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Owing to the remarkable progress of molecular techniques, heterozygosity-fitness correlations (HFCs) have become a popular tool

to study the impact of inbreeding in natural populations. However, their underlying mechanisms are often hotly debated. Here

we argue that these “debates” rely on verbal arguments with no basis in existing theory and inappropriate statistical testing,

and that it is time to reconcile HFC with its historical and theoretical fundaments. We show that available data are quantitatively

and qualitatively consistent with inbreeding-based theory. HFC can be used to estimate the impact of inbreeding in populations,

although such estimates are bound to be imprecise, especially when inbreeding is weak. Contrary to common belief, linkage

disequilibrium is not an alternative to inbreeding, but rather comes with some forms of inbreeding, and is not restricted to closely

linked loci. Finally, the contribution of local chromosomal effects to HFC, while predicted by inbreeding theory, is expected to be

small, and has rarely if ever proven statistically significant using adequate tests. We provide guidelines to safely interpret and

quantify HFCs, and present how HFCs can be used to quantify inbreeding load and unravel the structure of natural populations.
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Understanding how natural selection acts in contemporary popu-

lations is a major goal for evolutionary biologists. Although this

task can be undertaken at the phenotypic level using quantitative

genetics and selection gradient analysis, the gene level is mainly

studied through molecular techniques. However the link between

molecular and phenotypic variation is often complex. This link can

be dissected based on correlated inheritance patterns of molecular

markers and traits in controlled crosses (QTL analysis). Another,

less-demanding method is to study the statistical association be-

tween molecular genotypes and traits under selection in natural

populations. In particular, one kind of such associations, the corre-

lation between individual multilocus heterozygosity (MLH) at al-

lozyme or microsatellite loci and fitness-related traits, also called

heterozygosity-fitness correlation (hereafter, HFC), has been stud-

ied and discussed for more than three decades. All these studies

share a common, fundamental aim, that is, to study natural se-

lection in wild populations, but with different points of view.

Some of them ultimately intend to identify selection on one or

a few polymorphic genes, whereas others are interested in much

more general sources of variation in fitness, such as inbreeding.

Therefore this literature is prone to controversy, and it has proven

difficult to achieve a unanimous explanation for HFC. Our aim is

to contribute to settle these debates and to clarify how HFC can

be measured and interpreted, and what it can, and cannot, be used

for.

Historically, debates on HFC were concerned with the selec-

tive neutrality of allozymes. The focus of the debates has changed

with the advent of noncoding DNA markers. The repeated
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observation of HFC with such markers (Coltman and Slate 2003;

Chapman et al. 2009) calls for a general explanation that would

not imply any direct effect of the marker loci on phenotypes.

This explanation also has to account for the fact that HFC is

not a strong and consistent phenomenon, but rather a weak and

unstable signal that shows up from time to time in various or-

ganisms in a context-dependent fashion (Britten 1996; Chapman

et al. 2009). We argue that such an explanation has existed from

the beginning (Ohta 1971, 1973), namely, that heterozygosity at

neutral markers is correlated to heterozygosity at both linked and

unlinked selected loci through genetic associations. However, the

latter only arise in particular contexts, involving a form of in-

breeding sensu lato, such as small population size, nonrandom

mating, population admixture, or bottlenecks.

Recent HFC literature emphasizes that heterozygosity at

a few loci is poorly correlated with inbreeding (i.e., genomic

heterozygosity) in large, panmictic populations at equilibrium

(Balloux et al. 2004; Pemberton 2004; Slate et al. 2004). Al-

though this assertion is valid, it has been improperly used to

dismiss inbreeding as a source of HFC in natural populations. In-

stead of acknowledging that populations sometimes depart from

the preconceived idea of being panmictic, large and at equilib-

rium, it has been proposed that inbreeding cannot generate HFCs.

Instead, HFCs would be caused by nonneutral genes physically

linked to molecular markers, generating so-called local effects

(e.g., Hansson et al. 2004; Lieutenant-Gosselin and Bernatchez

2006; Charpentier et al. 2008; Malo and Coulson 2009). This idea

has often been considered as an alternative explanation to HFCs.

We believe that this intense focus on linkage is out of proportion

with its true role. We will show that linkage is not an alternative

to inbreeding. Indeed, HFCs require correlations in heterozygos-

ity among loci that inevitably imply some level of inbreeding.

Although linkage can strengthen these correlations, it does not

generate them.

We start by introducing the confusing terminology of HFC,

and its historical underpinnings (Section “HFCs: Terminology and

Historical Context”). We then outline the theoretical basis of HFC,

and the population characteristics that must be met to observe it

(Section “The Origin of HFCs: Theory and Practice”). Section

“What Meta-Analyses Tell Us about HFC” summarizes evidence

for HFCs in a meta-analytical context, followed by a discussion

on statistical pitfalls surrounding HFCs and their implications in

what is often presented as a local versus general effects debate

(Section “Variation in HFC among Loci and the Dichotomy of

Local versus General Effects”). Section “HFCs and Alternative

Measures of Inbreeding: Future Directions” presents a step-by-

step guide on how to derive and interpret robust HFC estimates

and, lastly, highlights future directions for the application of HFCs

in natural populations.

HFCs: TERMINOLOGY AND HISTORICAL CONTEXT

Inbreeding (terms are defined in Table 1) often reveals spectac-

ular variation in fitness among genotypes that would otherwise

remain unexpressed, and has thus fascinated biologists for decades

(Darwin 1876; Charlesworth and Charlesworth 1987; Keller and

Waller 2002). The terms inbreeding depression and heterosis (see

Table 1) were invented early in the twentieth century; these phe-

nomena were first studied in detail in agricultural crops, domes-

tic breeds, and invertebrate model systems (Shull 1908; Gowen

1952). For example, inbred maize lines have a poor agricultural

yield compared to their ancestors (inbreeding depression), but

the cross-progeny of two different inbred lines often matches or

even exceeds the performances of the ancestors (heterosis). The

mechanisms behind these two effects were intensely debated (re-

view in Charlesworth and Willis 2009). Because inbreeding and

outbreeding modify the heterozygosity at all loci of a genome

simultaneously, the mode of action of each individual locus on

fitness remained unknown. Both directional dominance and over-

dominance (Table 1) could explain the observations. Since then,

an increasing weight of quantitative genetic evidence points to

directional dominance as the main source of inbreeding depres-

sion and heterosis (Lynch and Walsh 1998; Charlesworth and

Charlesworth 1999; Charlesworth and Willis 2009).

In the decades 1970–2000, the development of molecular

tools in population genetics, initiated by Hubby and Lewontin’s

study of allozymic diversity in Drosophila (Hubby and Lewontin

1966; Lewontin and Hubby 1966), made it possible to assess het-

erozygosity at individual loci, instead of using global measures

such as inbreeding coefficients. The number of heterozygous loci

in an individual at a given, predefined set of marker loci is called

MLH. HFC are statistical associations between MLH and fit-

ness traits. From the 1970s on, HFCs rapidly became of great

interest to evolutionary biologists (e.g., Schaal and Levin 1976;

Zouros et al. 1980; Mitton and Grant 1984; Britten 1996; David

1998).

Unfortunately, HFC studies use a confusing terminology.

During the golden age of allozymes (late 1960s to late 1990s), the

debate revolved around whether HFCs reflected direct overdomi-

nance at allozyme loci, or some indirect mechanism. Early in the

1970s, many considered HFC, overdominance, and heterosis to

be one and the same thing and, consequently, used the terms more

or less interchangeably. Later, HFCs were observed again using

microsatellites. Most people agree that microsatellites are pre-

dominantly noncoding and neutral loci (Jarne and Lagoda 1996).

Therefore, their relationship with phenotypes must be indirect.

This modifies our perception of historically inherited terminol-

ogy, which is partly rooted in a neutralist-selectionist debate that

does not apply to recent HFC studies. For example, the term asso-

ciative overdominance (AO, Table 1) remains in use, although it
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Table 1. Terminology.

Inbreeding—It occurs when relatives mate, whereby two copies of the same ancestral gene are transmitted to a single zygote. The
inbreeding coefficient f refers to the probability that two alleles at a locus in an individual are identical by descent. Because all
members of a species are related to some degree, no truly “outbred” individual can exist. Thus, inbreeding, relatedness, and
identity by descent are relative rather than absolute measures and have been used in several contexts (Jacquard 1975; Rousset
2002). Fixation indices (Fis, FST , Wright 1922) allow to quantify inbreeding at the population level with respect to nonrandom
mating within demes (Fis) and population subdivision (FST ). No such measure exists for inbreeding due to small population size
or bottlenecks. f can be estimated for individuals whose pedigree is known. The temporal depth of the pedigree sets a limit to
such estimates, as the oldest known ancestors are assumed to be unrelated and de facto constitute the reference generation.

Inbreeding depression—A decline in mean fitness (or mean phenotype) in inbred relative to outbred individuals. Both directional
dominance and overdominance can produce inbreeding depression.

Inbreeding load—(1) Reduction in population mean fitness as a consequence of inbreeding; or (2) a measure of the slope of the
regression of a fitness trait on the inbreeding coefficient f . This slope depends on the abundance and effect of deleterious alleles
in genomes—ranging from recessive lethals to very slightly deleterious mutations (Ohta 1992; Kondrashov 1995).

Heterosis (hybrid vigor)—The fitness (or phenotypic) advantage of cross-progeny between two groups (strains, inbred lines or
populations), compared to within-group progeny (Shull 1908; Crow 2008). Heterosis can appear in crosses of historically
diverged populations or subspecies. Note that depending on the amount of divergence and on the trait studied, heterosis may
become negative (a phenomenon referred to as outbreeding depression). Important: Heterosis and overdominance are sometimes
used interchangeably—this is a historical legacy from the 60s, when direct overdominance, inferred from allozymic markers,
was thought to cause heterosis. Accumulating evidence suggests that directional dominance is in fact largely responsible for both
heterosis and inbreeding depression. In the same vein, HFCs have sometimes been called “allozyme-associated heterosis” in the
allozyme literature.

Dominance—When genetic effects of two alleles at a locus are not additive, the allele whose homozygous phenotype lies closest to
the heterozygote is said to be partially dominant over the other (recessive) allele. Directional dominance occurs when alleles that
tend to decrease a phenotype are, on average, mostly recessive. Thus, in heterozygous individuals, deleterious recessive alleles
brought in by one parent are concealed by a dominant allele inherited from the other parent. Directional dominance is currently
believed to be the main cause for inbreeding depression and heterosis (Lynch and Walsh 1998; Charlesworth and Charlesworth
1999; Crow 2008).

Overdominance—A form of (direct) selection whereby heterozygous individuals exceed the performance of both homozygotes.
Dominance and overdominance have different evolutionary consequences: Under directional dominance, inbreeding depression
results from a recurrent influx of deleterious mutations, whereas overdominance maintains the polymorphism. Overdominance
has now been dismissed as a major cause of inbreeding depression, although it may still play a limited role (Crow 2008).

Associative overdominance (AO, apparent/pseudooverdominance)—Historically introduced by Ohta and Kimura (1969a;
1970), AO is the difference in average fitness between heterozygotes and homozygotes at a neutral locus caused by a statistical
association with a (distinct) fitness locus. As such, AO is one of the possible origins of HFC, and indeed the only possible origin
in the case of neutral marker loci such as microsatellites. This definition of AO is used throughout our article. Note however that
the term AO also appears in relation to the influence of selected loci on the long-term dynamics of allele frequencies at neutral
loci (rather than on their correlation with fitness traits). Depending on population and genome characteristics, deleterious alleles
may accelerate the fixation of neutral alleles (Charlesworth 1994) or decelerate it (Pamilo and Palsson 1998). The latter case
occurs in small populations and genomes with little recombination, and has been called “AO” because it tends to preserve
polymorphism longer than expected under neutrality, and therefore mimics an attenuated form of overdominance. This second
definition of AO is not used in this article.

Linkage disequilibrium (LD, gametic phase disequilibrium)—Nonrandom association of alleles at two loci in gametes within a
population (Lewontin and Kojima 1960; Hedrick 2006a). This can be due to genetic drift, migration, or selection (Hill and
Robertson 1968; Sved 1968; Ohta and Kimura 1969b; Weir and Hill 1980). LD is rapidly eroded by recombination. For this
reason, it lasts longer when the two loci are tightly physically linked. However, the term is misleading, as physical linkage is not
required to generate LD.

Identity disequilibrium (ID)—correlation in heterozygosity and/or homozygosity across loci (Weir and Cockerham 1973). Unlike
LD, ID can arise between any two loci in an infinite population without migration or selection, provided some consanguineous
matings occur (Bennett and Binet 1956). Under random mating, drift, bottlenecks, and admixture can create ID: in these cases
LD co-occurs with ID because when alleles at two loci are preferentially associated in gametes (LD), the random association of
gametes yields an excess of either double-homozygous or double-heterozygous genotypes (ID).
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is misleading: AO can emerge without overdominance, although

it does require a statistical association between heterozygosity at

marker loci and heterozygosity at fitness loci in diploid individ-

uals. This statistical association is called identity disequilibrium,

which should not be confounded with linkage disequilibrium,

which occurs in the gametes (see Table 1).

THE ORIGIN OF HFCs: THEORY AND PRACTICE

HFCs do not arise in large random-mating populations
at equilibrium
HFCs are widespread in natural populations of a variety of organ-

isms (Mitton and Grant 1984; Zouros and Foltz 1987). Available

data show, however, that HFC is typically a weak signal—the

explained variance in fitness traits is usually a few percent or less

(Britten 1996; David 1998; Coltman and Slate 2003; Chapman

et al. 2009). Significant correlations do emerge from time to

time, but only when sample size and population contexts are

favorable, rather than in a consistent manner within a species.

Thus, although polymorphisms causing inbreeding depression in

controlled crosses abound in most genomes, it is only in partic-

ular contexts that they will generate detectable HFC in natural

populations.

A recurrent debate in the HFC literature focuses on the extent

to which marker heterozygosity reflects a more general state of

the genome, that is, genome-wide heterozygosity. In a large (e.g.,

N ∼ 500), random-mating population at equilibrium, it is clearly

not the case, as theoretically derived by Ohta (1971) and Ohta and

Kimura (1970), restated with empirical examples by Houle (1989)

and Whitlock (1993), and simulated by Balloux et al. (2004).

Indeed, in the absence of linkage and identity disequilibria (LD

and ID, respectively, Table 1), all loci within genomes come to be

heterozygous or homozygous independently of each other. Thus,

the only source of variance in the proportion of heterozygous

loci in genomes is pure binomial sampling variance, which is

negligible as the number of polymorphic loci is high (Chakraborty

1981). With no source of interlocus correlation, MLH at a set of

markers will only reflect the state of these particular markers, and

will not be correlated to heterozygosity elsewhere in the genome

(Chakraborty 1981, 1987; Lynch and Walsh 1998; Slate et al.

2004; Fig. 1).

For marker loci to indicate anything other than their own

state, and thus for HFC to arise, one of the three following pro-

cesses (or any combination thereof) must occur: (1) a fraction of

systematic consanguineous matings (Ohta and Cockerham 1974),

(2) genetic drift, of concern to small populations (Ohta 1971), or

populations recently affected by bottlenecks (Bierne et al. 2000a);

in this case more or less consanguineous matings occur at random

because in a finite population, the degree of relatedness varies

among random pairs of individuals, and (3) admixture or immi-

gration (Tsitrone et al. 2001); in this case individuals with mixed

ancestry (i.e., ancestors from different populations) are relatively

outbred compared to “pure” genomes (relatively inbred). All three

mechanisms represent some form of variation in inbreeding sensu

lato, and generate ID. LD are not required to generate HFC and are

not produced by systematic consanguineous matings, because the

latter only modify the way gametes are united to each other, and

do not affect their frequencies (Charlesworth et al. 1991; Vitalis

and Couvet 2001). With drift or immigration, LD is produced

(Hill and Robertson 1968; Sved 1968; Bierne et al. 2000a) and

ID emerges as a consequence of LD (occurring in the gametes)

and random mating. Note that although they do not produce LD

by themselves, nonrandom matings can reinforce LD (and ID)

produced by drift or migration because they decrease effective

recombination rates.

The genesis of HFCs, under any of the three scenarios, can

be formalized in a very simple way, detailed below. This model

Figure 1. A path diagram showing how HFCs arise from inbreeding. Black arrows represent a causal relationship, gray arrows a statistical

correlation.
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assumes that marker loci are neutral (e.g., noncoding DNA mark-

ers) and that inbreeding depression exists, although it makes no

assumption about its basis (directional dominance vs. overdomi-

nance). We will first assume no physical linkage among loci; this

is not absurd because most pairs of loci in a genome are either not

or only very loosely linked. We will come back later to the effect

of physical linkage (Section “Variation in HFC among Loci and

the Dichotomy of Local versus General Effects”). We will also

assume that all the variance in genomic heterozygosity among

individuals can be represented by a single variable f , which is

determined for each individual by its pedigree, and represents the

probability for any locus to be autozygous (i.e., homozygous and

identical by descent) in that individual.

Correlations in heterozygosity among loci and how
to measure them
We have seen that ID is the fundamental cause of HFC. ID can

be estimated, and its significance can be tested, using a sample

of multilocus genotypes. A popular procedure to test the signif-

icance of ID is to divide a set of loci into two halves and to

compute the correlation between MLH in the first half and MLH

in the second half (heterozygosity–heterozygosity correlations or

HHC, Balloux et al. 2004); this can be repeated using different

partitions of the set of loci. However, this procedure yields a

complicated distribution of HHC coefficients, which are not inde-

pendent from one another, and provide no synthetic measure that

can be related to HFC theory. The central measure of ID in HFC

theory is the excess of double heterozygotes at two loci relative

to the expectation under random association (i.e., covariance in

heterozygosity), standardized by average heterozygosity. Under

any form of inbreeding, this measure is constant whatever the

pair of loci (i, j) considered, and equals a parameter named g2,

which depends only on the mean and variance of inbreeding in

the population, and not on locus-specific characteristics (David

et al. 2007):

∀(i, j),
cov(hi , h j )

h̄i h̄ j
= E(hi h j ) − h̄i h̄ j

h̄i h̄ j
= g2 = σ2( f )

(1 − f̄ )2
, (1)

where hi is the heterozygosity at locus i(hi = 1 for an heterozygote,

0 for an homozygote), E(hihj) is the mean of hihj, and σ2( f ) and

f̄ are the variance and mean of f among individuals.

All loci can be combined to produce a single estimate of g2

(e.g., Slate et al. 2004). The procedure is detailed in David et al.

(2007), who provide a freeware to compute this estimate, and to

test whether g2 differs significantly from zero (the software al-

lows for missing data; it also computes selfing rates under the

hypothesis that ID is due to partial selfing—but g2 estimates are

valid with any source of inbreeding). g2 can be represented graph-

ically as an excess of multiheterozygous and multihomozygous

genotypes, inflating the variance in MLH, compared to a random

assortment of loci (Fig. S1). Without variance in inbreeding (i.e.,

when g2 = 0), HFC cannot arise. However, nonsignificant values

of g2 do not contradict the observation of HFC. Indeed, fitness

traits capture the effect of potentially many more loci than the

number of markers typed. Therefore a slight inbreeding is often

more easily detected through its effect on the phenotype than

through its effect on heterozygosity at a few marker loci. Thus,

HFCs reach the significance threshold more easily than correla-

tions in heterozygosity in pairs of loci (g2). However, g2 remains

a more powerful statistic than HHC to detect ID, as it uses infor-

mation on associations from all loci simultaneously. Moreover, g2

is also a central mathematical entity in HFC theory (see below).

HFC is the product of two correlations
Assuming neutral markers, correlations between heterozygosity

(h) and fitness (W) arise from simultaneous effects of inbreeding

level f on these two variables (Fig. 1)

r (W, h) = r (W, f )r ( f, h). (2)

A similar argument holds for regression slopes of fitness on

heterozygosity

β(W, h) = β(W, f ) β( f, h). (3)

The correlation between marker heterozygosity
and inbreeding
We now detail the first of the two right-hand terms of equations

(2) and (3). The correlation between h and f can be computed

with a simple partition method. The population is partitioned into

inbreeding classes within which no covariance in heterozygosity

exists among loci. One then obtains (Bierne et al. 2000a; Slate

et al. 2004)

cov(hi , f ) = −h0,iσ
2( f ), (4)

where h0,i represents the expected heterozygosity at locus i in

the absence of inbreeding (gene diversity in the reference genera-

tion). From this expression, expected regressions and correlations

between hi (or multilocus heterozygosity H, the sum of hi’s over

a set of loci, or any standardized measure of MLH) and f can

be easily derived—they are presented in Table 2. All these quan-

tities are negative and increase in intensity with increasing g2.

These theoretical expectations are highly concordant with ob-

served correlations between heterozygosity and f when the latter

can be estimated independently using pedigree data (Fig. 2). The

regression slope of observed on expected correlations is close to

unity, although both heterozygosity and pedigree f are estimated

with sampling error, resulting in scatter around the regression

line.
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Table 2. Expected components of the relationship between various measures of marker heterozygosity (x) at L loci and the inbreeding

level under a simple inbreeding model without linkage. The various measures include heterozygosity at a single locus i (hi , coded as 0

or 1), multiple locus heterozygosity (H, the sum of hi over L loci), and various standardized measures often used by authors: the relative

heterozygosity at a single locus (h∗
i =hi divided by its average value in the population), relative heterozygosity at multiple loci (H∗=sum

of h∗
i over L loci), and standardized multilocus heterozygosity (H∗∗=H divided by its population mean). Note that the H in Slate et al.

(2004) is equivalent to our H∗∗. Formulae are given for the expected covariance cov(f, x) between inbreeding f and each of the five

measures (x), their expected correlation coefficient (r(f, x)), the slope of the regression that predicts f as a function of x(β(f, x)), and the

variance in x. The latter is given for consistency in the formulae but can usually be directly estimated from data. Mean and variance

operators for a given variable y are noted ȳ and σ2(y), respectively. Most expressions are given as functions of g2, defined in equation 1.

x= cov(f , x) r(f , x) β(f , x) σ2(x)

hi −h0,iσ
2( f )=−h̄i g2(1− f̄ ) − h̄i

σ(hi )
√

g2 − h̄i

σ2(hi )
g2(1− f̄ ) h̄i (1−h̄i )

H=∑
i hi − ∑

i h0,iσ
2( f )=−H̄ g2(1− f̄ ) − H̄

σ(H )
√

g2 − H̄

σ2(H )
g2(1− f̄ )

∑
i σ2(hi )+

(
2

∑ ∑
j>i h̄i h̄ j

)
g2

h∗
i =hi/h̄i − σ2( f )

(1− f̄ )
=−g2(1− f̄ ) − h̄i

σ(hi )
√

g2 − g2(1− f̄ )

σ2(hi )

1−h̄i

h̄i

H∗= ∑
i h∗

i −L
σ2( f )

(1− f̄ )
=−Lg2(1− f̄ ) − L

σ(H∗)
√

g2 − L

σ2(H∗)
g2(1− f̄ )

∑
i σ2(h∗

i )+L(L−1)g2

H∗∗= H

H̄
− σ2( f )

(1− f̄ )
=−g2(1− f̄ ) −

√
g2

σ(H∗∗)
− g2(1− f̄ )

σ2(H∗∗)

σ2(H )

H̄ 2

The correlation between inbreeding and fitness
The correlation between inbreeding and fitness (second right-hand

term of eq. 2) depends on three variables: (1) the slope of the

regression line (β(W, f ), or inbreeding load), which represents the

effect of inbreeding on fitness, and depends on the average number

of deleterious recessives per diploid genome, (2) the variance

in inbreeding in the population σ2(f ), and (3) the variance in

fitness due to environmental or genetic effects that are not related

to inbreeding (e.g., additive genetic variance) in the population.

Thus,

r (W, f ) = β(W, f )
σ( f )

σ(W )
. (5)

Empirical data on heterozygosity and fitness, together with

equations (2)–(5) and Table 2, are sufficient to estimate both the

inbreeding load β(W, f ) and the amount of variance in fitness

explained by inbreeding r2(W, f ) which are the quantities of in-

terest to researchers studying the impacts of inbreeding in natural

populations, We recommend that they should be routinely com-

puted in future HFC studies. Worked examples using cassava and

shrimp datasets from Pujol et al. (2005) and Bierne et al. (2000b)

are provided in the Appendix S1. Note that HFC itself (r(W, h))

is not directly informative on the actual impact of inbreeding as it

only reflects how well real data are approximated by a regression

of fitness on heterozygosity. It does not quantify the strength of

inbreeding depression (β(W, f )).

WHAT META-ANALYSES TELL US ABOUT HFC

The above theory predicts that even when a large fraction of the

variance in fitness is due to inbreeding, r2(h, f ), and therefore

r2(W, h), will be very small under realistic levels of inbreeding

in natural populations unable to self-fertilize (as in the data from

Fig. 2). One may wonder how often significant HFC can arise

in true datasets. Several meta-analyses have summarized existing

information on the effect size of HFCs (Britten 1996; Coltman

and Slate 2003; Chapman et al. 2009). All of them show that HFC

is usually very weak. The overall percentage of variance in fitness

that MLH explains (r2(W, h)) spans from 0.07% to 3.3%, with an

average of 1% or less for microsatellite studies; Chapman et al.

2009). This is consistent with inbreeding-based theory; indeed,

both particular population structures (large variance in inbreed-

ing coefficients) and high statistical power are needed to obtain

significant HFCs. Moreover, even under such circumstances, HFC

represents only the tip of the inbreeding iceberg (i.e., r2(W, h) �
r2(W, f ) because r2(f , h) � 1, eq. 2).

Several elements can influence the estimates of effect sizes

of HFCs. The first is publication bias (Coltman and Slate 2003;

Chapman et al. 2009). This problem is mitigated by the frequent

publication of many nonsignificant correlations, alongside the

rarer significant ones, for each studied system. Moreover, some

studies of HFC may have been undertaken as an “afterthought,”

that is, microsatellites have been typed for other purposes (e.g.,

paternity assignments, evaluation of genetic structure) and later

related to fitness traits. In these cases, the studied populations may
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Figure 2. Observed and expected values of the correlation be-

tween standardized heterozygosity and inbreeding f . Black sym-

bols and regression line refer to vertebrate studies (n = 12, mean/

median sample size per study = 181/120). Populations sampled:

Coopworth sheep (Ovis aries), Bighorn sheep (O. Canadensis),

Wolves (Canis lupus, captive), Lipizzan horses (Equus caballus),

Large ground finch (Geospiza magrinostris), Medium ground

finch (G. fortis), Cactus finch (G. scandens) based on Slate et al.

(2004), Wolf (Canis lupus, wild, Bensch et al. 2006), Siberian jays

(Perisoreus infaustus, Alho et al. 2009), Soay sheep (O. aries,

Overall et al. 2005), Icelandic sheepdog (C. familiaris, Olafsdottir

and Kristjansson 2008), Gazelle (Gazella dorcas neglecta, Ruiz-

Lopez et al. 2009). Open gray symbols and regression line rep-

resent dog breeds presented in Leroy et al. (2009) (n = 44 dog

breeds, mean/median sample size per breed = 24/24)—note that

small sample sizes for individual datapoints will generate greater

stochasticity in observed r(H, f). The slope of the regression line

for r(H, f) expected and observed is β = 0.983 (+0.181 SE) for ver-

tebrate studies and β = 0.771 (+0.347 SE) for dog breeds. Both

slopes differ significantly from zero (F1,10 = 29.49, P < 0.001, and

F1,42 = 4.94, P = 0.032, respectively), yet as expected, they do not

differ significantly from each other (T11 = 1.15, P = 0.274).

not have any of the genetic structures required to generate HFCs

(Section “What Meta-Analyses Tell Us about HFC”). The second

source of variation in HFC estimates lies with the choice of the

phenotypic trait. In principle, only traits that exhibit directional

dominance, and are affected by many loci, can correlate with

heterozygosity. Integrated life-history traits (e.g., survival, repro-

ductive success), and growth traits (growth rate or size at a juvenile

stage) involve many different loci, all of which are targets for dele-

terious recessive mutations (Houle et al. 1996; Houle 1998). This

genetic architecture favors the expression of HFC. Morphologi-

cal (e.g., organ size in adults, meristic traits) and behavioral traits

may often be under stabilizing rather than directional selection,

they may display less-directional dominance, and be affected by

fewer loci than life-history traits (Houle et al. 1996); therefore

they should rarely be correlated to heterozygosity. In practice,

HFC is often tested using all possible traits, thereby reducing the

term HFC to a misnomer (Chapman et al. 2009).

VARIATION IN HFC AMONG LOCI AND THE

DICHOTOMY OF LOCAL VERSUS GENERAL EFFECTS

Theory predicts, and meta-analytical studies confirm, that HFCs

are weak. This makes HFC studies prone to “fishing trips,” where

the same data are used in different analyses until some significant

effect is found. In particular, it is tempting to analyze each locus

separately to find correlations that stand out. Such estimates of

HFC at individual loci have been considered as indicative of lo-

cal effects (Hansson and Westerberg 2002; Hansson et al. 2004;

Da Silva et al. 2006; Lieutenant-Gosselin and Bernatchez 2006;

Charpentier et al. 2008; Hansson and Westerberg 2008; Vilhunen

et al. 2008; Da Silva et al. 2009). However, speculations on lo-

cal effects have generally not been supported by relevant and

significant statistics. Single-locus HFCs need to be interpreted

cautiously, as discussed below. A statistical method allowing par-

simonious identification of local effects is also provided (subsec-

tion “Statistical Issues: Appropriate Testing for Local Effects”).

Local and general effects: definition and historical
background
The terms “local” and “general” effects, originally coined by

David et al. (1995), are deeply rooted in the historical context of

the 70s to the 90s (Kimura 1983; Ohta 1992), when allozymes

were the only available markers. At that time the debates on HFC

opposed two hypotheses: direct overdominance (a direct effect of

allozyme loci on the phenotype) and AO. In this context, the term

“local effects” sought to group together: direct effects of marker

genes and indirect effects of loci in the chromosomal vicinity of

the markers, by contrast with “general effects,” to which the en-

tire genome might contribute. This grouping was made purely for

practical reasons, as it was impossible to disentangle whether the

phenotypically active loci were the markers themselves or closely

linked loci. Both terms survived the transition to microsatellite

markers, which are—but for a few exceptions—noncoding poly-

morphic loci (Jarne and Lagoda 1996). In this case, local effects

can only reflect the action of coding loci physically linked to a

particular microsatellite (as direct effects are excluded). In the

following sections, we will not discuss direct effects (irrelevant

to microsatellites) but will concentrate on local effects of the

“indirect” type, involving physical linkage.

Local effects are unlikely to be detected
Local effects imply that most or all of the HFC observed at a

particular marker locus is due to polymorphic fitness genes in

the chromosomal vicinity of that marker. This requires ID to be
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on average higher between two linked loci than between two

unlinked loci, so that HFC at the marker locus will capture a

higher proportion of the phenotypic variance generated by a linked

locus compared to an unlinked locus. This property is predicted

by most inbreeding models of HFC (Ohta 1971; Bierne et al.

2000a). However the number of loci linked to a particular marker

is usually much smaller than the number of unlinked loci; local

effects will be important only if the difference between linked

and unlinked loci is strong enough to compensate this asymmetry.

Otherwise, the cumulative effects of fitness loci in all unlinked

parts of the genome may override that of the chromosomal region

of the marker.

Theory predicts that this dilution effect will occur in all the

contexts that can generate HFC, so that local effects will usually

be very difficult to detect. In the case of recent inbreeding (e.g.,

partial selfing, or mating between relatives), ID (hence HFC) is

expected to be at most twice as large for two completely linked

loci as for unlinked loci (from Weir and Cockerham 1973, eq. 37).

This ratio of less than 2 is not sufficient to counter-balance the fact

that linked loci typically represent no more than a few percent of

the genome. However, higher ratios can be found under other de-

mographic scenarios, such as small population sizes, bottlenecks,

or admixture. In these cases, ID is associated with LD, which

decreases with physical distance (Hill and Robertson 1968). A

favorable situation to observe local effects would therefore arise

if LD were absent among unlinked loci in a population while

being strong among linked loci. Unfortunately, such situations

are exceedingly rare: population bottlenecks and population ad-

mixture do generate moderate levels of linkage disequilibrium

between physically unlinked loci, although they are lower than

for linked pairs. In real datasets, the proportion of variance in

LD among markers that can be explained by physical distance

typically ranges from a few to 45% (Slate and Pemberton 2007).

Yet unlinked markers (nonsyntenic, placed on different chromo-

somes) frequently exhibit LD with each other (e.g., Slate and

Pemberton 2007; Li and Merilä 2009).

To model local effects in HFC, not only the marker loci but

also fitness loci must be included in simulations. Unfortunately,

models investigating the potential role of local effects have some-

times limited their simulations to neutral markers, potentially

generating biased conclusions (Balloux et al. 2004; Hansson and

Westerberg 2008). Theoretical approximations and simulations

including both marker and fitness loci show that (1) AO can arise

even with no linkage at all, as stated by Ohta in the 1970s (Ohta

1973; Ohta and Cockerham 1974) and (2) with realistic genome

sizes and conditions, the contribution of physically linked loci is

on average small when compared to the cumulative effect of the

entire genome (Ohta 1973; Bierne et al. 2000a). Based on earlier

work (Bierne et al. 2000a), Figure 3 presents simulations assess-

ing the relative contributions of linked and unlinked detrimental

alleles in a genome of standard vertebrate recombinational size.

Clearly, detrimental alleles that are physically linked to a marker

produce stronger AO (approximately 2.5 times) than the same

number of unlinked detrimentals (Fig. 3A), consistently with pre-

vious reports (Ohta 1973; Ohta and Cockerham 1974; Bierne et al.

2000a). However, in a genome of 20 chromosomes, 95% of the

genome is unlinked to a particular marker. In consequence, the

increase in HFC due to linkage is diluted and barely detectable

(Fig. 3B).

At first thought, an appealing scenario to generate local ef-

fects is to consider a large panmictic population in which LD

would be generated by selection, at a very small chromosomal

scale. This could occur if the marker happened to fall in the vicin-

ity of either an overdominant locus or of a locus with ongoing

fixation of a favorable allele (i.e., a case of genetic hitchhiking;

Maynard-Smith and Haigh 1974; Slatkin 1995; Schierup et al.

2000). Such a scenario is, however, extremely unlikely to con-

tribute to any observed HFC because the polymorphism under

selection would have to be very recent, very strongly selected,

and very close to the marker locus. Although selection can leave a

footprint on an appreciable proportion of some genomes (Nielsen

et al. 2005; Li and Stephan 2006), adaptive evolution probably

occurs only at a few segregating mutations at any given time

(Kreitman 2000; Hedrick 2006b;). In Drosophila for instance, it

has been inferred that one advantageous mutation reaches fixation

every ∼500 generations (Eyre-Walker 2006) and that the average

fitness effect is no more than 0.5% (Li and Stephan 2006). Thus,

only a few favorable mutations are on their way to fixation at any

one time and they affect only a small chromosome fragment (∼no

more than 100 Kb, Li and Stephan 2006), making them very un-

likely to be detected in an HFC context. Balanced polymorphisms

are also known not to thrive in genomes and they are often too

old to retain linkage disequilibrium on a large chromosomal scale

(Charlesworth 2006). In any case, the fitness effects of all these

adaptive polymorphisms, detected by population genetic methods

(integrating the effect of selection on many generations), are far

too small (typically s <1%, Li and Stephan 2006) to be detected

individually through a genotype/fitness correlation in a single

generation. On the contrary, the cumulative effect of many detri-

mental alleles distributed along the entire genome can produce

fitness differences that are strong enough to generate detectable

HFCs.

In summary, in realistic situations the effect of linked mu-

tations on HFC will be overridden by the rest of the genome in

natural populations. However, the effect of the linked genetic load

around a marker can be revealed using special crossing designs

or analyses. In such cases, variation in genome-wide heterozy-

gosity is reduced as much as possible to compare individuals

with the same genomic background on average—ideally individ-

uals with identical pedigrees (i.e., full-siblings) (Charlesworth
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Figure 3. The signal of local effects in a vertebrate population undergoing a demographic bottleneck is easily lost due to cumulated

effects of detrimental alleles scattered across the genome (general effects). Associative overdominance (AO, fitness advantage of

heterozygotes relative to homozygotes) was simulated in a standard vertebrate genome of 20 chromosomes and a map length of 1 M (a

total genome size of 20 M), based on a model by Bierne et al. (2000b). Deleterious mutations were randomly dispatched along the genome

with U (genomic deleterious mutation rate) = 2, h (dominance coefficient) = 0.1, s (selection coefficient) = 0.05. In a large population at

equilibrium, the number of deleterious mutations per genome is thus: n = U/(h × s) = 400. We modeled a large, monogamous vertebrate

population that underwent a sustained population bottleneck. Forty individuals taken from this population (Generation 0) found a small

population that remains at N = 40 for all subsequent generations; mating between relatives can occur in generation 1, thus producing

inbred individuals for the first time in generation 2. The AO at one marker locus was investigated for 20 generations. To decompose

the effect of linked and unlinked deleterious mutations, three scenarios were used: (1) local effects—the marker is localized within a

single chromosome of 1 M with 1/20th of the load (U = 0.1), (2) general effects using one chromosome only: the marker segregates

independently (it is localized in a chromosome freed from deleterious mutations) in a genome of 1 M with 1/20th of the load, and

(3) general effects using the full genome size: a marker segregates independently in a genome of 19 M with 19/20th of the load (U = 1.9).

(A) AO generated by one chromosome when the marker is on the same chromosome (gray line) and when it is on a different chromosome

with no deleterious mutations (black line). (B) Total AO partitioned into AO caused by detrimentals located on the same chromosome as

the marker (black area) and caused by detrimental alleles occurring on the remaining 19 chromosomes (gray area).

and Charlesworth 1999). Importantly, these individuals need to

be inbred to some degree to expose the phenotypic effects of re-

cessive mutations. Analyses of large sibling groups from crosses

between related parents, with or without molecular markers, are

classical methods to explore the genetic architecture of inbreed-

ing depression (Hedrick and Muona 1990; Fu and Ritland 1994;

Bierne et al. 1998; Carr and Dudash 2003; Haag and Ebert 2007).

Natural pedigrees, in combination with molecular markers, can

be used in the same way. This has been done by comparing sib-

ling dyads from several families of reed-warblers (Hansson et al.

2001, 2004). In these studies, the heterozygosity in surviving off-

spring was greater than in their nonsurviving siblings. The back-

ground variation at unlinked loci (genome-wide heterozygosity)

was eliminated because both siblings have the same inbreeding

coefficient. Therefore, HFC was restricted to fitness genes physi-

cally linked to a marker locus for each particular dyad. However,

(1) some inbreeding sensu lato must be present in some of the

dyads, otherwise fitness would be correlated to particular alleles

rather than heterozygosity (2) not all sibling dyads are equally

inbred, and they do not necessarily carry mutations in the vicinity

of the same markers. Thus, what HFC represents in this case is a

“sample” of the cumulative effects of the linked load present in

some families that happen to be slightly inbred. Although these

studies can determine quite powerfully whether a more heterozy-

gous sibling is more likely to survive, chances of pin-pointing

fitness genes through local effects, given that each dyad will carry

different ID and LD signatures, are limited.

We have argued that, without a specific design (i.e., full-

siblings dyads), local effects are expected to be small and very

hard to detect. Yet, in many cases, only some loci within a given set

of markers show a significant single-locus HFC, a variation that

is often interpreted as a consequence of local effects. We believe

that this apparent contradiction can be resolved using appropriate

statistical tests.

Statistical issues: appropriate testing for local effects
As stated earlier, the problem is not whether local effects exist

(all models predict higher contribution of linked loci to HFC) but

whether a large, or even detectable, part of the overall correlation

is due to local effects. It is relatively easy and tempting to test,

locus by locus, whether the slope of the regression of fitness on

single-locus heterozygosity (β(W, hi)) differs significantly from
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zero. However, such approach does not test for local effects. Under

the general effect hypothesis, all β(W, hi)’s are predicted to differ

from zero. Because of sampling variance, slope estimates for par-

ticular loci will differ from each other. Given that the correlations

are usually very weak and therefore estimated with substantial

error, both positive and negative estimates are to be found, and

some of them may significantly differ from zero whereas others

may not. On average (across different loci) single-locus regression

estimates are expected to be weakly positive. The crucial point

to address is not whether these slopes differ significantly from

zero, but whether some regression coefficients differ from other

single-locus regression coefficients. To implement this test, one

cannot use separate regressions for each locus as they are not inde-

pendent from each other, owing to ID (Table 4). The appropriate

procedure is to test whether a multiple regression incorporating

specific effects for each locus explains more variance than a sim-

ple regression on MLH (David 1997). This can be achieved by

performing the following steps: (1) Regress fitness trait (W) on

MLH (H in table 2), using a simple regression: Model m1: W = a

H + b, with p1 = 2 estimated parameters; (2) Regress fitness on

all single-locus heterozygosities hi . . . hL, expressed as one or zero

(L being the number of loci), using a multiple regression: Model

m2: W = a1h1 + a2h2 + . . . + aLhL + b, with p2 = L + 1 parame-

ters; and (3) Test whether the two models differ significantly from

each other using an F-ratio test. Without local effects, we expect

all marker loci to have the same partial regression coefficients in

the multiple regression of the fitness trait (Ho: a1 = a2 = . . . aL).

By contrast, if local effects occur, one or more partial regression

coefficients (corresponding to markers located near one or several

genes with large fitness effects) are expected to differ from the

others. Ho should then be rejected.

Significant local effects can be identified if m2 explains sig-

nificantly more variance than m1, that is, if the residual sum of

squares (SS) of m2 is significantly larger than the residual SS of

m1:

F = (resSS1 − resSS2)/(df 1 − df 2)

resSS2/df 2
,

where df 1 = N(sample size) − 2 and df 2 = N − L − 1 are the

residual degrees of freedom for m1 and m2, respectively. The F-

ratio should be compared with tabulated F values with (df 1−df 2),

df 2 degrees of freedom—a value greater than the tabulated value

allows for the rejection of the null hypothesis. The same test

can be applied to nonnormally distributed fitness variables using

generalized linear models (e.g., in the case of fitness variables

such as survival, fecundity, infection status etc)—the residual SS

are simply replaced by residual deviances. Moreover, this method

should only be applied when there are no major differences in

observed heterozygosity among loci; otherwise the data should

be normalized as explained in the Appendix S2. Note that the

power of this test (and the accuracy of the multiple regression)

decreases when the number of loci approaches the number of

individuals.

Another important prerequisite for the test is that the geno-

types need to be complete, and exactly the same set of individuals

and loci must be included in the two models (otherwise the SS

for the different tests will differ). As incomplete genotypes are

frequent, a simple remedy is to replace missing data (i.e., loci

for which the heterozygosity hi is unknown for a particular indi-

vidual in the sample) by the sample average (hi = h̄i ), in both

models (Table S1). These “filled” missing values are conserva-

tive to the partial regression coefficient at that locus (as they do

not bring any information on the status of the individual rela-

tive to the population average), but they do allow to make use of

the information contained at other loci (and to increase the overall

power of the test) rather than discarding many individuals from the

analysis.

Although the above procedure allows for rigorous testing of

local effects, it is undeniable that the latter are extremely difficult

to detect if the MLH regression (m1) is already weak. Indeed, we

are not aware of any HFC data that passed this test and detected

significant local effects.

HFCs AND ALTERNATIVE MEASURES

OF INBREEDING: FUTURE DIRECTIONS

Although their theoretical underpinnings are simple, HFCs are not

straightforward to measure in practice. A summary of common

misconceptions about HFCs, and a practical guide for analysis

and interpretation are presented in Tables 3 and 4. Below, we

outline how HFCs, if correctly interpreted, may provide insights

into the impacts of inbreeding depression in populations, and

discuss the complementarity of HFCs and other approaches in this

context.

As illustrated in the examples of Appendix S1, HFCs are

a convenient, if rather imprecise, way to quantify the impact of

inbreeding on fitness in natural populations.

Ideally, combining molecular markers with controlled

crosses is a more powerful approach to quantify the genetic load

(Bierne et al. 1998; Launey and Hedgecock 2001), as well as to

localize and characterize polymorphisms responsible for inbreed-

ing depression (e.g., Fu and Ritland 1994; Haag and Ebert 2007).

Yet, controlled crosses are not always feasible (e.g., in long-lived

vertebrates), or may be restricted to a few families (Remington

and O’Malley 2000). As deleterious alleles are rare and scattered

in genomes (Charlesworth and Charlesworth 1987), additional

families would harbor different assemblies of deleterious alleles.

In addition, controlled crosses yield estimates of the potential

rather than the actual impact of inbreeding on fitness in natural

populations, precisely because the degree of inbreeding is artifi-

cially imposed. In addition to being the only available option in
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Table 3. A summary of common misconceptions about HFCs.

Assertion Reality

Heterozygosity does not estimate
inbreeding in real populations.

Yes it does—but with decreasing precision when inbreeding decreases. A correlation
between individual heterozygosity and inbreeding appears as soon as inbreeding variance
is generated owing to nonrandom mating, immigration or drift, although the correlation
may be low and transient.

As HFCs cannot be explained by
inbreeding, linkage to genes under
balancing selection explains HFCs.

Physical linkage is not an alternative to inbreeding. Indeed, linkage enhances but does not
generate associations between loci (Hartl and Clark 2007). HFCs require a correlation in
heterozygosity between marker and fitness loci that inevitably implies some sort of
inbreeding. Correlations in heterozygosity will affect the entire genome, although they
will usually be stronger between linked loci. In addition, the nature of selection
(balancing or not) cannot be assessed from HFC; Moreover deleterious mutations are
arguably more frequent than balanced polymorphisms within genomes.

The opposition between “local” and
“general” effects was introduced to
contrast inbreeding and linkage as
the source of HFCs.

These terms were introduced at a time when direct selection on allozymes was a serious
hypothesis to explain HFCs as noncoding DNA markers were not yet available (David et
al. 1995). Statistical procedures were developed at the time to test the hypothesis of
direct selection; however, because no test could distinguish between direct effects of
allozymes and potential indirect effects of closely linked loci, the “local” versus
“general” alternative was substituted to “direct” versus “indirect” (David 1997).

ID and LD reflect two different
processes, one operating in large
populations with nonrandom
mating and the other in finite
populations at a small
chromosomal scale.

No. ID and LD are two measures of departure from random associations between loci. ID
and LD are often jointly generated. Only consanguineous matings in large populations
can generate ID without LD. In small, bottlenecked or admixed population, LD co-occurs
with ID because if alleles at two loci are preferentially associated in gametes (LD), the
random association of two gametes will yield an excess of either double homozygous or
double heterozygous genotypes (ID) (Yang 2000). In this case LD and ID can be
considered as two faces of the same coin. HFC in small populations can be equivalently
modeled using LD (Ohta 1971) or ID (Bierne et al. 2000b).

Only closely linked fitness loci can
have an effect on a given locus.

It is true that closely linked loci have a stronger effect on HFC at a given marker than
unlinked loci. However, the sum of many unlinked loci, each with a small effect, is
expected to exceed the contributions of the few linked loci (see Section “Variation in
HFC among Loci and the Dichotomy of Local versus General Effects”).

HFC generated by LD can only be
interpreted as local effects.

No. In small or nonequilibrium populations, LD can also be generated between physically
unlinked loci (e.g., Slate and Pemberton 2007).

HFC can be used as an alternative to
LD mapping to find genes that
contribute to a given phenotype.

No. LD mapping is different from HFCs. In LD mapping, a population sample is split in
groups based on phenotypic features, and differences in allelic frequencies between
groups are looked for. HFC reveals the action of genes that cause inbreeding depression
on the phenotype within a population; yet the usually very sparse coverage of the genome
by markers, the fact that inbreeding is often low within populations, the multiplicity of
loci that contribute to inbreeding depression, and the relatively small effect of physical
linkage on HFC make it unrealistic to map quantitative trait loci using HFC.

some circumstances, HFC has the advantage of yielding overall

estimates of both the potential genetic load and its actual impact

in a population, its main disadvantage being its low precision and

the subsequent need for very large samples.

Pedigree analysis provides direct estimates of individual in-

breeding coefficients, and when feasible is an attractive alterna-

tive to HFC. Although both approaches have their strengths and

limitations, particular contexts may favor one over the other. In

principle, accurate and deep pedigrees offer greater precision in

estimating individual inbreeding coefficients and hence inbreed-

ing depression (Balloux et al. 2004; Pemberton 2004; Slate et al.

2004). However, this accuracy heavily relies on the validity of

the assumption that founding individuals (the end-points of the

pedigree) are outbred and unrelated. Often this assumption is vio-

lated, and relatedness/inbreeding estimates are biased downwards

(Ruiz-Lopez et al. 2009). To minimize bias, it is important to re-

strict datasets so that individuals identified as inbred or outbred

have enough known ancestry (e.g., at least two generations in

species with separate sexes) to justify their classification. This

can drastically reduce sample sizes (Marshall et al. 2002; Szulkin

et al. 2007). Finally, pedigree is not obtainable in highly mobile

or fecund species, and in species with large, open, or inaccessible
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Table 4. A practical guide on how to analyze HFCs.

Step What to do

1. What traits to use? Focus on traits that are the product of a large number of loci, and/or that are closely related to fitness
(Section “What Meta-Analyses Tell Us about HFC”).

Traits may be scaled in various ways depending on their distribution, and on the assumed additive or
multiplicative nature of mutational effects on the phenotype. In many cases, the model will not be a
simple linear regression but a generalized linear model, in which case appropriate error treatment is
required (i.e., survival fitted as binomial/quasi-binomial variable with logit link, fecundity as
Poisson/quasi-Poisson with log link, growth rate and body/organ size with identity link and normal
errors).

2. Estimating
heterozygosity from
molecular data

Several measures of heterozygosity can be used, generating equivalent results: H (a simple count of the
number of heterozygous loci) is the simplest, but various standardizations are available (see Table 2).
Always state clearly which standardization you use! While other measures of inbreeding such as
internal relatedness (IR), adaptive distances (Smouse 1986; Houle 1994), or γ (David 1997) may be
theoretically more precise, as they take into account allelic frequencies, scoring errors and especially
null alleles may generate substantial outliers because apparent homozygotes for rare alleles have very
extreme values, and have a relatively high probability to be heterozygous in reality. As datasets are
never error free, MLH is in general the most robust measure (see also Chapman et al. (2009) for
discussion). The use of d2 with microsatellites, which takes into account size differences between
alleles in a heterozygote, is not justified because it is not as good a predictor of inbreeding as H
(Tsitrone et al. 2001).

3. Estimating the
strength of ID in the
sampled population

Test for ID using g2 (Section “Correlations in Heterozygosity among Loci and How to Measure Them”,
Appendix 1, and David et al. 2007). This procedure not only tests, but also provides a measure of
genetic associations that can be related to HFC theory; it handles missing data.

4. Assessing general and
local effects, and
locus-specific effects

Assess the importance of local and general effects using appropriate regressions (Section “Variation in
HFC among Loci and the Dichotomy of Local versus General Effects”). Estimate the inbreeding load
and its actual impact in the population as in Appendix S1. Do not assume that because only a subset
of loci show significant HFCs, they are biologically more relevant than the others. Remember that
differences in significance are expected simply as a result of random sampling.

If applicable, test whether two groups of loci have a differential effect (e.g., microsatellite vs. allozyme
markers, microsatellites in gene-rich and gene-poor regions. . .)—as above, but allowing one
regression coefficient for each group, rather than one for each locus.

5. Interpretation of
statistical significance

Interpret test statistics cautiously! Significant/nonsignificant estimates do not necessarily imply that a
relationship is strong/absent—it only reflects whether a signal happens to cross an arbitrary threshold.
Focus on estimates of the actual strength of the signal (r2, regression slopes, g2 and their associated
standard errors) rather than only on their statistical significance. Do not equate HFC to a measure of
selection on identified loci—instead, try to understand what kind of population context (bottlenecks,
immigration, nonrandom mating) can enhance or limit HFC in your particular case.

populations (i.e., marine organisms, many invertebrate taxa).

Thus, although the construction of robust pedigrees should al-

ways be encouraged (Pemberton 2004, 2008), this does not pre-

clude HFC analysis when no other methods are available, or when

pedigrees are suspected to poorly reflect true relatedness (Ruiz-

Lopez et al. 2009). Importantly, HFC analyses are logistically

less demanding than pedigrees—very large populations of small-

sized animals can easily be sampled and only one generation is

required. Provided there is variance in inbreeding in the popula-

tion, a few markers (≤10, e.g., Bierne et al. 2000b; Lesbarrères

et al. 2007; Townsend et al. 2009) may suffice to reveal inbreed-

ing depression, although large numbers of individuals are needed.

Moreover, heterozygosity-based estimates of inbreeding do not

require a priori assumptions on relatedness between population

members. Indeed, one of the strengths of the HFC approach has

been to reveal inbreeding in apparently large, open, populations

where its presence had not been anticipated, as in marine bivalves

(Singh and Zouros 1978; Koehn and Gaffney 1984; David et al.

1997). Although studies of wild vertebrate populations have been

marked for some time by a schism between “pedigree” studies on

one side and “molecular” approaches on the other, a recent move

toward estimating both pedigree and molecular metrics is wel-

come and timely (Hedrick et al. 2001; Slate et al. 2004; Overall

et al. 2005; Bensch et al. 2006; Jensen et al. 2007; Alho et al.
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2009; Ruiz-Lopez et al. 2009, but see Väli et al. 2008). These ap-

proaches can be viewed as complementary: pedigrees and HFCs

are, respectively, the direct and indirect ways to study inbreeding

in populations.

HFC- and pedigree-based inferences have a common limita-

tion: they reveal variation in inbreeding among individuals within

the population, but not basic inbreeding shared by all members

of the population. However, it is often this “ambient inbreeding”

that poses a serious threat to the persistence of populations as it

reflects fixed deleterious mutations (i.e., fixation load, as opposed

to segregational load). The fixation load can only be assessed by

performing artificial crosses among populations (thus measuring

heterosis) or correlations between genetic diversity and average

population fitness (preferably measured in a “common garden”).

The latter generalize the HFC approach to the interpopulation

level.

Concluding Remarks
Individual heterozygosity and the inbreeding coefficient are

poorly correlated in large panmictic populations at equilibrium.

This does not imply that HFCs are not caused by inbreeding

depression and that one should invoke alternative explanations

such as the presence of major fitness genes in the chromosomal

vicinity of marker loci. Particular population structures or his-

tories enhance HFCs by creating correlations in heterozygosity

among loci, which may be rather weak (as HFC itself), but ex-

tend throughout the genome. The surprise of detecting HFCs,

or conversely the disappointment of their absence, expressed in

many papers, suggest that natural populations often depart from

our initial perception of where HFCs should and should not be

expected. It also stems from an insufficient consideration of sta-

tistical power issues: the effect size of HFC is usually so low that

statistical significance may be a matter of sample size and chance

rather than of biology. Before elaborating complicated scenarios

to explain variation in HFC, one should remind that significant

does not mean strong, and nonsignificant does not mean absent.

HFCs do carry information on inbreeding sensu lato, created

by some form of inner structure, or heterogeneity, within pop-

ulations (e.g., consanguineous vs. nonconsanguineous matings,

migrants vs. residents). This in itself warrants credit, as HFCs

have revealed the existence of an inner structure and associated

fitness costs in populations that were previously thought to be

homogeneous, and where there was no other available method to

infer this structure. HFC mainly arises when inbreeding created

by within-population structure is substantial, and explains a large

proportion of the variance in fitness within the population. This

property is of prime importance in a conservation genetics con-

text, as HFC can serve as a “warning signal” of genetic erosion

in captive or wild populations. However HFC does not yield a

detailed understanding of the genetic architecture of animal and

plant populations and their response to evolutionary pressures, for

which a combination of controlled crossings, molecular genomic

tools, and pedigree reconstruction is a more promising research

avenue.
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gosity and inbreeding in the Siberian jay. Conserv. Genet. 10:605–609.
Balloux, F., W. Amos, and T. Coulson. 2004. Does heterozygosity estimate

inbreeding in real populations? Mol. Ecol. 13:3021–3031.
Bennett, J. H., and F. E. Binet. 1956. Association between Mendelian factors

with mixed selfing and random mating. Heredity 10:51–55.
Bensch, S., H. Andren, B. Hansson, H. C. Pedersen, H. Sand, D. Sejberg, P.

Wabakken, M. Akesson, and O. Liberg. 2006. Selection for heterozy-
gosity gives hope to a wild population of inbred wolves. Plos ONE
1:e72.

Bierne, N., S. Launey, Y. Naciri-Graven, and F. Bonhomme. 1998. Early
effect of inbreeding as revealed by microsatellite analyses on Ostrea

edulis larvae. Genetics 148:1893–1906.
Bierne, N., A. Tsitrone, and P. David. 2000a. An inbreeding model of associa-

tive overdominance during a population bottleneck. Genetics 155:1981–
1990.

Bierne, N., I. Bezuart, V. Vonau, F. Bonhomme, and E. Bedier. 2000b.
Microsatellite-associated heterosis in hatchery-propagated stocks of the
shrimp Penaeus stylirostris. Aquaculture 184:203–219.

Britten, H. B. 1996. Meta-analyses of the association between multilocus
heterozygosity and fitness. Evolution 50:2158–2164.

Carr, D. E., and M. R. Dudash. 2003. Recent approaches into the genetic
basis of inbreeding depression in plants. Philos. Trans. R. Soc. Lond. B
358:1071–1084.

Chakraborty, R. 1981. The distribution of the number of heterozygous loci in
an individual in natural populations. Genetics 98:461–466.

———. 1987. Biochemical heterozygosity and phenotypic variability of poly-
genic traits. Heredity 59:19–28.

Chapman, J. R., S. Nakagawa, D. W. Coltman, J. Slate, and B. C. Sheldon.
2009. A quantitative review of heterozygosity-fitness correlations in
animal populations. Mol. Ecol. 18:2746–2765.

Charlesworth, B. 1994. The effect of background selection against deleteri-
ous mutations on weakly selected, linked variants. Genet. Res. 63:213–
227.

Charlesworth, D. 2006. Balancing selection and its effects on sequences in
nearby genome regions. Plos Genet. 2:379–384.

Charlesworth, D., and B. Charlesworth. 1987. Inbreeding depression and its
evolutionary consequences. Annu. Rev. Ecol. Syst. 18:237–268.

Charlesworth, B., and D. Charlesworth. 1999. The genetic basis of inbreeding
depression. Genet. Res. 74:329–340.

Charlesworth, D., and J. H. Willis. 2009. The genetics of inbreeding depres-
sion. Heredity 10:783–796.

1 2 1 4 EVOLUTION MAY 2010



PERSPECTIVE

Charlesworth, B., M. T. Morgan, and D. Charlesworth. 1991. Multilocus
models of inbreeding depression with synergistic selection and partial
self-fertilization. Genet. Res. 57:177–194.

Charpentier, M. J. E., F. Prugnolle, O. Gimenez, and A. Widdig. 2008. Genetic
heterozygosity and sociality in a primate species. Behav. Genet. 38:151–
158.

Coltman, D. W., and J. Slate. 2003. Microsatellite measures of inbreeding: a
meta-analysis. Evolution 57:971–983.

Crow, J. F. 2008. Mid-century controversies in population genetics. Annu.
Rev. Genet. 42:1–16.

Da Silva, A., G. Luikart, N. G. Yoccoz, A. Cohas, and D. Allaine. 2006.
Genetic diversity-fitness correlation revealed by microsatellite analy-
ses in European alpine marmots (Marmota marmota). Conserv. Genet.
7:371–382.

Da Silva, A., J. M. Gaillard, N. G. Yoccoz, A. J. M. Hewison, M. Galan, T.
Coulson, D. Allaine, L. Vial, D. Delorme, G. Van Laere, et al. 2009.
Heterozygosity-fitness correlations revealed by neutral and candidate
gene markers in roe deer from a long-term study. Evolution 63:403–
417.

Darwin, C. 1876. The effects of cross and self fertilization in the vegetable
kingdom. John Murray, London.

David, P. 1997. Modeling the genetic basis of heterosis: tests of alternative
hypotheses. Evolution 51:1049–1057.

———. 1998. Heterozygosity-fitness correlations: new perspectives on old
problems. Heredity 80:531–537.

David, P., B. Delay, P. Berthou, and P. Jarne. 1995. Alternative models for
allozyme-associated heterosis in the marine bivalve Spisula ovalis. Ge-
netics 139:1719–1726.

David, P., B. Delay, and P. Jarne. 1997. Heterozygosity and growth in the
marine bivalve Spisula ovalis: testing alternative hypotheses. Genet.
Res. 70:215–223.

David, P., B. Pujol, F. Viard, V. Castella, and J. Goudet. 2007. Reliable self-
ing rate estimates from imperfect population genetic data. Mol. Ecol.
16:2474–2487.

Eyre-Walker, A. 2006. The genomic rate of adaptive evolution. Trends Ecol.
Evol. 21:569–575.

Fu, Y. B., and K. Ritland. 1994. Evidence for the partial dominance of via-
bility genes contributing to inbreeding depression in Mimulus guttatus.
Genetics 136:323–331.

Gowen, J. W. 1952. Heterosis. Iowa State College Press, Ames.
Haag, C. R., and D. Ebert. 2007. Genotypic selection in Daphnia populations

consisting of inbred sibships. J. Evol. Biol. 20:881–891.
Hansson, B., and L. Westerberg. 2002. On the correlation between het-

erozygosity and fitness in natural populations. Mol. Ecol. 11:2467–
2474.

———. 2008. Heterozygosity-fitness correlations within inbreeding classes:
local or genome-wide effects? Conserv. Genet. 9:73–83.

Hansson, B., S. Bensch, D. Hasselquist, and M. Akesson. 2001. Microsatellite
diversity predicts recruitment of sibling great reed warblers. Proc. Soc.
B 268:1287–1291.

Hansson, B., H. Westerdahl, D. Hasselquist, M. Akesson, and S. Bensch.
2004. Does linkage disequilibrium generate heterozygosity-fitness cor-
relations in great reed warblers? Evolution 58:870–879.

Hartl, D. L., and A. G. Clark. 2007. Principles of population genetics. Sinauer
Associates, Sunderland, MA.

Hedrick, P. 2006a. Genetics of populations. Arizona State Univ., Tempe, AZ.
———. 2006b. Genetic polymorphism in heterogeneous environments: the

age of genomics. Annu. Rev. Ecol. Evol. Syst. 37:67–93.
Hedrick, P. W., and O. Muona. 1990. Linkage of viability genes to marker loci

in selfing organisms. Heredity 64:67–72.
Hedrick, P., R. Fredrickson, and H. Ellegren. 2001. Evaluation of d-square, a

microsatellite measure of inbreeding and outbreeding, in wolves with a
known pedigree. Evolution 55:1256–1260.

Hill, W. G., and A. Robertson. 1968. Linkage disequilibrium in finite popula-
tions. Theor. Appl. Genet. 38:226–231.

Houle, D. 1989. Allozyme-associated heterosis in Drosophila melanogaster.
Genetics 123:789–801.

———. 1994. Adaptive distance and the genetic basis of heterosis. Evolution
48:1410–1417.

———. 1998. How should we explain variation in the genetic variance of
traits? Genetica 102–3:241–253.

Houle, D., B. Morikawa, and M. Lynch. 1996. Comparing mutational vari-
abilities. Genetics 143:1467–1483.

Hubby, J. L., and R. C. Lewontin. 1966. A molecular approach to the study
of genic heterozygosity in natural populations. 1. The number of alleles
at different loci in Drosophila pseudoobscura. Genetics 54:577–594.

Jacquard, A. 1975. Inbreeding—one word, several meanings. Theor. Popul.
Biol. 7:338–363.

Jarne, P., and P. J. L. Lagoda. 1996. Microsatellites, from molecules to popu-
lations and back. Trends Ecol. Evol. 11:424–429.

Jensen, H., E. M. Bremset, T. H. Ringsby, and B. E. Saether. 2007. Multilocus
heterozygosity and inbreeding depression in an insular house sparrow
metapopulation. Mol. Ecol. 16:4066–4078.

Keller, L. F., and D. M. Waller. 2002. Inbreeding effects in wild populations.
Trends Ecol. Evol. 17:230–241.

Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge Univ.
Press, Cambridge.

Koehn, R. K., and P. M. Gaffney. 1984. Genetic heterozygosity and growth
rate in Mytilus edulis. Marine Biol. 82:1–7.

Kondrashov, A. S. 1995. Contamination of the genome by very slightly dele-
terious mutations—why have we not died 100 times over. J. Theor. Biol.
175:583–594.

Kreitman, M. 2000. Methods to detect selection in populations with applica-
tions to the human. Annu. Rev. Genomics Hum. Genet. 1:539–559.

Launey, S., and D. Hedgecock. 2001. High genetic load in the Pacific oyster
Crassostrea gigas. Genetics 159:255–265.

Leroy, G., E. Verrier, J. C. Meriaux, and X. Rognon. 2009. Genetic diver-
sity of dog breeds: within-breed diversity comparing genealogical and
molecular data. Anim. Genet. 40:323–332.

Lesbarrères, D., D. S. Schmeller, C. R. Primmer, and J. Merilä. 2007. Genetic
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