
Genetic markers — heritable polymorphisms that can be 
measured in one or more populations of individuals — 
lie at the heart of modern genetics and enable the study 
of important questions in population genetics, ecological 
genetics and evolution. In 2003, Luikart et al.1 wrote: 
“The ideal molecular approach for population genomics 
should uncover hundreds of polymorphic markers that 
cover the entire genome in a single, simple and reliable 
experiment. Unfortunately, at present there is no such 
approach.” Now, with the advent of next-generation 
sequencing (NGS), there are several such approaches, 
which are capable of discovering, sequencing and 
genotyping not hundreds but thousands of markers 
across almost any genome of interest in a single step2, 
even in populations in which little or no genetic 
information is available.

This step change in marker density enables not only 
comprehensive genome-wide association studies for 
any organism, but also genome-wide studies on wild 
populations, with substantial benefits for conservation 
genetics and ecology3. Many biological questions can 
now be answered with high accuracy, for example, 
identifying recombination breakpoints for linkage 
mapping or quantitative trait locus (QTL) mapping, 
locating differentiated genomic regions between 
populations for quantitative genetics studies, genotyping 

large broods for marker-assisted selection or resolving the 
phylogeography of tens of wild populations. However, 
experimental design and data analysis for these new 
approaches can be complex4. Here, we aim to establish 
best practices for some of these approaches to simplify 
their application.

As with previous marker types, such as restriction frag-
ment length polymorphisms (RFLPs)5 and amplified fragment  
length polymorphisms (AFLPs)6, many of these NGS 
methods depend on restriction enzymes to produce a 
reduced representation of a genome. We focus on the 
use of restriction enzymes combined with NGS for 
genome-wide marker discovery in new technologies 
such as reduced-representation sequencing, restriction-
site-associated DNA sequencing (RAD-seq) and 
multiplexed shotgun genotyping (MSG), and we make 
recommendations for the use of these technologies in 
future studies. In order to provide detailed advice on best 
practice in the space available, we limit the discussion 
to restriction-enzyme-based methods, which define 
an unbiased, genome-wide set of markers and share a 
number of common design concerns. However, there are 
several methods for targeted marker development that 
may be of equal or greater utility for some studies. We 
briefly review these methods in BOX 1 and direct readers 
to the references there for more information.
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Abstract | The advent of next-generation sequencing (NGS) has revolutionized genomic 
and transcriptomic approaches to biology. These new sequencing tools are also valuable 
for the discovery, validation and assessment of genetic markers in populations. Here we 
review and discuss best practices for several NGS methods for genome-wide genetic 
marker development and genotyping that use restriction enzyme digestion of target 
genomes to reduce the complexity of the target. These new methods — which include 
reduced-representation sequencing using reduced-representation libraries (RRLs) or 
complexity reduction of polymorphic sequences (CRoPS), restriction-site-associated DNA 
sequencing (RAD-seq) and low coverage genotyping — are applicable to both model 
organisms with high-quality reference genome sequences and, excitingly, to non-model 
species with no existing genomic data.
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Quantitative trait locus
(QTL). A locus that controls  
a quantitative phenotypic trait, 
identified by showing a 
statistical association between 
genetic markers surrounding 
the locus and phenotypic 
measurements.

Marker-assisted selection
The use of genetic markers to 
predict the inheritance of 
alleles at a closely linked  
trait locus.

Restriction fragment length 
polymorphism
(RFLP). A fragment-length 
variant that is generated 
through the presence or 
absence of a restriction 
enzyme recognition site. 
Restriction sites can be gained 
or lost by base substitutions, 
insertions or deletions.

Amplified fragment length 
polymorphism
(AFLP). A mapping method  
in which genomic DNA from 
different strains is PCR 
amplified using arbitrary 
primers. DNA fragments that 
are amplified in one strain,  
but not the other, are cloned, 
sequenced and used as 
polymorphic markers.

We begin by reviewing the promise of NGS and 
the continuing role of restriction enzymes in genetic 
marker development and genotyping. We then 
describe and compare five methods for genetic marker 
development using restriction enzymes and NGS, and 
cover best practices for the design and execution of 
experiments that make use of these methods. As with 
other applications of NGS, the quantity of data produced 
by these methods poses new analytical challenges. We 
consider these issues and the likely development of these 
methods in the near future.

We expect these methods to be used for several years 
to come. However, given the plummeting cost of NGS, 
in BOX 2 we consider when these methods, and perhaps 
genetic markers in general, might be superseded by 
whole-genome sequencing, and discuss the trade-offs 
between the two approaches for immediate projects.

Innovations in marker discovery
The impact of NGS on genetic marker technology. 
Traditionally, the development of markers such as 
microsatellites7, RFLPs5 and AFLPs6 was a costly, iterative 
process that involved time-consuming cloning and 
primer design steps that could not easily be parallelized. 
Scoring of marker panels across target populations 
was also expensive and laborious. The advent of high-
throughput SNP arrays removed this bottleneck from 
the genotyping process, but not from the discovery 
process: the production of a high-quality array requires a 
substantial investment of resources. Also, these markers 
are specific to the population in which they were 
developed, hence genotyping of new populations will 

be biased towards alleles present in the original survey, 
which is a serious problem for studies of wild or highly 
divergent populations.

By contrast, the NGS-based techniques described 
here enable the discovery, sequencing and genotyping 
of thousands to hundreds of thousands of markers in 
tens to hundreds of individuals. Such techniques can 
be performed directly on genomic DNA in a single 
sequencing step and with mostly parallelized library 
preparation. Genotyping of the same markers in other 
populations can be achieved with further sequencing 
runs, accurately representing the new populations and 
avoiding bias towards the sequence of the markers in 
the originally surveyed population. As the cost of SNP 
genotyping using sequencing-based approaches remains 
higher than when using existing SNP arrays, at present 
it may still be more economical for large consortia to 
develop SNP arrays that will be used in many different 
populations. However, for small communities the cost 
of sequencing is likely to be far lower than the cost of 
array development. Small panels of SNP or microsatellite 
markers can be derived using NGS, enabling traditional 
genotyping to be carried out on a small scale if 
resequencing of thousands of markers is not required 
by the application.

Restriction enzymes and NGS methods. Restriction 
enzymes have been a core tool for marker discovery and  
genotyping for decades, ever since the development 
and use of RFLPs to link many genes to human diseases 
(such as Huntington’s disease8 and cystic fibrosis9) and 
to construct the first complete linkage map of the 
human genome10. Restriction enzymes remain central to  
the genome-wide NGS methods discussed here, but 
rather than length polymorphisms, the developed 
markers are sequenced SNPs or structural variants. The 
diversity of restriction enzymes available (which vary in 
the length, symmetry or GC versus AT bias of their rec-
ognition sites, and also in their methylation-sensitivity) 
makes them an extremely versatile assay tool. Their 
flexibilities allow researchers to customize marker dis-
covery approaches to individual projects; for example, 
by tailoring the approach to the genome of interest,  
the project goals and the budget. One can target differ-
ent specific subsets of the genome by choosing different  
restriction enzymes. In plants one can often exclude 
repetitive regions by choosing a methylation-sensitive  
enzyme that will avoid cutting most methylated  
repeat elements.

NGS marker discovery and genotyping methods
Several methods have been developed for high-
throughput genetic marker discovery and genotyping 
using restriction enzymes (FIG. 1). The published accounts 
of these methods differ at various steps, but many of the 
differences (such as the choice of sequencing platform) 
are not central to the methods, hence most innovations 
of particular methods can be broadly applied. In this 
section, we focus on the most substantial differences, 
reserving discussion of many common technical issues 
for the following sections.

Box 1 | Targeted marker discovery methods

The restriction-enzyme-based next-generation sequencing (NGS) methods described 
here produce a genome-wide, unbiased set of markers. There are several other NGS 
marker discovery methods that target particular regions of the genome, and these 
may provide an equally suitable or superior set of markers, depending on the 
application. Samples are typically pooled before sequencing, but each method can be 
adapted for barcoding of samples for individual genotyping61.

RNA-seq
Next-generation cDNA sequencing (RNA-seq) makes it possible to sequence complete 
transcriptomes in almost any population or tissue62,63. Although often used to measure 
gene expression, RNA-seq has also been used to discover tens to hundreds of 
thousands of SNPs in human cell lines64, bovine milk65 and black cottonwood66. This can 
be done at similar costs to the restriction-enzyme-based methods discussed here, and 
is more likely to detect functional (for example, disease-related) SNPs64. However, 
inferring genotypes from expression data can be challenging67, and normalizing the 
range of dynamic expression may be desirable68. Alternative transcripts can also make 
it difficult to infer genotypes, particularly when no reference genome is available, as 
de novo transcriptome assembly remains daunting69,70.

Sequence capture
If the sequences of regions of interest are known, they can be targeted directly with 
sequence capture methods such as SureSelect, Nimblegen and Raindance71–73. 
Oligonucleotide baits are designed to bind to regions of interest and these regions are 
selected or enriched before sequencing. For example, whole exomes74 or regions 
associated with particular diseases and traits75 can be targeted. These methods are 
highly accurate when a high-quality, closely related reference sequence is available75, 
but may be less suitable when the population is considerably diverged from the 
reference; this is because the reference-designed baits are less likely to bind strongly 
to the regions of interest and may result in biases against highly diverged regions.
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Microsatellite
A class of repetitive DNA  
that is made up of repeats that  
are 2–8 nucleotides in  
length. They can be highly 
polymorphic and are 
frequently used as molecular 
markers in population  
genetics studies.

Optical mapping
A method for creating a map  
of a genome by stretching DNA 
in microfluidic channels on  
a slide for visualization on a 
fluorescent microscope.  
The DNA is then digested by 
restriction enzymes and the 
sizes of these fragments are 
inferred by the integrated 
intensity of the fluorescent 
intercalator dye.

FST

(Wright’s fixation index). The 
fraction of the total genetic 
variation that is distributed 
among subpopulations in a 
subdivided population.

All of the methods involve the following key steps: 
the digestion of multiple samples of genomic DNA (from 
individuals or populations) with one or more restriction 
enzymes; a selection or reduction of the resulting 
restriction fragments; and NGS of the final set of 
fragments, which should be less than 1 kb in size (owing 
to the read-length limits of current NGS platforms). 
Polymorphisms in the resulting sequenced fragments 
can be used as genetic markers. We have grouped the 
methods into three classes: reduced-representation 
sequencing, including reduced-representation libraries 
(RRLs) and complexity reduction of polymorphic 
sequences (CRoPS); RAD-seq; and low coverage 
genotyping, including MSG and genotyping by 
sequencing (GBS).

Different applications of these methods require 
different standards of marker data. For example, for 
a study of wild populations in which no reference 
genome is available, a large number of markers scored 
accurately in most individuals is desirable to ensure 
population parameters are estimated precisely. In these 
cases RAD-seq or reduced-representation methods 
are most appropriate. For genotyping applications 
such as marker-assisted selection and QTL mapping 
— in which broods with limited polymorphism are to 
be sequenced and parental genotypes are well known 
— low-coverage genotyping is sufficient for linkage 
to be inferred, provided that a reference genome is  
available.

Reduced-representation sequencing. Sequencing the 
whole genome of every individual in a population is 
costly and often unnecessary, as many biological ques-
tions can be answered using polymorphisms that are 
measured in a subset of genomic regions. RRLs and 
CRoPS are two methods for sampling and sequencing a  
small set of genome-wide regions without sequencing 
the entire genome.

RRLs were first used to generate a SNP map of the 
human genome using capillary sequencing11. The RRL 
approach has been adapted for NGS and has been used 
to generate tens of thousands to millions of candidate 
SNPs in cattle12, swine13–16, turkey17, maize18, rainbow 
trout19, great tit20, soybean21,22, Iberian sow23, jointed 
goatgrass24 and mallard25 using the Roche Genome 
Sequencer26, the Illumina Genome Analyzer27 and 
the Applied Biosystems Support Oligonucleotide 
Ligation Detection (SOLiD)28 sequencing technologies 
individually or in combination14,24. Genomic DNA  
from multiple individuals is digested with a frequently 
cutting restriction enzyme of choice and pooled. The 
resulting restriction fragments are selected by size and 
then sequenced, producing partial but genome-wide 
coverage at a fraction of the cost of whole-genome 
sequencing. In its simplest form only the ends of the 
fragments are sequenced, but the protocol can be 
modified to sequence entire fragments17.

When a high-quality reference genome is available, 
the reads from reduced-representation sequencing can 
be mapped to the reference genome and SNPs can be 
called as for whole-genome resequencing projects29,30. 
Without a reference genome, long reads from the Roche 
Genome Sequencer platform or reads from both ends of 
the library fragments from any NGS platform (paired-
end reads) can be used to assemble the fragments de novo 
before calling SNPs. Paired-end reads also facilitate the 
calling of structural variations in RRLs31.

Because AFLP markers are also fragments digested 
using one or more restriction enzymes, they can be 
sequenced in a similar way by CRoPS. By adapting the 
amplification of AFLP fragments to enable sequencing 
on the Roche Genome Sequencer platform, CRoPS has 
been used to discover over 1,000 SNPs in maize32,33 and 
to generate genome-wide FST statistics in 12 populations 
of Lycaeides butterflies34,35.

RRLs have usually been used to sequence pools  
of DNA samples from multiple individuals, thus 
allowing the detection of polymorphisms within a 
population but not for each individual (see the ‘Design 
of marker discovery experiments’ section below). 
CRoPS was the first method to identify polymorphisms 
in each individual sample by incorporating short  
barcode identifier sequences — also known as multiplex 
identifier sequences (MIDs) on the Roche Genome 
Sequencer platform34 — into the ligated adaptors and 
using an adaptor containing a different barcode for each 
DNA sample. The barcodes can be used to separate 
sequence reads for different samples bioinformatically, 
and they enable true population studies to be carried 
out in one lane of an NGS sequencing platform. RRLs 
can also be adapted to use barcodes. However, to make 

Box 2 | Reduced-representation or whole-genome sequencing?

Sequencing throughput is doubling every 5 months76, and new genomes are published 
regularly. So should researchers about to embark on a population study use reduced-
representation methods, or sequence whole genomes? When will the sequencing of 
hundreds of whole genomes become commonplace?

Currently, sequencing a diploid human genome (consisting of two 3-gigabase 
sequences) at 30× coverage costs approximately UK£5,000 (a conservative price that 
includes library preparation and the costs of reagents and labour). Sequencing a 
population of 100 humans at 30× coverage would therefore cost £500,000 today. This 
coverage would be high for a human population, but may be low for a non-model 
species with a similar sized genome of unknown sequence. In addition, despite the 
promise of single-molecule, multi-kilobase reads77 and genome scaffolding using 
optical mapping78, the production of high-quality reference genomes is still a 
substantial project. By contrast, restriction-site-associated DNA sequencing 
(RAD-seq) can produce markers directly, without a costly assembly process, and could 
sample 200,000 markers in 100 humans at 30× coverage for around £14,000 (again, a 
conservative price, including library preparation and the costs of reagents and labour), 
a 35-fold reduction compared to whole-genome sequencing. Low coverage for 
multiplexed shotgun genotyping (MSG) or genotyping by sequencing (GBS) would 
therefore cost on the order of £1,000.

However, for species with smaller genomes, whole-genome sequencing is becoming 
feasible; a population of 100 animals or plants with 300-megabase genomes will cost 
£50,000 to sequence at depth, a figure within the reach of many laboratories. Also, 
draft assembly of whole-genome data may be sufficient to call a small set of markers 
on small-to-medium-sized contigs. Finally, if sequencing throughput continues to 
double every 5 months, whole-genome sequencing of the human study outlined above 
will cost the same as RAD-seq today after five doublings of capacity (which should 
occur by the end of 2013). Clearly, therefore, whole-genome sequencing of 
populations will soon be affordable, but we believe that reduced-representation 
methods will be preferable in the short-term, particularly because many research 
questions can be answered with a small set of markers and thus do not require every 
base of the genome to be sequenced.
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Imputation
A statistical method for 
handling missing data in which 
the missing values are replaced 
by estimated values.

Recombinant inbred lines
(RILs). A population of fully 
homozygous individuals that is 
obtained through the repeated 
selfing of F1 hybrids, and that is 
comprised of 50% of each 
original parental genome in 
different combinations.

use of barcodes, the fragments from each sample must 
be size selected individually, before adaptor ligation 
and pooling.

RAD-seq. RAD markers36 were first implemented using 
microarrays37 and later adapted for NGS38. RAD-seq 
sequences short regions surrounding essentially all 
restriction sites for a given restriction endonuclease 
(assuming a sufficient sequencing depth), regardless 
of the length of the restriction fragments. To achieve 
this, the restriction fragments are randomly sheared to 
a length suitable for the sequencing platform of choice, 
and selective PCR is used to amplify for sequencing 
only those fragments containing a restriction site (FIG. 1). 
RAD-seq has been used to study population differentia-
tion and selection in the stickleback39, to investigate the 
phylogeography of pitcher plant mosquitos40, to generate 
SNPs in rainbow trout41 and to construct linkage maps in 
barley42, ryegrass43 and the diamondback moth44.

As with RRLs and CRoPS, RAD-seq begins with 
digestion of a DNA sample using a chosen restriction 
enzyme, provided that the enzyme produces fragments 
with sticky end overhangs. Barcoded adaptors are then 
ligated onto these fragments to identify each individual 
in a population. However, unlike CRoPS, samples are 
pooled following adaptor ligation, and the remaining 
steps are carried out on the pooled library, reducing 
the labour and cost. In publications to date, RAD-
seq libraries have been sequenced on the Illumina 

Genome Analyzer platform, generating a large depth 
coverage of the sequence (50–150 bases) flanking each 
restriction site.

For many studies, the high genome-wide marker 
density possible through RAD-seq will be more 
useful than the sequencing of large regions flanking 
each polymorphism by RRLs and CRoPS approaches. 
However, with paired-end sequencing it is possible 
to assemble the paired-ends for each locus into a 
long contig with an average length of ~500 bases45.  
This contig can be used either to anchor the markers to 
existing genomic resources44 or, with sufficient coverage, 
to call SNPs across the whole fragment. These paired-
end fragments can be used to design primers for high-
throughput genotyping assays, which typically require 
at least 60 nucleotides of flanking DNA on either side of 
a SNP45. This can be very useful in organisms lacking a 
well-assembled reference genome.

Low coverage sequencing for genotyping. The above 
methods reduce the proportion of the genome targeted 
for sequencing so that each marker can be sequenced 
at high coverage with limited resources, thus enabling 
markers to be genotyped accurately across many indi-
viduals. An alternative to this approach is to sequence 
many target markers at low coverage per individual, 
accepting that a different subset of markers will be 
genotyped in each individual. This strategy uses mark-
ers that are sequenced at sufficient coverage, and that 
have known marker positions on a physical map, to 
impute missing genotypes and to infer recombination 
breakpoints. This is suitable for genotyping recombi-
nant populations in which the parental genotypes are 
either known or can be assigned probabilities. This 
approach has been used to construct genetic maps for 
rice based on low-coverage whole-genome resequenc-
ing of hundreds of recombinant inbred lines (RILs)46,47. 
Another application was to generate a haplotype map 
of maize based on 3.3 million SNPs, using low-coverage 
sequencing of three RRLs that were cut with a range of 
different restriction enzymes18.

However, for many studies, coverage of the whole 
genome is unnecessary to infer recombination 
breakpoints for mapping, and sequencing of sparse, 
short markers will be sufficient. Although low-coverage 
RAD-seq can be used for this, a number of methods with 
simpler library preparation protocols have recently been 
published to achieve the same aim at very low cost per 
sample, albeit with more complex analyses.

GBS involves the digestion of genomic DNA with 
a frequent cutter and the sequencing of the ends of all 
resulting restriction fragments48 (FIG. 1). (In the published 
work48 on maize and barley, the methylation-sensitive 
enzyme ApeKI was used.) Adaptors containing barcodes 
and common adaptors without barcodes are mixed and 
used in the ligation reaction. Not all adaptor-ligated 
fragments will be sequenced, because many fragments 
will not be efficiently bridge-amplified on an Illumina 
Genome Analyzer flowcell27, either because they do 
not feature both a barcoded adaptor and a common 
adaptor, or because they are too long (>1 kb). This still 

Figure 1 | Methods for high-throughput marker discovery. a | An example genomic 
region containing restriction sites (red). A sample of DNA from each of two individuals 
(sample 1 is dark blue and sample 2 is light blue) is to be sequenced. Sample 2 has a 
variation in the cut site at 1,300 bases (grey arrow) and so this site will not be cut.  
b | Protocols for developing sequenced markers. All methods begin with a restriction 
enzyme digestion. Reduced-representation library (RRL; left panels): fragments from all 
samples are pooled and size selected to 300–700 bp. Fragments are ligated to standard 
sequencing adaptors (grey squares) and sequenced. In this simple case, only the ends  
of fragments will be sequenced, but the protocol can be modified to sequence  
entire fragments. Restriction-site-associated DNA sequencing (RAD-seq; middle 
panels): fragments are ligated to P1 adaptors (yellow for sample 1, purple for sample 2), 
pooled, randomly sheared and size selected to 300–700 bp. P2 adaptors with divergent 
ends (grey, Y-shaped) are ligated to the fragments with and without P1 adaptors.  
The fragments are PCR amplified with P1- and P2-specific primers. The P2 adaptor is 
completed when fragments containing P1 adaptors are bound by a P1 primer and 
copied, and the P2 primer only binds to completed P2 adaptors (grey squares).  
This means that only fragments with P1 and P2 adaptors (the fragments containing 
restriction sites) are amplified. Genotyping by sequencing (GBS; right panels): barcoded 
adaptors (yellow) and common adaptors (grey) are ligated to digested fragments, 
producing fragments with barcode+common, barcode+barcode and common+common 
adaptor combinations. Samples are pooled and amplified on the Illumina Genome 
Analyzer flowcell. Only short samples featuring a barcode+common adaptor 
combination are amplified for sequencing. c | Sequenced markers are aligned to the 
original reference genome. RRL: either fragment ends (thick lines) or entire fragments 
(thin lines) between 300 and 700 bp are sequenced. Because the site at 1,300 bases is 
not present in sample 2, the long fragment between 700 and 2,000 bases is filtered by 
size selection. RAD-seq: downstream regions of all fragments above 300 bases are 
sequenced, but not the fragment between 150 and 350 bases. Thin lines indicate  
the sequence that would be covered using paired-end sequencing. GBS: dashed lines 
represent regions that would be filtered during amplification, but could be imputed 
using (for example) the multiplexed shotgun genotyping hidden Markov model.  
The short fragment between 150 and 350 bases will be sequenced.

◀
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Hidden Markov model
A statistical approach that is 
used to estimate a series of 
hidden states (for example, 
ancestry at loci along a 
chromosome). The method is 
based on observations of the 
states that have uncertainty 
(for example, the ancestral 
assignment of sequence reads) 
and the expected probability 
of transitions between states 
(for example, recombination 
breakpoints).

Soft ancestry calls
Assigning probabilities to 
ancestral (for example, 
parental or grandparental) 
genotypes, rather than making 
explicit, ‘hard’ calls. This 
approach appropriately 
propagates uncertainty  
(which often arises around 
recombination breakpoints)  
in individual ancestry 
assignments, thus enabling  
a more accurate inference  
of breakpoint location.

Scaffold
A genomic unit composed of 
one or more contigs that have 
been ordered and orientated 
using end-read information.

leaves a large number of shorter fragments with the 
correct adaptors that will be sequenced accurately, thus 
enabling the discovery of 25,000 SNP markers in one 
experiment48.

MSG49 follows a similar approach, except that only a 
barcoded adaptor is used that is ligated to both ends of 
each fragment, and fragments are size-selected before 
sequencing. MSG, in common with the approach of  
Xie et al.47, makes use of a hidden Markov model to impute 
haplotypes. Soft ancestry calls are made for genomic 
segments, based on probabilistic calls of parental 
genotypes and offspring genotypes when available (BOX 3).  
This does not require genotyping of every marker for 
every individual, but it does require that markers are 
mapped to a relatively well-assembled reference genome 
(with a median scaffold size of >100 kb). This analytical 
framework can be applied to data from any of the 
methods described here.

Design of marker discovery experiments
Several interacting factors affect the choice of an optimal 
NGS marker discovery method. Here we discuss these 
factors and several technical variations and analytical 
challenges that apply to all methods.

Study goals. How many markers are required to achieve 
the goals of a study, and how complete must the geno-
typing be? Although NGS methods can produce tens of 
thousands of markers with high genotyping accuracy, 
this resolution and power may not be necessary to answer 
many biological questions. For example, for crossing 
studies there is little value in producing markers at sub-
stantially higher resolution than the expected spacing  
of crossovers (based on the recombination rate in the 
population), and low-coverage sequencing may produce 
sufficient data for calling breakpoints (as for MSG). 
However, it may be useful to generate more markers than 
required and then to select high-quality markers from 
these based on the needs of the study (BOX  4).

Availability of a reference genome. When a refer-
ence genome sequence is available, sequence reads 
produced by any of the technologies can be aligned 
and positioned on a physical map. The higher the 
quality of the reference genome assembly, the easier 
it is to impute missing genotypes, thus reducing the 
coverage that is required to genotype each individual. 
Reference genomes can also be used to design marker 
discovery experiments by simulating in silico the num-
ber of markers produced by different enzymes (FIG. 2). 
Challenges arise when a reference genome sequence 
is not available, or even when a reference sequence is 
available but is poorly assembled, comes from a dis-
tantly related taxon or is large and highly repetitive. 
Expected numbers of restriction sites can be crudely 
estimated if the genome size and GC content are 
known. The calculation is particularly susceptible to 
GC content, so it is worth making a high-quality esti-
mate of this parameter. The task of identifying unique 
loci and assigning sequence reads unambiguously can 
be very difficult and, in practice, much data will be 

discarded. Criteria for filtering out spurious putative 
loci include excessively high read counts40, the presence 
of repetitive sequence13 or observed heterozygosity41.

Expected degree of polymorphism. Populations with low 
levels of polymorphism will require the assay of more 
markers, and therefore require an enzyme with a higher 
cutting frequency to produce sufficient polymorphic 
markers (FIG. 2). RRLs and CRoPS, which sequence entire 
restriction fragments, may be more suitable for these 
populations. By contrast, populations with high levels 
of polymorphism are susceptible to problems caused by 
variation at restriction sites. If many sites are polymor-
phic, the fragment distribution will change consider-
ably. For methods in which fragments are size-selected, 
a polymorphic restriction site may result in a long allele 
that is not included in the size selection, causing sev-
eral adjacent markers to drop out (FIG. 1).  However, 
although more markers will drop out in highly poly-
morphic populations, the remaining markers are more 
likely to be informative than in less polymorphic popula-
tions because these markers are more likely to contain 
a polymorphism.

Unfortunately, these methods are not a panacea for 
genomes with a large repetitive fraction or high ploidy. 
For example, using an RRL it was possible to validate 
94% of a sample of putative swine SNPs14 but only 48% 
of a sample of SNPs in a rainbow trout19, largely owing 
to the ancestral whole-genome duplication in salmonid 
species. However, repetitive sequences can be partially 
avoided by the careful choice of restriction enzymes 
or by removal in silico by filtering putative loci, as 
described above.

Choice of restriction enzyme. The choice of enzyme is 
determined by the marker density required (FIG. 2) and 
should be appropriate for the species under study; for 
example, Van Tassell et al.12 put considerable effort into 
choosing an enzyme that avoids common repeats in  
cattle, and the methylation-sensitive ApeKI used by 
Elshire et al.48 may not be appropriate for other methylated 
genomes. All methods except RRLs use endonucleases 
that produce overhangs. New adaptors are required for 
different overhangs, but the same adaptor set can be suit-
able for multiple enzymes producing the same overhang, 
such as the 8-base cutter SbfI (cut site CCTGCA^GG)  
and the 6-base cutter PstI (cut site CTGCA^G).

DNA sample preparation. High-quality genomic DNA  
(free of contamination either with RNA or with  
DNA from other species) is crucial to the success of these 
protocols, given that varying efficiency of digestion, liga-
tion and amplification can have significant effects on the 
final marker set. Most importantly, the quantity of DNA 
from different samples should be evenly balanced before 
pooling to avoid losing markers from some individuals 
owing to lack of coverage. The choice of method may 
also be influenced by the amount of genomic DNA start-
ing material required (RRL, 25 μg pooled14,29; CRoPS, 
300 ng per sample34; RAD-seq, 300 ng per sample42,43; 
MSG, 10 ng per sample49; and GBS, 100 ng per sample48).

R E V I E W S

504 | JULY 2011 | VOLUME 12  www.nature.com/reviews/genetics

© 2011 Macmillan Publishers Limited. All rights reserved



Sliding window averaging
The averaging of statistics, such 
as nucleotide diversity or FST, 
for all markers in a chosen size 
of overlapping genomic region 
(window). When applied across 
the genome, this method 
smoothes out variation within 
regions so that genome-wide 
patterns can be observed.

Adaptor design. Adaptors should be designed so that 
any barcode is at least three base pairs distinct from 
all others, so that reads containing an error in the bar-
code sequence can be uniquely assigned to a sample. 
When using the Illumina Genome Analyzer platform, 

more than two barcodes with a diversity of nucleotides 
represented should be combined in one lane to avoid 
a common issue with Illumina sequencing: low diver-
sity at particular positions of the read can prevent the 
Illumina software from identifying clusters accurately50. 

Box 3 | Statistical models for marker discovery and genotyping using next-generation sequencing

Alleles at each locus
At each locus, the observed counts of alternative reads can be treated as a set of independent samples from a small set of 
possibilities, suggesting a multinomial distribution35,39,49,79. In the absence of error, if each sample or barcode represents  
a pool of individuals, the probability of observing each of the four nucleotides at a specific site is the allele frequency in the 
pool. If each sample is from a diploid individual, the expected probabilities are one or zero for homozygous sites and 0.5  
or zero at heterozygous sites. These probabilities should be adjusted to include an error parameter to account for 
single-nucleotide sequencing and PCR error. Thus for a diploid individual, the probabilities of observing read counts for the 
four nucleotides in a homozygote (genotype 1/1) or heterozygote (genotype 1/2), and thus the likelihoods (L) of each 
genotype, can be modelled as:

ε ε

and

εε

where n
1
, n

2
, n

3
 and n

4
 are the read counts for each nucleotide, n is the total number of reads and ε is the sequencing error 

rate. This error parameter can be estimated directly by maximum likelihood35,39, drawn from the empirical output from a 
control sequencing lane49 or modelled as a prior distribution.

Assigning likelihoods to alternative genotypes at each locus allows uncertainty to be carried through the analysis in a 
Bayesian fashion; for instance, in posterior distributions around population-level statistics32 or in ‘soft ancestry’ 
assignments to each locus in a laboratory cross49.

Statistics along the genome
The promise of genomic approaches is to view genetic statistics — whether chromosomal ancestry in a laboratory cross 
or genetic differentiation in population samples — as continuous distributions along the genome. The density of markers 
leads to significant correlations (linkage disequilibrium) among neighbouring loci, which means that large numbers of 
missing genotypes can be tolerated without losing power of inference about relatively narrow genomic regions. One 
simple approach to take advantage of this property is sliding window averaging, so that genomic regions, rather than 
individual loci, can be identified as outliers in a genome scan, thus increasing the power to detect selection in natural 
populations39,46,80.

Another alternative is to model the distribution of an underlying statistic, such as ancestry in a laboratory cross, along 
the genome using a hidden Markov model. For example, the multiplexed shotgun genotyping (MSG) technique follows 
the strategy of maximizing the density of markers and the number of individuals while reducing sequencing depth, 
combined with a high-quality reference genome sequence and a hidden Markov model49 (see the figure).

The figure illustrates ‘soft ancestry’ assignment along the genome in a single backcrossed Drosophila melanogaster 
male using MSG. The posterior probability that a region is homozygous (or hemizygous on the X chromosome) for one  
or the other parental genotype is shown in blue or red; a high posterior probability of heterozygous genotype (on each 
of the four chromosomes) appears as a black line at the centre. Observed parental alleles are shown as red or blue 
hashmarks at the top and bottom of the plot. Note that several apparent genotyping errors are overwhelmed by marker 
density in the context of the hidden Markov model; that is, several loci appear to have parental genotype 1 in regions 
where the posterior probability for homozygous parent 2 approaches 1.0. Relatively rapid switches of posterior 
probability from homozygous to heterozygous regions allow narrow mapping of recombination breakpoints in this 
analysis. R, right chromosome arm; L, left chromosome arm. Figure is modified, with permission, from REF. 49 © (2011) 
Cold Spring Harbor Laboratory Press. 
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lod score
(Base 10 ‘logarithm of the 
odds’ or ‘log-odds’). A 
statistical estimate of whether 
two loci are likely to lie near 
each other on a chromosome 
and are therefore likely to be 
inherited together. A lod score 
of three or more is generally 
considered to indicate that the 
two loci are close.

Major histocompatibility 
complex
(MHC). A complex locus on 
human chromosome 6p, 
which comprises numerous 
genes, including the human 
leukocyte antigen genes, 
which are involved in the 
immune response. MHC 
molecules bind peptide 
fragments that are derived 
from pathogens and display 
them on the cell surface for 
recognition by the appropriate 
T cells. The organizations of 
the MHC gene clusters are 
similar in many species.

Box 4 | Experimental design case studies

Three case studies (discussed here and summarized in the accompanying table) highlight the factors influencing the  
design of high-throughput marker discovery experiments.

Case study 1: phylogeography
Emerson et al.40 resolved the phylogeography of 21 populations of the pitcher plant mosquito, Wyeomyia smithii, using 
restriction-site-associated DNA sequencing (RAD-seq). No reference genome is available for this species, and the 
populations are wild, so ancestral genotypes are unknown. These factors make imputation of missing markers difficult, so 
RAD-seq is preferable to multiplexed shotgun genotyping (MSG) or genotyping by sequencing (GBS). A phylogenetic tree 
based on cytochrome oxidase 1 sequences, including 167 variable sites, separated the populations into northern and 
southern groups but could not resolve relationships between populations within each group. Using the 8-base cutter SbfI 
(FIG. 2) to perform RAD-seq on 21 DNA pools — one pool per population and each representing six individuals — 
3,741 SNPs were identified among 13,627 loci within two lanes of sequencing. Using these SNPs, four clades were identified 
and the relationships between the 21 populations were completely resolved. Only markers differing by one nucleotide 
were included, although many more markers varying by more than one nucleotide or containing insertion or deletion 
polymorphisms could have been developed. Restricting to markers containing 1 SNP simplified analysis and was sufficient 
to resolve the phylogeographic tree.

Case study 2: association mapping
Andolfatto et al.49 resolved a causal locus to within 8.5 kb of its true location using MSG. A strain of Drosophila simulans 
— featuring a transgene encoding enhanced yellow fluorescent protein (EYFP) driven from a Pax6 promoter, which causes 
a dominant fluorescent eye phenotype — was crossed with Drosophila sechellia. Ninety-six backcrossed progeny were 
available for genotyping. The study population was a mapping cross, a reference genome was available and ancestral 
genotypes could be discovered in full. Owing to these advantages, low-coverage genotyping could be used, followed by 
imputation of missing markers. High marker density was required to resolve the locus as accurately as possible, so the 
frequent 4-base cutter MseI was used. Each of the 96 progeny was assigned a different barcode and individually genotyped. 
Reads from one lane of sequencing were mapped to the D. simulans reference genome and a median number of 15,070 
informative markers were scored for each individual. Using the MSG hidden Markov model to infer missing genotypes, 
ancestry was assigned to 125,214 genomic locations for all individuals. Quantitative trait locus (QTL) analysis revealed a 
single significant QTL peak on the X chromosome with a maximum lod score at position 7,131,433 bp, just 8,498 bp away 
from the true location of the causative locus at position 7,139,931 bp.

Case study 3: measuring artificial selection
Ramos et al.14 sequenced reduced-representation libraries (RRLs) from four domestic pig breeds and the wild boar. For each 
breed, DNA from between 23 and 36 animals was pooled, and four libraries were produced, with DNA cut with AluI (and 
size selected to 160–200 bp or 200–240 bp), with HaeIII or with MspI. The AluI libraries were sequenced with a Roche 
Genome Sequencer; these long reads were mapped to the pig reference genome and unique unaligned reads were 
assembled into contigs to represent regions missing from the reference genome. All libraries were sequenced with an 
Illumina Genome Analyzer to produce 36 bp reads that could be aligned to both the reference and the new contigs. In total, 
372,886 SNPs were identified, 64,232 of which were chosen for inclusion on a Beadchip, of which 58,994 were polymorphic 
(a conversion rate of 94%). Using these SNPs, Amaral et al.16 were able to measure nucleotide diversity, F

ST
 and other 

population genetics statistics across the whole genome, thus discovering footprints of artificial selection for coat colour, 
growth and indicators that the major histocompatibility complex is under balancing selection.

Factor Case study 1 Case study 2 Case study 3

Study type Phylogeography QTL mapping Artificial selection

Species Wyeomyia smithii Drosophila simulans Sus scrofus

Genome size 850 Mb 120 Mb 2.7 Gb

Reference genome Not available Available Available

Populations Wild Mapping cross Domesticated

Marker density required Low High Medium

Populations 21 1 5

Individuals per population 6 96 23–36

Method RAD-seq MSG RRL

Restriction enzyme  
(cut site)

SbfI (CCTGCA^GG) MseI (T^TAA) AluI (AG^CT), HaeIII (GG^CC), 
MspI (C^CGG)

Reads sequenced 27 million 49 bp (Illumina 
Genome Analyzer)

22 million 101 bp (Illumina 
Genome Analyzer)

380 million 36 bp (Illumina 
Genome Analyzer) 
 + 4 million ≤250 bp  
(Roche Genome Sequencer)

Coverage ~30× ~1× 7.5×–10×

Markers identified 3,741 SNPs in 13,627 loci 15,070 scored, 125,214 
imputed

~372,000 SNPs

Refs 40 49 14,16
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Figure 2 | Effects of restriction enzyme selection on reference genomes of different size and with different 
levels of polymorphism. A | The size and GC content of nine reference genomes, as obtained from Ensembl version 
61, calculated directly from the published reference sequence. B | The number of loci produced from nine reference 
genomes, as calculated in silico, when digested by one of two restriction enzymes: SbfI (CCTGCA^GG) (Ba) and AluI 
(AG^CT) (Bb). Loci that are composed of repeats longer than an 80 bp read are shown in a darker shade. Note that  
AluI targets orders of magnitude more loci than SbfI. C | The expected number of loci containing polymorphisms 
under the same two restriction enzymes, SbfI (Ca) and AluI (Cb). We randomly applied SNPs at three different rates 
(0.05%, 0.1% and 0.5%) to the loci extracted in silico and tabulated how many would be recoverable using the 
software package Stacks if sequenced to sufficient depth. Averages of three replicates are shown. The darkened tops 
of each bar represent polymorphic loci that are confounded by repetitive sequence. Comparing the dog and mouse 
genomes illustrates the issues involved with selecting the most appropriate restriction enzyme. Although the  
two genomes are of similar size and GC composition, the dog genome produces almost twice as many SbfI loci as  
the mouse genome. At the same time, the green anole possesses a genome larger than Xenopus laevis, the zebrafish 
and the chicken, yet contains fewer SbfI loci than all three genomes. Furthermore, despite the characteristics of the 
genome under examination, the particular polymorphism rate of the population being studied is also important in 
determining how many potential genetic markers will be produced. In an organism with an unexamined genome, a 
pilot experiment is vital for determining the performance of a particular restriction enzyme and the allocation of 
sequencing resources that will be required.
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Solid-phase reversible 
immobilization
(SPRI).The purification of 
nucleic acids using magnetic 
beads, thus avoiding gel 
extraction, filtration  
and centrifugation.

Low sequence diversity is a problem with methods in 
which the restriction enzyme overhang appears at the 
same position in every read. Although using many bar-
codes usually avoids this problem, an innovation of GBS 
that can be applied to any method is the use of variable 
length barcodes (between 4 and 8 nucleotides long). It 
is important to design variable length barcodes care-
fully so that if a base is missed during sequencing, each 
barcode cannot be confused with another, shorter one. 
Different barcode sequences can also have a mild impact 
on sampling depth, but this factor has less influence than 
balancing the DNA quantities from different samples49.

PCR amplification. The PCR steps in sample prepara-
tion can bias sequencing towards GC-rich, short frag-
ments51 and may also bias the fragment pool in other 
ways. Some protocols for genome and transcriptome 
sequencing avoid PCR altogether52. Unfortunately, it is 
difficult to avoid PCR in NGS marker methods, despite 
its demonstrable effect on this kind of data48, because 
PCR amplification is required to ensure that adaptor-
ligated fragments outcompete other fragments. If pos-
sible, the amount of input DNA should be increased, so 
that number of PCR cycles can be reduced.

RAD-seq has two advantages in this respect. First, 
because fragments are randomly sheared, rather than 
size-selected after digestion, fragment length is not 
correlated with particular loci as in the other techniques, 
so any amplification bias by fragment size will not affect 
representation across loci. Second, when paired-end 
sequencing is used, clonal duplicates arising from PCR 
can be removed by identifying fragments that have 
identical sequence at both ends, something which is 
unlikely to occur with random shearing.

The PCR step also produces adaptor dimers. The 
dimers should be shorter than any fragment of interest 
and so can be removed by gel extraction53 or solid-
phase reversible immobilization (SPRI) technology49,54. A 
titration should be performed once for each new species 
and enzyme combination to determine an appropriate 
concentration of adaptors that minimizes the formation 
of adaptor dimers48,54. The dimers can also be identified 
and removed bioinformatically.

Sequencing. How much sequencing is required for each 
of these methods? Because the methods require the  
identification of polymorphisms, platforms such as  
the Illumina Genome Analyzer and SOLiD are prefer-
able to the Roche Genome Sequencer, although long 
reads from the Roche Genome Sequencer can be useful 
for assembling draft genomic sequence for unsequenced 
species14. The optimal mean coverage per locus varies 
widely across experimental goals and strategies, as it 
reflects trade-offs with factors such as the number of 
individuals, the number of groups or populations, the 
genome size, the density of markers across the genome 
and the total sequencing effort (BOX 4).

Lower coverage per locus results in a lower 
confidence in each genotype call or each newly 
discovered marker, as well as fewer and more variable 
numbers of individuals genotyped at each locus. These 

issues can be accounted for with analyses that impute 
across loci, taking advantage of a high-quality reference 
genome sequence, but this strategy requires more effort 
in analysis than those with higher mean coverage (BOX 3). 
A reduction in total sequencing depth can therefore be a 
false economy, because it will almost certainly increase 
the difficulty (and therefore cost) of downstream 
analysis.

At an extreme, if complete coverage of all restriction 
sites in a genome with full genotyping in all individuals 
is desired, then at least 30× coverage per locus per 
individual is recommended when a good reference 
genome is available, increasing to 60× coverage for 
de novo studies. However, this complete coverage is 
overkill for many studies in which sufficient markers 
can be developed from a subset of all restriction sites in a 
genome and hence incomplete genotyping is acceptable. 
In recombinant populations, a small number of markers 
with incomplete genotypes will be sufficient, provided 
that the parental genotypes are well understood. In 
mapping studies, coverage in offspring or RILs below 1×, 
combined with statistical imputation of haplotypes, may 
be the most efficient strategy. Many population genomics 
applications may improve statistical power by maximizing 
the number of individuals sampled per population55. 
Therefore, increasing the number of individuals, while 
accepting that a subset of markers will not be genotyped  
in all individuals, may provide the optimal trade-off.

Pooling individuals. Many studies use one barcode for  
a pool of several individuals. This can be useful to avoid a  
whole-genome amplification step if the amount of DNA 
per individual is small40. There is also analytical theory 
to suggest that such pooling improves SNP discovery 
and leads to better estimates of population allele fre-
quencies56. However, pooling prevents genotyping of 
individuals after SNP discovery, rather than allowing 
simultaneous marker discovery and genotyping, which 
is a key advantage of the techniques described here. 
Pooling has the disadvantage of potentially missing rare 
variants and is highly sensitive to variation in the DNA 
concentration among individuals in a pool57 (although 
individually barcoded sequencing also suffers from this 
problem). In the absence of a high-quality reference 
genome sequence, pooling also precludes filtering on 
the basis of observed heterozygosity41. If the sequenc-
ing resource permits, barcodes for individual samples 
provide greater flexibility for downstream analysis and 
this approach does not preclude ignoring the barcodes 
and pooling the samples bioinformatically.

Analytical challenges. A crucial feature of marker dis-
covery using the techniques above is that they incorpo-
rate a multi-level sampling process. NGS sequence reads 
are a sample from a large, heterogeneous pool of DNA 
fragments. There is sampling variance in the number 
of reads across individuals or barcodes within the pool, 
across loci within each individual, and across alternative 
alleles at polymorphic loci. Several steps in the proto-
cols may also exacerbate variance at all of these levels, 
particularly pooling of DNA, PCR amplification and 
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size selection. Thus NGS approaches, although produc-
ing orders of magnitude more markers than previously 
possible, differ from traditional marker genotyping in 
important ways: there is unavoidable variance in the 
sample sizes of individuals across loci and loci across 
individuals and uncertainty in genotype assignments 
across loci and individuals. These factors are central to 
the trade-offs in experimental design, such as the bal-
ance among marker density (that is, choice of restric-
tion enzyme and fragment size range), the number of 
individuals and/or populations sampled and the depth  
of sequencing. Some progress is being made in statis-
tically accounting for these issues (BOX 3) and several 
packages are now available for handling data from these 
methods35,49,58–60 (see Further information). Although 
each of these packages was designed with a particular 
method in mind, there is no difficulty in processing data 
from one method with tools designed for another.

Implementation. The library preparation protocols for 
the methods discussed involve only standard molecu-
lar biology techniques (for example, restriction enzyme 
digestion, size selection by agarose gel extraction, shear-
ing, ligation and PCR) and so should be accessible to any 
competent molecular biologist. However, in practice, the 
methods can produce varying results for different spe-
cies, and the length of the protocol for some methods can 
be challenging. Therefore, it may take several attempts 
to produce a successful library. Library preparation ser-
vices are available from several companies and sequenc-
ing facilities. A completed library can be sequenced on 
any NGS machine, either locally or at a sequencing facil-
ity; these libraries will be highly suitable for sequencing 
on bench-top sequencers. The only substantial initial 
cost may be the purchase of barcoded adaptors and (for 
some methods) primers, but the sequences for these  
components are all publicly available32,38,48,49.

Future directions
We anticipate that many small improvements will be 
made to the protocols described here, increasing the 
quality and accuracy of the sequenced marker sets. 
New variant applications are possible; for example, 
RNA can be reverse transcribed into cDNA and cut with 
restriction enzymes, producing a small set of markers 
from the transcriptome that can be used to assay 
gene expression without the burden of transcriptome 
assembly. However, we expect the largest gains to come 
from improved analysis of the data produced by these 
methods. A better understanding of the variation in 
the data will enable more robust inference of marker 
identity and genotypes. We anticipate this work being 
of lasting value because any analytical frameworks 
developed will also be usable when complete genomes 
are available. (For example, the MSG hidden Markov 
model and the likelihood model outlined in BOX 3 can 
be used with low-coverage whole-genome shotgun 
sequencing.)

Rapidly increasing throughput will allow more 
individuals to be sequenced in a population, more markers  
to be sequenced per individual and each marker to be 
genotyped at greater depth and so with greater accuracy. 
We expect that it will be possible to sequence tens of 
thousands of markers in thousands of individuals in 
the near future. This will be far in excess of what is 
required for many studies in which a small number 
of markers are quite sufficient, and will be accessible 
using the methods that we have discussed and the 
recently emerging bench-top sequencing machines. 
Although whole-genome sequencing of populations is 
rapidly approaching (BOX 2), we believe that the methods 
described here are likely to remain invaluable for years 
to come in population genomics, mapping studies and 
reference genome sequence assembly, particularly for 
non-model organisms.
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FURTHER INFORMATION
Paul A. Hohenlohe’s homepage:  
http://people.oregonstate.edu/~hohenlop
Julian M. Catchen’s homepage:  
http://pages.uoregon.edu/jcatchen
Mark L. Blaxter’s homepage: http://www.nematodes.org
Ensembl: http://www.ensembl.org/index.html
Floragenex, Inc. (commercial RAD-seq provider):  
http://www.floragenex.com
Genotyping by sequencing in the Buckler laboratory:  
http://www.maizegenetics.net/Table/Genotyping-By-
Sequencing
Nature Reviews Genetics series on Study designs:  
http://www.nature.com/nrg/series/studydesigns/index.html
Nature Reviews Genetics series on Applications of next-
generation sequencing: http://www.nature.com/nrg/series/
nextgeneration/index.html

Software packages for analysing NGS marker data
BAMOVA: http://www.uwyo.edu/buerkle/software/bamova
MSG: http://genomics.princeton.edu/AndolfattoLab/ 
MSG.html
PoPoolation: http://code.google.com/p/popoolation
RADtools (within the United Kingdom RAD-seq Wiki page): 
http://radseq.info
Stacks: http://creskolab.uoregon.edu/stacks
TASSEL: http://www.maizegenetics.net/bioinformatics
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