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Abstract

Although FST is widely used as a measure of population structure, it has been criticized recently because of its dependency

on within-population diversity. This dependency can lead to difficulties in interpretation and in the comparison of esti-

mates among species or among loci and has led to the development of two replacement statistics, F¢ST and D. F¢ST is the nor-

mal FST standardized by the maximum value it can obtain, given the observed within-population diversity. D uses a

multiplicative partitioning of diversity, based on the effective number of alleles rather than on the expected heterozygosity.

In this study, we review the relationships between the three classes of statistics (FST, F¢ST and D), their estimation and their

properties. We illustrate the relationships between the statistics using a data set of estimates from 84 species taken from

the last 4 years of Molecular Ecology. As with FST, unbiased estimators are available for the two new statistics D and F¢ST.

Here, we develop a new unbiased F¢ST estimator based on GST, which we call G¢¢ST. However, F¢ST can be calculated using

any FST estimator for which the maximum value can be obtained. As all three statistics have their advantages and their

drawbacks, we recommend continued use of FST in combination with either F¢ST or D. In most cases, F¢ST would be the best

choice among the latter two as it is most suited for inferences of the influence of demographic processes such as genetic

drift and migration on genetic population structure.
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The trouble with FST

Quantifying population structure using FST

Determining the genetic structure of natural populations

forms an important part of population genetics and has

many applications in evolutionary biology, conservation,

forensics, and plant and animal breeding. The method

most frequently used to assess population structure is the

calculation of FST, a summary statistic first introduced by

Sewall Wright (1943a, 1965). Wright originally developed

his F-statistics as inbreeding coefficients, defined as a cor-

relation between uniting gametes. This was long before

the advent of allozymes and other molecular genetic

markers, and Wright therefore assumed loci to be biall-

elic. Like most geneticists of his time, he focused on mor-

phological characters with simple Mendelian inheritance.

In fact, his landmark paper on isolation by distance and

its effects on the distribution of genetic variation (Wright

1943a) was directly followed by another paper in which

he illustrated his findings with a data set on the distribu-

tion of white and blue flowers in Linanthus parryae in the

Mojave desert (Wright 1943b). Later, when allozymes

were introduced as a convenient marker to assess the

genetic diversity of a population, Wright’s FST was

adapted for use with multiallelic loci, redefined as a ratio

of genetic variances (Cockerham 1973). This led to the

development of several statistical frameworks to estimate

FST statistics from small samples from a limited number

of populations (e.g. Weir & Cockerham 1984; Nei 1987).

Nei’s (1987) GST is a direct expansion of Wright’s work

and is based on a comparison of the expected heterozy-

gosity (gene diversity) within and among populations.

The method of Weir & Cockerham (1984) uses an ANOVA

approach to estimate within- and among-population var-

iance components, which are then used to estimate their

FST analogue h. These FST analogues became widely used

for analysing allozyme data, primarily because of theirCorrespondence: Patrick Meirmans, Fax: +31 20 525 7832;
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ability to describe the genetic population structure in a

single summary statistic and the direct link between FST

and the rate of gene flow (which we will refer to as the

‘migration rate’ below).

With the discovery of new, more variable, genetic

markers, new FST analogues were developed to take the

special properties of these markers into account. Excoffier

et al. (1992) used the ANOVA approach of Weir & Cocker-

ham (1984), but performed this on a matrix of squared

Euclidean distances between DNA haplotypes, from

which the FST analogue uST is calculated. Slatkin (1995)

developed RST, which is especially suited for markers

with a stepwise mutation model such as some microsatel-

lites. In addition to these new methods, the older GST and

h statistics are still widely used for the analysis of highly

variable microsatellite markers. Nowadays, a large num-

ber of different marker types are available for population

genetic studies, with a large range of allelic diversities,

from SNPs that are essentially biallelic to microsatellites

that can have over 50 alleles at a single locus (e.g. Peijnen-

burg et al. 2006). Despite their different diversities, all

these markers are analysed with what is basically still the

same FST statistic that was originally developed for biall-

elic data. Only recently have biologists started to become

aware of the limitations of F-statistics for analysing data

from highly variable loci (Charlesworth 1998; Hedrick

1999, 2005; Balloux et al. 2000; Balloux & Lugon-Moulin

2002; Long & Kittles 2003; Gregorius et al. 2007; Jost 2008;

Gregorius 2010).

Dependency on HS

When defined as a ratio of genetic variances (Cockerham

1973), FST and its analogues work by relating the amount

of genetic variation among populations to the total

genetic variation over all populations. For biallelic mark-

ers, this makes sure that FST is bounded between zero

and one, with zero representing no differentiation and

one representing fixation of different alleles within popu-

lations. For multiallelic markers, however, the maximum

possible value is not necessarily equal to one, but is

instead determined by the amount of within-population

diversity (Charlesworth 1998; Hedrick 1999). The reason

for this can be best understood by looking at GST, which

is defined as (Nei 1987)

GST ¼
HT �HSð Þ

HT
;

where HT is the total gene diversity, and HS is the within-

population gene diversity (equal to the expected hetero-

zygosity for diploids). Because the true population value

of HT is necessarily bigger than or equal than that of HS

and the maximum possible value for HT is one, it follows

that the maximum value of GST equals 1)HS (Charles-

worth 1998; Hedrick 1999; Jost 2008). For highly variable

loci, this can lead to a very small possible range of GST

values. To illustrate this relationship, Fig. 1 gives the joint

values of FST and HS found in the past 4 years in Molecu-

lar Ecology (expanded from Heller & Siegismund 2009;

see also Table S1, Supporting information). Notice that

the observed range of FST is always less than HS and that

the range of FST becomes very small when HS is large. For

example when HS = 0.9, a value that is commonly

encountered for microsatellite markers, the maximum

possible value of FST is 0.1. Such a value of FST is gener-

ally interpreted as representing a rather weak population

structure. However, here it represents the case with max-

imum differentiation among the populations, meaning

that the populations do not share any alleles at all. It is

important to realize that this is not a statistical issue,

deriving from the sampling of individuals from popula-

tions, but that the problem also occurs when the actual

population allele frequencies are used (Jost 2008).

Although the dependency on the amount of within-

population variation has mostly been discussed for GST

(Hedrick 2005; Jost 2008; Ryman & Leimar 2008), it is also

present for other FST estimators such as h and uST

(Balloux et al. 2000; Meirmans 2006). For these statistics,

the calculation of the maximum possible value is less

straightforward than for GST and requires calculating the

maximum possible among-population variance compo-

nent, given the within-population variance in the sample

(Meirmans 2006). However, in most cases, GST, h, and uST

give highly similar values, so that their maximum values

will also generally be close or equal to 1 ) HS.

One statistic that is not affected by the amount of

within-population variation is RST, which was especially
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Fig. 1 The maximum possible value of FST as a function of the

expected heterozygosity within-population HS (solid line). The

closed circles represent values from 84 species published in

Molecular Ecology over the last 4 years (expanded from Siegis-

mund and Heller, 2009).
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developed for markers with a stepwise mutation model,

such as some microsatellites (Slatkin 1995). Slatkin

showed that estimates of the number of migrants, calcu-

lated from RST, were essentially unbiased over a range of

mutation rates and were much better than estimates cal-

culated from FST. Similar results were obtained by Bal-

loux et al. (2000) who found that estimates of RST were

mostly unbiased for highly variable microsatellite loci

with up to 30 alleles, while FST was severely underesti-

mated. However, estimates for RST were only satisfactory

when the mutations strictly followed the stepwise muta-

tion model (Balloux et al. 2000). When a small proportion

of random mutations were added, most of the ‘‘memory’’

in the mutation process was lost, and estimates of RST

were not reliable. As in practice microsatellites hardly

ever follow a strict stepwise mutation model, the use of

RST is best avoided (but see Excoffier & Hamilton 2003).

In fact, even when mutation is strictly stepwise, RST is not

necessarily always a better estimator than FST (Balloux &

Goudet 2002). For example, this is the case when the

timescale of interest is short and the influence of muta-

tion is relatively small (Slatkin 1995).

Difficulties in interpretation

Obviously, the dependency of many FST estimators on

the level of diversity will cause difficulties in their inter-

pretation. This will be especially the case when markers

are compared that have different mutation rates or when

species are compared with different effective population

sizes. Comparisons of F-statistics within species can also

be difficult when different parts of the distribution are

compared that differ in diversity. For example, an inva-

sive species may have a lower diversity in the invaded

area than in the original distribution area, which may

give problems when FST is used to compare the popula-

tion structure within the two areas. Indeed, several

authors have remarked that their estimates of FST did not

conform to the expectations based on what was known

about their study organism or that the estimates varied

over loci with different mutation rates (e.g. Balloux et al.

2000; O’Reilly et al. 2004; Carreras-Carbonell et al. 2006).

In a comparison of two chromosomal races of the com-

mon shrew, Balloux et al. (2000) found that the estimates

of genetic differentiation were much lower than expected

based on earlier studies. For example, for one highly vari-

able Y-chromosomal microsatellite, the value of h was

only 0.19, even though no alleles were shared between

the two races. Ten autosomal microsatellite loci showed

an even lower overall h value of 0.10. In contrast, a biall-

elic mtDNA marker where the two alleles were shared by

the two races had a h value of 0.56. Balloux et al. (2000)

then conducted simulations to show that indeed the esti-

mates of h were strongly affected by the mutation rates of

the loci. Therefore, they concluded that, despite the low h
values, the two races were genetically strongly differenti-

ated as a result of almost complete reproductive isolation.

O’Reilly et al. (2004) used 14 microsatellite loci to

study the population structure of a marine fish, Walleye

pollock. The loci varied dramatically in the number of

alleles (6–43), resulting in expected heterozygosities rang-

ing from 0.68 to 0.96. They found that the estimates of h
declined significantly with increasing heterozygosity,

leading them to conclude that ‘mutation rates of some

microsatellite loci are sufficiently high to limit resolution

of weak genetic structure’ (O’Reilly et al. 2004). They

attributed the observed correlation to size homoplasy,

downplaying the effect of heterozygosity itself as they

regarded the population structure too weak to be affected

by this. However, also when the population structure is

weak, FST will be affected by the level of heterozygosity

and this can therefore readily explain the observed corre-

lation.

The proposed solutions

Hedrick’s G¢ST

Having noted earlier (Hedrick 1999) that the diversity

restricts the possible range of GST, Hedrick (2005) sug-

gested standardizing GST by the maximum value it can

obtain given the observed within-population diversity.

This method of standardization was inspired by

Lewontin’s (1964) measure of linkage disequilibrium

D¢, which is the standard measure D, divided by the

maximum possible value given the observed allele

frequencies.

Hedrick used the original (Nei 1973) definition of GST

as (HT-HS) ⁄ HT and found that its maximum value

(GST(max)) is a function of the expected heterozygosity,

HS, and the number of sampled populations k

GSTðmaxÞ ¼
k� 1ð Þ 1�HSð Þ

k� 1þHS

Hedrick then defined the standardized GST, which he

called G¢ST, as (equation 4b in Hedrick 2005)

G0ST ¼
GST

GSTðmaxÞ
¼ GST k� 1þHSð Þ

k� 1ð Þ 1�HSð Þ ð1Þ

When k is large, GST(max) becomes equal to 1 ) HS, the

same value that was obtained above (Charlesworth 1998;

Hedrick 1999; Jost 2008). The standardization ensures

that G¢ST has an upper limit of 1, which is reached when

the populations have nonoverlapping sets of alleles or

when all populations are fixed for a single allele (HS = 0)

and there are two or more different alleles over all

populations.
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Hedrick defined his standardized measure only for

GST, but the rationale is also applicable to other FST ana-

logues. Meirmans (2006) developed a method to estimate

the standardized measure u¢ST based on an analysis of

molecular variance (AMOVA, Excoffier et al. 1992). In a nor-

mal AMOVA, the summary statistic uST is defined as a func-

tion of the between-population variance component ra
2

and the within-population variance component rb
2:

uST ¼
r2

a

r2
a þ r2

b

The maximum value of uST given the amount of within-

population variation can then be found by maximizing

the among-population variance ra
2. In an AMOVA, the vari-

ance components are calculated from a matrix of pair-

wise squared Euclidean distances between individuals.

For a single locus, the maximum among-group variance

can then be found by setting all distances between pairs

of individuals from different populations to a value of

one.

Jost’s D

Jost (2008) argued that there are in fact two separate prob-

lems with GST and developed a new framework for analy-

sing population differentiation based on ecological

diversity theory. The first problem recognized by Jost is

the same one that we saw above, where HS puts a limit on

the maximum possible differentiation. Jost argued that

the additive partitioning that is used for GST, where the

total diversity is the sum of the within-population and

among-population diversity, is inadequate to describe

the among-population diversity. The second problem rec-

ognized by Jost is that the expected heterozygosity is an

unsuitable metric for describing the diversity, leading to

unintuitive results. For example, the heterozygosity does

not scale linearly with an increase in diversity. Going

from two equally frequent alleles to 20 equally frequent

alleles does not give a tenfold change in heterozygosity,

but a more moderate change from 0.5 to 0.95. Changing

from 20 to 200 equally frequent alleles gives even less

change in heterozygosity from 0.95 to 0.995. For some

uses, this is a desirable property, for example because the

heterozygosity very well fits our human interpretation of

diversity where changes in small numbers (from 2 to 20)

are often considered more important than changes in

large numbers (from 20 to 200) (Hubalek 2000). However,

this quality makes the heterozygosity less suitable for a

statistical breakdown of diversity. One additional advan-

tage of using heterozygosity is its easy interpretation,

because it presents the probability that a pair of randomly

drawn genes are different.

Jost (2008) then developed a new framework for

estimating genetic differentiation that avoids these two

problems. Instead of using heterozygosity, Jost based his

statistic D on the effective number of alleles, which Jost

(2006, 2008) simply calls the ‘true diversity’. The effective

number of alleles scales linearly with an increase in

equally frequent alleles, which, according to Jost, gives a

more intuitive diversity estimate. A disadvantage of this

diversity index is that it depends on the sample size, so

rarefaction to a standard sample size is needed before

estimates can be compared (note that this does not affect

the estimation of D). The effective number of alleles is

directly related to the heterozygosity and can be defined

as 1 ⁄ (1 ) HS). However, unlike the heterozygosity, the

effective number of alleles does scale linearly with

increases in diversity. Jost (2007, 2008) then developed a

multiplicative approach to partition the diversity, where

the total diversity is the product of the within-population

and among-population diversity and shows that this

approach is mathematically more robust than the addi-

tive partitioning used by Nei. He then transformed the

among-population diversity into a summary statistic, D,

which ranges from zero to one. Although this statistic is

not directly based on the heterozygosity as an index of

diversity, it can nevertheless be expressed as a function

of the total and within-population heterozygosities

(equation 11 in Jost 2008):

D ¼ k

k� 1

� �
HT �HS

1�HS

� �
ð2Þ

If HS = 0, then D = HT k ⁄ (k ) 1). This means that when

k = 2, D equals 2HT and when k becomes large, D

approaches HT.

Relationships between GST, G¢ST and D

To visualize the relationships between the three sum-

mary statistics, GST, G¢ST and D, Heller & Siegismund

(2009) collected data on 43 species from 34 studies pub-

lished in Molecular Ecology between 2006 and 2008. They

included all species for which estimates were given for

both HS and an FST analogue and used these estimates to

calculate (by approximation) GST, HT, D and G¢ST. We

extended their data set and added another 41 species

from 36 studies published in Molecular Ecology between

January 2009 and March 2010. The strong positive corre-

lation between G¢ST and D that was reported by Heller &

Siegismund (2009) was also present in the extended data

set, though with a slightly lower value for the correlation

coefficient (r = 0.85 for the extended data set, vs. r = 0.99

for the smaller set).

As GST, G¢ST and D can all be expressed in terms of HS,

HT and k, it is possible to directly analyse the relation-

ships among these three statistics (Heller & Siegismund

2009). The relationship between G¢ST and GST is simple

� 2010 Blackwell Publishing Ltd
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(see Fig. 2a), because G¢ST is by definition always larger

than GST. For large values of k, the ratio between the two

statistics is (Hedrick 2005):

lim
k!1

G0ST

GST
¼ 1

1�HS
ð3aÞ

The relationship between D and GST is less straightfor-

ward, but for large k, this simplifies to:

lim
k!1

D

GST
¼ HT

1�HS
ð3bÞ

This means that for HS > 0.5, D is larger than GST (see

Fig. 2b), while for small values of HS, D is almost always

smaller than GST (see Fig. 2b). Low values of HS generally

indicate a strong effect of genetic drift and ⁄ or a low

mutation rate. For D, this means that low values of HS

often lead to low values of D relative to GST. The litera-

ture data show that in practice, D is mostly larger than

GST, because in most of the analysed studies the within-

population diversity is high. This indicates that GST

indeed underestimates the amount of differentiation

among populations. However, there are also some nota-

ble cases where GST shows stronger differentiation than

D. The relationship between D and G¢ST can also most

suitably be expressed as their ratio (see Fig. 2c), which

for large k simply becomes (Heller & Siegismund 2009):

lim
k!1

D

G0ST

¼ HT ð3cÞ

From the above equations, we see that when k is

large, the relationships between the three summary sta-

tistics become rather simple. However, when k is small,

the relationships between the statistics can diverge from

those presented above (dotted lines in Fig. 2). This can

especially be the case for pairwise comparisons between

populations, which are often used for detecting isola-

tion by distance. Another interesting relationship

between these statistics is that D is in fact equivalent to

another method of standardization. Nei (1973) defined

the between-subpopulation diversity as DST = HT ) HS

(Nei 1973), which he used to calculate GST as DST ⁄ HT. It

can be proven that Jost’s D is equivalent to a standardi-

zation of Nei’s DST relative to its maximum possible

value: D = D¢ST = DST ⁄ DST(max) (Anne Chao unpub-

lished res).

Heller & Siegismund (2009) also found that there was

a significant negative correlation between HS and the val-

ues of GST, G¢ST and D. However, they argued that the

correlations of G¢ST and D with HS were mainly caused

by three outliers with ‘somewhat extreme’ demographic

histories. In our extended data set, there was a significant

relationship between HS and GST (r = )0.58, P = 0.001,

two-sided Monte Carlo test with 999 permutations), and

between HS and G¢ST (r = )0.37, P = 0.001), but not

between HS and D (r = )0.18, P = 0.085). Unlike for the

data from Heller & Siegismund, the relationship between

HS and G¢ST was not caused by a few outliers.
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Fig. 2 The relationships between GST, G¢ST and D, as a function

of the amount of within-population diversity HS. (a) The ratio

between G¢ST and GST, (b) the ratio between D and GST, (c) the

ratio between D and G¢ST. The thick grey lines outline the

possible range of the expected relationship for a large number of

populations, the thin dotted lines outline the possible range for

k = 2. These upper and lower limits, respectively, assume

that HT = 1 and HT = HS. The black symbols represent values

from the literature (expanded from Siegismund and Heller,

2009).
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Estimation

Correction for sampling bias

Genetic summary statistics are generally estimated from

small samples taken from a small number of populations

from a much larger metapopulation. When only a small

number of individuals are sampled from a population,

using the sample allele frequencies to directly calculate

HS and HT will lead to a bias. Therefore, Nei & Chesser

(1983) developed nearly unbiased estimators of HS and

HT, intended for the calculation of GST. Later, Nei (1987,

p. 164–165) introduced additional estimators to also cor-

rect for the amount of inbreeding, although the differ-

ences with the estimators of Nei & Chesser are generally

rather small. When calculating GST, G¢ST and D, it is

important to always use such unbiased estimates (Jost

(2008) distinguishes between the theoretical D statistic

and its estimator DEST based on bias-corrected HS and

HT). For calculating the overall values, HS and HT should

be calculated giving equal weights to all populations,

independently of the real population sizes or the sample

sizes. In addition, Jost (2008) showed another method for

estimating D without bias, derived from the unbiased

estimation of the Morisita–Horn similarity index, which

is frequently used in ecology (Chao et al. 2008).

For multiple loci, the estimates of HS and HT should

first be averaged over loci before calculating GST or G¢ST

(Nei 1973; Weir & Cockerham 1984). First calculating GST

or G¢ST separately and then averaging these estimates is

also frequently carried out (Culley et al. 2002), though

this should be discouraged because it can lead to a down-

ward bias, especially when few populations are sampled.

Jost’s D was developed as a single-locus measure, but a

multilocus value can be obtained by taking the harmonic

mean across loci (Crawford 2010). However, the above

technique of first averaging HS and HT over loci also

gives good results for multilocus estimates of D and has

been used for all calculations below.

Nei (1987, p. 164–165) noted that GST implicitly

includes a comparison of every population with itself,

which leads to an underestimation when the number of

sampled populations (k) is small. He therefore derived an

unbiased version, which he called G¢ST (we will refer to

this as G¢ST(Nei) to avoid confusion with Hedrick’s G¢ST):

G0STðNeiÞ ¼
k HT �HSð Þ
kHT �HS

Hedrick’s (2005) G¢ST suffers from the same underesti-

mation when only a small number of populations is

sampled and should therefore also be corrected. It can be

shown (Appendix 1) that the maximum possible value of

G¢ST(Nei) is equal to (1 ) HS). Therefore, the corrected

version of Hedrick’s G¢ST becomes

G00ST ¼
G0STðNeiÞ
1�HS

¼ k HT �HSð Þ
kHT �HSð Þ 1�HSð Þ ð4Þ

This statistic should be used for estimating Hedrick’s

standardized measure whenever the number of sampled

populations is small, especially for pairwise

comparisons. D does not suffer from this bias, as its defi-

nition already includes the correction term k ⁄ (k ) 1)

(eqn 2).

To illustrate the effects of the number of sampled

populations, we used the program Easypop (Balloux

2001) to simulate a metapopulation consisting of 100

populations, each with 20 individuals. Migration

between populations followed an island model with a

migration rate of 0.05 per generation. We simulated 20

neutral genetic markers with a maximum of 20 possible

allelic states and a mutation rate of 0.0001. Simulations

were run for 10 000 generations, with 100 replicates.

From every data set of the 100 simulated data sets, we

then randomly sampled from 2 to 50 populations and

calculated GST, G¢ST(Nei), G¢ST, G¢¢ST and D. Figure 3

shows the averages of the estimates of these statistics.

Clearly, both GST and G¢ST are underestimated when the

number of sampled populations is small, while G¢ST(Nei),

G¢¢ST and D are essentially unbiased. When k gets very

large, the asymptotic values of GST and G¢ST become

equal to those of G¢ST(Nei) and G¢¢ST. Although the

estimates of GST and G¢ST are always biased for small k,

the actual extent of the bias depends for a large part on

population parameters such as the migration rate and

the mutation rate.
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Estimation of other F¢ST analogues

In general, the rationale behind Hedrick’s standardiza-

tion of GST can be applied to any FST analogue when its

maximum value can be obtained. Unbiased estimates of

u¢ST can be obtained through an AMOVA using the method

described by Meirmans (2006). When analysing popula-

tion structure at multiple hierarchical levels, one has to

keep in mind that the maximization has to be performed

at the correct level. So for estimating u¢SC, the degree of

structure among populations within groups, the between

populations variation should be maximized. For calculat-

ing u¢CT, the degree of structure among groups of popu-

lations, the between populations variation should be

maximized.

Weir & Cockerham’s (1984) h can also be standardized

by dividing it by its maximum value. As with an AMOVA,

the maximum value of h can be obtained by maximizing

the among-population variance component through the

corresponding sum of squares. Unfortunately, the deriva-

tion of direct equations for hmax is difficult. However,

when sample sizes are large and equal and Hardy–Wein-

berg equilibrium can be assumed within populations, it

can be shown that the value of hmax equals the homozy-

gosity or 1-HS (Steven Kalinowski, in prepration), the

same value as the maximum of G¢ST(Nei) that we found

above.

In addition, the maximum value of h and most other

FST analogues can be calculated using a simple modifica-

tion of the allelic data (Meirmans 2006). Maximization of

the among-population diversity, while maintaining the

within-population diversity, can be obtained by recoding

the alleles in such a way that every population only con-

tains alleles unique to that population. For example,

when two populations both contain alleles A1 and A2

(possibly in different frequencies), the value of FST(max)

can be obtained by coding all alleles in the second popu-

lation to A3 and A4 and then recalculating the statistic.

Following the method of Hedrick, the standardized mea-

sure F¢ST can then be found by dividing the original FST

value by the maximum value.

SNP data

The method of calculating the maximum possible value

of GST that is used for calculating G¢ST makes implicit use

of a dummy data set in which all populations only have

uniquely different alleles. This dummy data set is a math-

ematical abstraction, comparable to Lewontin’s (1964)

assumption of a maximally linked data set that he used

to standardize the measure of linkage disequilibrium,

which generally does not pose any problems. However,

it may lead to counterintuitive situations when used with

markers that have only a few possible allelic states. For

example, SNP markers have an absolute maximum of

four allelic states corresponding to the four nucleotides

(and generally have only two allelic states). Depending

on the number of sampled populations, calculating G¢ST

can have the implicit assumption of much more than four

allelic states. However, for biallelic markers (like most

SNPs), the classic FST is appropriate as it is and no stan-

dardization is necessary. The same is generally the case

for markers with few allelic states.

Sequence data

Sequence data are of a different nature than allelic data

as they contain information on the evolutionary relation-

ships between haplotypes. GST, G¢ST and D do not take

this information into account so their calculation is diffi-

cult for sequence data (however, an appropriate version

of D is being developed: Chao et al. in preparation).

However, standardization is actually not necessary for

sequence data when the relationships between haplo-

types are taken into account. This can, for example, be

obtained by performing a standard AMOVA on the

sequence data where a matrix of pairwise differences

between haplotypes (Excoffier et al. 1992) is used to cal-

culate the uST statistic. Simulations have shown that

unlike FST, uST is independent of the mutation rate when

calculated for sequence data (Kronholm et al. 2010).

Available software

As far as we know, there are currently four programs that

can directly calculate estimates of the new differentiation

statistics (see Table 1). The most complete is the program

GENODIVE (Meirmans & Van Tienderen 2004), which can

calculate per-locus and multilocus G¢ST, G¢¢ST, D, as well

as u¢-statistics from a hierarchical AMOVA. The web-based

program SMOGD (Crawford 2010) can estimate G¢ST and D

per locus, plus a multilocus version of D by taking the

harmonic mean across loci. The program THETAMAX

(Kalinowski in preparation) can calculate the maximum

value of h, which it uses to obtain h¢. Lastly, there is the

program SPADE (Chao & Shen 2009), which can calculate

D on genetic data, despite being originally designed for

ecological studies.

In addition to the above three programs, it is possible

to calculate G¢ST, D and G¢¢ST indirectly using any pro-

gram that can calculate the appropriate bias-corrected

estimates of HS and HT [e.g. ARLEQUIN (Excoffier & Lischer

2010), FSTAT (Goudet 1995) or GENALEX (Peakall &

Smouse 2005)], with the help of eqns 1, 2 and 4 above.

Other FST analogues can be standardized using the

data-recoding trick above, which can be used with any

general population genetics program. A small utility

called RECODEDATA (Meirmans 2006) is available to
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perform such recoding for data files in FSTAT format

(Goudet 1995).

Properties of the new statistics

Variance and standard error

The variance in the estimates among loci can be much

higher for G¢¢ST and D than for GST. This is especially the

case when the heterozygosity is high. However, this

higher variance is expected because of the much larger

range of G¢¢ST and D for high HS. The high among-locus

variance, which translates into a higher standard error

for estimates of G¢¢ST and D therefore generally does not

constitute a large problem, especially when sufficient loci

and ⁄ or populations are available. Nevertheless, it is

advisable to perform an analysis of the standard error or

confidence interval of estimates, e.g. using a bootstrap-

ping (SPADE, SMOGD) or jackknifing (GENODIVE) approach.

The high standard error can give problems when mul-

tiple samples are unknowingly taken from a single popu-

lation. To illustrate this, we used Easypop (Balloux 2001)

to simulate a single large population (2000 individuals)

and varied the mutation rate to obtain a series of 20 data

sets with HS values ranging from 0.05 to 0.99. From every

data set, we took two samples of 20 individuals each and

calculated G¢ST(Nei), G¢¢ST and D, averaged over the 20

simulated loci. We repeated this 1000 times for every data

set and analysed the range of observed values. The use of

the unbiased HS and HT estimator correction (Nei &

Chesser 1983; Nei 1987) can lead to negative estimates of

the differentiation statistics. This is a desired effect as it

keeps the average centred around zero, which is the

expected value here because the samples are from the

same population. Figure 4 shows that for all three statis-

tics, the overall averages indeed always fall very close to

zero, as they should. However, Fig. 4 also shows that for

very high diversities, the observed range of values gets

very large for G¢¢ST and D, and rather extreme negative

and positive values can be observed. So for example, for

HS = 0.99, values of G¢¢ST and D as low as )0.25 or as high

as 0.25 are no exception. Normally, negative values are

interpreted as zero, and even when large, these should

not present a problem in the interpretation. However, the

large positive values can be more of a problem as such

values are generally interpreted as representing moder-

ately strong differentiation. This again shows that it is

important to perform an analysis of the standard error of

estimates of these differentiation statistics.

An interesting case occurs when every individual only

has unique alleles. This can be the case when analysing

sequence data as allelic data. Although rare, such cases

have been observed in certain species. For example, in

the planktonic chaetognath Sagitta setosa, Peijnenburg

et al. (2004) found that all 85 individuals they sampled

from 12 locations had unique sequences for the mito-

chondrial cytochrome oxidase II gene. In such cases, the

value of HS can equal one and as a result, both D and

G¢¢ST are undefined owing to a division by zero. This

makes sense, as in such a case, it is not possible to distin-

guish whether they represent two samples from a single

very diverse population or from multiple very diverse

populations.

Approach to equilibrium

Jost’s (2008) D statistic has been criticized for taking

much longer to reach equilibrium than GST (Ryman &

Leimar 2009). As an example, Ryman & Leimar (2009)

used a model where ten populations, which were initially

in mutation–drift equilibrium, started diverging at t = 0

and then tracked the change in D and GST over time

(based on recurrence equations from Nei 1975 and Li

1976; see also Ryman & Leimar 2008). Their results show

that at the highest of the two mutation rates they used,

both D and GST reached equilibrium relatively rapidly,

though the equilibrium value of GST was much lower

because of its dependence on the mutation rate. At a low

mutation rate, GST again started to increase almost imme-

diately, while D maintained a value close to zero for

thousands of generations. We used their model to further

assess the relationship between the mutation rate and the

Table 1 Software that can be used to calculate the new measures of genetic differentiation

Program Statistics Reference Platform Website

GenoDive G¢ST, G¢¢ST, D, u¢ST Meirmans & Van

Tienderen 2004

Mac OS X http://www.patrickmeirmans.com

SMOGD G¢ST, G¢¢ST, D Crawford 2010 Website http://people.bu.edungcrawfo/smogd

ThetaMax h¢ Kalinowski, in

preparation

Windows http://www.montana.edu/kalinowski

SPADE D Chao & Shen 2009 Windows http://chao.stat.nthu.edu.tw/softwareCE.html

RecodeData G¢ST, G¢¢ST, u¢ST, h¢
(all indirectly)

Meirmans 2006 Mac OS X,

Windows

http://www.patrickmeirmans.com
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time to equilibrium, not only for D and GST (for which we

used the estimator G¢ST(Nei)) but also for G¢ST (using the

estimator G¢¢ST). Figure 5 shows that for high mutation

rates, the time taken to reach 95% of the equilibrium

value is practically identical for the three statistics. How-

ever, when the mutation rate is low, the time to equilib-

rium is still the same for G¢ST(Nei) and G¢¢ST, but much

higher for D.

Ryman & Leimar (2009) concluded that D is in fact

more strongly affected by the mutation rate than GST,

unless equilibrium conditions can be assumed. This

makes D less suitable for practical applications such as

the estimation of migration rates from the observed value

of D. Jost (2009) responded to these criticisms by stating

that this is in fact the expected behaviour of D. In the

absence of migration, the value of D is only determined

by the mutation rate. For low mutation rates, it simply

takes a long time before enough mutations have accumu-

lated to allow for any allelic differentiation among popu-

lations.

Migration

One reason why F-statistics became so widely used is

that under the island model of population structure,

there is a direct relationship between the migration rate

and FST. This relationship is expressed in Sewall Wright’s

(1943) famous equation

FST �
1

1þ 4Nm
ð5Þ

Here, N is the size of the populations and m is the rate of

migration among populations. However, this equation is

actually a simplified version of another, less famous,

equation that also includes the mutation rate u (Wright

1943, Cockerham & Weir 1993):
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FST �
1

1þ 4Nuþ 4Nm

Equation 5 makes the assumption that the mutation rate

is much lower than the migration rate. This assumption

is unlikely to be met when hypervariable markers such

as microsatellites are used.

Hedrick (2005) did not present a direct relationship

between G¢ST and migration, though he did analyse

under which conditions mutation influences estimates of

the migration rate, using his equation 9b.

Nm ¼ 1� FST 1þHS= 1�HSð Þ½ �
4FST

ð6Þ

Hedrick then used this equation to compare the estimates

of the number of migrants obtained using Wright’s sim-

plified equation (eqn 4) to the actual number of migrants.

He concluded that for a given FST value, the estimate of

the number of migrants obtained using eqn 5 only gets

reduced significantly when the heterozygosity is high.

Above, we saw that FST ⁄ (1 ) HS) can be taken as a

general definition of F¢ST, which is valid for both GST and

h. This means that F¢ST can be substituted for the term

FST (1 + HS ⁄ (1 ) HS)) in eqn 6, which simplifies the equa-

tion to

Nm ¼ 1� F0ST

4FST

So we see that when an equilibrium Island model can be

assumed, an estimate of the number of migrants that is

unaffected by HS can be obtained through a combination

of FST and F¢ST.

Jost (2008) did provide an extensive discussion of the

relationship between D and the migration rate, showing

that the equilibrium value of D is a complex combination

of the mutation rate, migration rate, and the number of

subpopulations (Jost’s equation 17). This relationship

simplifies drastically when it can be assumed that m « 1

and uk « m:

D � u k� 1ð Þ
m

Remarkably, under an Island model, the value of D is not

influenced by the population size N. This result seems

counterintuitive as it is generally thought that the effec-

tive population size determines the strength of genetic

drift. In classical population genetics, the population size

is therefore seen as one of the main drivers of population

differentiation. This independence of the population size

is also the reason why D takes such a long time to reach

equilibrium: its value is only determined by population

divergence because of mutations and (lack of) migration.

Jost (2009) acknowledged that for these reasons, D is less

suitable for estimating migration than GST, but also

pointed out that this is not the purpose of the statistic.

The relationships between these summary statistics

and the migration rate are only valid under an island

model of population structure that is assumed to be

under equilibrium. As discussed earlier, the long time

required to reach its equilibrium value makes this

assumption unrealistic for the D statistic. Besides equilib-

rium, the island model makes a large number of other

assumptions, such as nonspatial migration, equal popu-

lation sizes and no selection. Real populations are very

likely to violate these assumptions, so any estimates of

the migration rate or the number of migrants obtained

from these summary statistics will be highly unreliable

(Whitlock & McCauley 1999). However, this does not

mean that F-statistics cannot be used as a rough indicator

of the degree of population connectivity (Lowe & Allen-

dorf 2010). For example, a strong relationship between

the FST values and dispersal mode and other life history

traits has repeatedly been found across many plant spe-

cies (Hamrick & Godt 1996; Nybom 2004, Meirmans et al.

in preparation).

Applications

The elusive ideal summary statistic

The most common use of F-statistics is to make inferences

on demographic processes taking place within and

among populations, such as migration, genetic drift,

extinction and colonization. Therefore, the ideal sum-

mary statistic would provide information only on such

demographic processes, and not about the purely genetic

process of mutation (Ryman & Leimar 2008). The process

of mutation is mostly a quality of the markers that are

used, and in the great majority of cases, we are not inter-

ested in the markers per se, which are generally chosen

to be selectively neutral. None of the discussed summary

statistics are ideal in this respect, because they all are

dependent on mutational processes in one way or

another. The only statistics that are truly independent of

mutational processes are those that make use of the

‘memory’ of the mutation process, such as uST for

sequence data or RST for microsatellites (Slatkin 1995).

However, the latter statistic is only independent of the

mutation rate when mutation takes place in a strictly

stepwise fashion. Even a small percentage of random

mutations can severely affect the value of RST estimates

(Balloux et al. 2000).

Under an island model of population structure, the

value of FST is determined by the migration rate, popula-

tion size and mutation rate. The value of F¢ST is less

dependent on the mutation rate and mostly determined

by the migration rate and population size (but see Ryman
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& Leimar 2008). D is determined by the migration rate,

the number of populations, and the mutation rate, but

not by the population size. Although its range is not

restricted by the value of HS as is the case for FST, the long

time required for D to reach its equilibrium value means

that during this long transition period, it is actually more

affected by HS than FST (Ryman & Leimar 2009). Jost’s

(2009) response that this correctly reflects the allelic dif-

ferentiation at these loci is beside the point: in the great

majority of cases, we are not interested in the mutational

differentiation of the markers, but we are interested in

describing the populations’ demography.

Using a divergence model, Ryman & Leimar (2008)

noted that the effect of mutation on GST is relatively lim-

ited and may take time to develop. This is because under

such a scenario, the effect of genetic drift works much

faster than mutation, which is the same reason why GST

reaches equilibrium more quickly than D. Ryman & Lei-

mar (2008) also noted that during the early phase of pop-

ulation divergence, GST is a better measure of divergence

than G¢ST, because the standardized measure gives much

larger differences in value for loci with different muta-

tion rates, suggesting that different loci had experienced

different amounts of drift.

One scenario where the difference between D and FST-

like statistics is very clear is when different alleles have

gone to fixation in different populations. Being fixation

indexes, both FST and F¢ST have a value of one in such a

case. However, this value reflects the fixation and not the

differentiation in allele frequencies among the popula-

tions. Imagine a metapopulation where 99 populations

are fixed for the same allele and only one population for

another allele. In this case, the values of FST and F¢ST

equal one, even though most populations are exactly the

same. D, on the other hand, will have a value close to

zero, which better reflects the similarity among the popu-

lations. However, this seemingly incorrect behaviour of

FST and F¢ST makes sense when viewed in a different

light. Imagine a population with three equally frequent

alleles. When this population splits into three popula-

tions and there is no migration or mutation, these alleles

will go to fixation in the three subpopulations. There are

then three different possibilities: the same allele goes to

fixation in all three subpopulations (11% chance), in

every subpopulation a different allele goes to fixation

(22% chance), or one allele goes to fixation in one of the

subpopulations and another allele in the other two (66%).

These are three outcomes of the same demographic pro-

cess that can easily occur simultaneously at multiple loci

within a single species. Nevertheless, D gives three

widely different values: 0, 0.67 and 1 for the three possi-

ble outcomes, respectively. In contrast, the values of FST

and F¢ST are one (though they are undefined when there

is no diversity at all). So from these examples, we see that

D performs better at measuring the actual differentiation

in allele frequencies among populations, while FST

and F¢ST are better at describing the influence of

demographic events on the distribution of genetic

variation.

When to use which statistic?

As there are now three classes of differentiation statistics

(FST, F¢ST and D), it is useful to provide guidelines on the

use of these statistics. However, all three have their

advantages and drawbacks, so it is difficult to point out a

single best all-purpose summary statistic. For one thing,

we think it is important that the original FST is always

presented. This statistic has been used for several dec-

ades and, despite its shortcomings, continued use will

allow a better comparison with those past studies, espe-

cially because reanalysis of the old data is mostly not pos-

sible (Neigel 2002). If it is suspected that the value of FST

has been influenced by the heterozygosity, for instance

when highly variable markers are used, one of the alter-

native statistics (F¢ST and in some cases D) should be used

in addition to FST.

Above, we saw that D is best suited for describing the

allelic differentiation among populations, while FST and

F¢ST are better suited for demographic inferences. Jost

(2009) made a similar distinction between using D for

measuring differentiation and FST for estimating migra-

tion. Although useful, this distinction is not as clear-cut

as it seems. For example, there are many applications

where it is not clear whether the analysis involves

differentiation or migration. Is isolation by distance a

case of differentiation or of limited migration

between remote demes? Such a question is difficult to

answer. Nevertheless, when the objective of a study is

clear, then so is the choice of summary statistic to use for

the task.

F¢ST, estimated using G¢¢ST, h¢ or u¢ST, is most suited for

inferences on demographic history and migration.

Above, we showed how F¢ST can be combined with FST to

yield an estimate of the number of migrants that is not

affected by the mutation rate. However, the theoretical

links between F¢ST and various population processes

need to be explored more fully. In the last decade, the

indirect estimation of migration rates using F-statistics

has fallen into disuse once biologists started to realize

that this involves making a large number of assumptions

that are unlikely to be met in practice (Whitlock &

McCauley 1999). Nevertheless, FST is still regarded as a

useful tool for comparative analyses of gene flow (Neigel

2002). In addition, FST is still useful as a fixation index,

measuring the level of inbreeding at different hierarchical

levels. One advantage of Hedrick’s (2005) standardiza-

tion approach is that it is very flexible and can be applied
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to every FST analogue for which the maximum value can

be obtained. This makes it possible to take into account

the evolutionary distances and a hierarchical population

structure (e.g. using Meirmans’ (2006) AMOVA method).

However, one should be cautious with applying the

standardization to cases where the calculation of the

maximum value is ambiguous.

When one is interested in allelic differentiation, D can

be used. D may e.g. be useful in conservation genetics of

rare species, when decisions have to be made on the

selection of populations based on their contribution to

the overall genetic differentiation (see Caballero et al.

2010 for a comparison of using heterozygosity-based and

allelic diversity based F-statistics for this purpose). We

feel that D is less suited for inferences of populations’

demography as it is insensitive to the population size

and can take a very long time to reach equilibrium. D is

currently only formally described as a single-locus statis-

tic for use with allelic data (Jost 2008). It can therefore

not yet take evolutionary distances into account, nor

can it be calculated for a hierarchical population

structure. However, the statistical framework around

D is still under development and such extensions can

be expected in the near future (Lou Jost personal

communication).

Other uses of FST

FST is used for many different purposes (Holsinger &

Weir 2009) and the question arises whether the newly

developed alternatives suit all these purposes. One

increasingly popular use of F-statistics is for the detection

of loci under selection (Beaumont & Balding 2004;

Excoffier et al. 2009). Loci under divergent selection

are expected to have higher FST values than neutral

loci, while loci under balancing selection are expected

to have lower FST values (Lewontin & Krakauer

1973). However, when loci differ in mutation rates,

the range of FST values becomes influenced by the

heterozygosity, which will lower the FST values for the

more variable loci. Therefore, one of the most frequently

used methods for detecting selection does not only com-

pare FST values to detect outliers but performs a joint

analysis of FST and HS (Beaumont & Balding 2004). Possi-

bly, the comparison with HS may not be necessary when

F¢ST (possibly estimated using G¢¢ST) or D is used.

Recently, Neff & Fraser (2010) developed a computer

program that uses resampling approaches to compare

values of either h or G¢ST among loci to detect loci under

selection.

Another use of FST is to compare its value calculated

from neutral marker loci with that of an analogous statis-

tic, QST, calculated from quantitative traits (Spitze 1993).

This allows one to detect traits under selection by looking

whether QST is significantly lower or higher than FST.

However, for highly variable markers, the interpretation

can be difficult when the FST estimates are lowered by the

influence of HS, possibly leading to an excess of false

positives where QST > FST. However, in a review of 27

studies that used this approach, the difference between

QST and FST was found to be more pronounced for allo-

zymes than for microsatellites (Merilä & Crnokrak 2001),

suggesting that correcting for the within-population

diversity may not be necessary. In fact, in a study on pied

flycatchers, Lehtonen et al. (2009) explicitly stated that

they did not standardize their FST estimates as they

considered this to be not applicable to QST ) FST compar-

isons. On the other hand, QST itself is based on the

classical definition of FST and its value may therefore also

be dependent on the amount of variation within popula-

tions. In that case, highly variable characters are expected

to show smaller values of QST than less variable charac-

ters, and some standardization of QST may also be neces-

sary. Indeed, simulations have shown that the value of

QST strongly depends on the mutation rate and mutation

model of the underlying quantitative trait loci (Kronholm

et al. 2010).

Conclusions

Where for decades only FST has been used to assess pop-

ulation structure, we now have three main classes of

summary statistics: the classical FST (Wright 1943), the

standardized F¢ST (Hedrick 2005) and Jost’s (2008) D.

Although these statistics have different theoretical back-

grounds, when the number of samples is large, they are

connected to each other through relatively simple rela-

tionships, because all three can be expressed as ratios of

HS and HT. For FST, it has long been common practice to

use nearly unbiased estimators for calculating its value,

and we advise that the same is done for the two new

statistics. F¢ST can be estimated using the G¢¢ST statistic

introduced here, or alternatively using h¢ (Kalinowski in

preparation) or u¢ST (Meirmans 2006). For heterozygos-

ity-based estimators such as D and G¢¢ST, it is important

to also use unbiased estimators for HS and HT (Nei &

Chesser 1983; Nei 1987). Several software packages are

available for these purposes (Table 1).

Even though the two new statistics F¢ST and D indeed

correct the dependency of FST on the amount of within-

population variation (Heller & Siegismund 2009), they

are not universally applicable. F¢ST has the implicit

assumption of a ‘dummy’ data set where every popula-

tion only has unique alleles. As a result, some may find it

problematic to apply F¢ST to markers where there are only

a few allelic states possible, such as SNPs or sequence

data. D is independent of the population size and

therefore not well suited for inferences of the effect of
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demographic factors on the population structure. In

addition, D can take a very long time to reach equilib-

rium (Ryman & Leimar 2009). The ideal summary statis-

tic only provides information on demographic processes

and not on genetic processes such as mutation that are

specific to the used marker system (Ryman & Leimar

2009). Unfortunately, none of the three classes of statistics

has these qualities, but their combined use will enable

more robust analyses of population structure than what

is possible with only FST.
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Appendix

Nei (1987, p. 164–165) defined:

D0ST ¼ ðHT �HSÞ � k=ðk� 1Þ

and

H0T ¼ HS þD0ST ¼ HS þ ðHT �HSÞ � k=ðk� 1Þ

that he used to calculate

G0ST ¼
H0T �HS

H0T
¼ HS þ ðHT �HSÞ � k=ðk� 1Þ �HS

HS þ ðHT �HSÞ � k=ðk� 1Þ

this can be rewritten as:

G0ST ¼
k � ðHT �HSÞ
k �HT �HS

thus,

G0STðmaxÞ ¼
k � ðHTðmaxÞ �HSÞ
k �HTðmaxÞ �HS

Using Hedrick’s (2005)

HTðmaxÞ ¼ ðk� 1þHSÞ=k

this becomes:

G0STðmaxÞ ¼
k � ððk� 1þHSÞ=k�HSÞ
k � ðk� 1þHSÞ=k�HS

which can be rewritten to be much simpler:

G0STðmaxÞ ¼ 1�HS

This makes sense as Hedrick found that GST(max)

approaches 1 ) HS when the number of populations goes

to infinity, so this value is reasonable for a statistic that is

supposed to be independent of the number of popula-

tions sampled.

Hedrick defined another G’ST

G0ST ¼
GST

GSTðmaxÞ

combining this with G’ST(Nei) gives:

G00ST ¼
G0ST

G0STðmaxÞ
¼ k � HT �HSð Þ

k �HT �HSð Þ � 1�HSð Þ
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