance (MOT), which dictates the maximum number

of ‘mutational’ steps (in either direction) allowed for any

one allele during the simulations (Duchesne et al. 2005).

A distribution of the error rate across the different step-

wise deviations from the ‘original’ allele is specified by

the user, and is assumed to be a realistic model for mis-

matches arising as a consequence of mutation and geno-

typing errors. The error model ‘0.002, 0.008, 0.98, 0.008,

0.002’, for example, assumes a MOT of 2, a unidirec-

tional one-step error rate of 0.008, and a unidirectional

two-step error rate of 0.002. After simulations are com-

plete, the likelihood of each real parent pair ⁄ offspring

trio is calculated assuming a fixed error model, in which

a general error rate of 0.02 is distributed uniformly

across all alleles. For each offspring the parent pair with

the highest likelihood is allocated, provided there are no

allelic mismatches. If one or both parents in the most

likely parent pair mismatch an offspring allele, the can-

didate parent(s) must then be allocated or rejected. If the

mismatch offset is less than or equal to the MOT, the

parent in question is allocated to the offspring. If the

mismatch offset is greater than the user-defined MOT,

however, the offspring’s parent(s) will be deemed

‘uncollected.’ This process results in an estimate of the

proportion of unsampled adults for a given group of off-

spring. Much like CERVUS, PASOS is capable of conducting

parent pair allocation when the sex of candidate parents

is either known or unknown.

PATRI

PATRI is a fractional allocation program, but it also pos-

sesses some features of full probability modelling. PATRI

uses a Bayesian framework to calculate posterior proba-

bilities of assignment of fathers to offspring, given a

known mother. These posterior probabilities can be used

for fractional allocation. In principle, they can also be

used for categorical allocation, and the magnitude of the

posterior probability provides a guide to confidence in

assignment. PATRI also possesses the ability to estimate

the proportion of candidate parents sampled in an open

system and the difference in average reproductive suc-

cess between two classes of individuals (e.g., dominant

versus subordinate).

PEDAPP

PEDAPP considers the pedigree to be the primary object of

inference, permitting calculation of the probability that

individual i is the parent of individual j, via the Bayesian

posterior probability. Multiple generations may be con-

sidered by coding the ages of sampled individuals

accordingly. The sex of candidate parents in the sample

may also be included, if known. The user interface is

well-designed and straightforward. No statistical sum-

mary of the sampled pedigrees is provided, so the user

must calculate posterior probabilities independently

using the output.

PEDIGREE

PEDIGREE is a web-based sibship reconstruction program

that uses pairwise likelihood to build partitions, or

groups of related individuals, and evaluates the parti-

tions based on a weighted score. A Markov Chain

Monte Carlo approach is used to find the partition with

the highest score. Individuals can be partitioned into

both full sibling and half sibling groups. Full-sib groups

can be nested within half-sib groups, but this arrange-

ment only accommodates multiple mating in one parent.

Nested data are presented in HTML formatted tables

only, which can make exporting these results somewhat

difficult. The significance of any given group can be esti-

mated by comparing the cohesion and repulsion scores

of several groups. These scores are calculated by taking

the average log likelihood ratio of sibship among all

individuals in a group. This measure is sensitive to

group size: small groups could have inflated scores of

cohesion by chance, indicating that the individuals

within the group are more closely related than they

actually are. For this reason, cohesion and repulsion

scores can only be compared between groups of the

same size. The current version of PEDIGREE does not

incorporate error or significance testing. The program

can also reconstruct parental genotypes. This feature

lists all potential parental genotypes that could generate

the offspring of a single group at each locus. Chi-square

values are also provided to indicate a measure of fit for

each parental genotype, but no probability values are

provided.
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PROBMAX

PROBMAX is an exclusion-based program that can take

advantage of dominant or co-dominant marker data. It is

especially suited to cases in which both parents of each

offspring are likely to be in the pool of candidate parents.

Under these circumstances, it indicates the parent pairs

compatible with each offspring genotype. PROBMAX allows

a user-specified number of mismatches, including step-

wise mutations, to accommodate scoring errors and

mutations.

PRT

PRT uses a combination of group likelihood and exclusion

principles to construct full-sib groups. The program first

assembles maximal feasible sibling groups (MSG), which

contain all individuals in the sample that could be pro-

duced by two hypothetical parents. This method uses the

principle of exclusion to rule out sibling groups that have

incompatible sibling genotypes. This is similar to the way

exclusion is used to rule out genotypically incompatible

parents in parentage assignment programs. In the MSG

step, individuals can belong to more than one group.

These groups are then assigned a likelihood-based score,

which is used to construct a partition of sibling groups

where each individual is part of only one group. The par-

tition with the highest likelihood is found using a Mar-

kov Chain Monte Carlo approach.

TWO-SEX PATERNITY

TWO-SEX PATERNITY deals with the case in which a group of

related progeny can be collected with a single putative

parent. The program then estimates the proportion of off-

spring parented by the putative parent and provides con-

fidence limits. This program is especially useful for

species with nest-holding males in which cuckoldry is

suspected.

WHICHPARENTS

WHICHPARENTS is an exclusion-based program that

returns potential parents and parent pairs for a given

offspring genotype. The program accommodates geno-

typing error and mutations by tolerating mismatched

alleles at a level specified by the user. The program

does not accommodate null alleles in a meaningful way.

Hence, WHICHPARENTS is a bare bones exclusion program.
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