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Abstract

Parentage studies and family reconstructions have become increasingly popular for

investigating a range of evolutionary, ecological and behavioural processes in natural

populations. However, a number of different assignment methods have emerged in

common use and the accuracy of each may differ in relation to the number of loci

examined, allelic diversity, incomplete sampling of all candidate parents and the pres-

ence of genotyping errors. Here, we examine how these factors affect the accuracy of

three popular parentage inference methods (COLONY, FAMOZ and an exclusion-Bayes’ the-

orem approach by Christie (Molecular Ecology Resources, 2010a, 10, 115) to resolve true

parent–offspring pairs using simulated data. Our findings demonstrate that accuracy

increases with the number and diversity of loci. These were clearly the most important

factors in obtaining accurate assignments explaining 75–90% of variance in overall

accuracy across 60 simulated scenarios. Furthermore, the proportion of candidate par-

ents sampled had a small but significant impact on the susceptibility of each method

to either false-positive or false-negative assignments. Within the range of values simu-

lated, COLONY outperformed FaMoz, which outperformed the exclusion-Bayes’ theorem

method. However, with 20 or more highly polymorphic loci, all methods could be

applied with confidence. Our results show that for parentage inference in natural pop-

ulations, careful consideration of the number and quality of markers will increase the

accuracy of assignments and mitigate the effects of incomplete sampling of parental

populations.
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Introduction

Our ability to infer genealogical relationships amongst

individuals has become an effective approach to investigate

a wide variety of evolutionary, ecological and behavioural

questions. Pedigrees, often based on a combination

of observation and molecular data, have given us

invaluable insights into mating systems, revealing the

prevalence of extra-pair paternities and cooperative

breeding in the wild (e.g. Richardson et al. 2001; Mag-

rath et al. 2009), mating behaviour and reproductive

success (Araki et al. 2007; Rodriguez-Munoz et al. 2010;

Ford et al. 2011; Kanno et al. 2011; Beldade et al. 2012)

and kin association (e.g. Reeve et al. 1990; Buston et al.

2007; Piyapong et al. 2010) in diverse animal groups.

Parentage studies and sibship reconstructions have also

become increasingly popular approaches to estimate

population parameters such as self-recruitment (Jones
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et al. 2005; Saenz-Agudelo et al. 2009, 2012), fine-scale

population structure (e.g. Nussey et al. 2005; Slavov

et al. 2010) and population connectivity in the form of

migration (Nathan et al. 2003; Harrison et al. 2010) or

dispersal (e.g. Garcia et al. 2005, 2007; Jordano et al.

2007; Planes et al. 2009; Christie et al. 2010b; Saenz-Ag-

udelo et al. 2011, 2012; Berumen et al. 2012; Harrison

et al. 2012a). Parentage studies have revealed new

aspects of inbreeding and trait heritability (Ritland

2000; Garant & Kruuk 2005; Pemberton 2008; Nielsen

et al. 2012), genetic adaptation of wild species to captiv-

ity (Christie et al. 2012) and assisted in the restoration

of captive and endangered populations (Keller & Waller

2002; Herbinger et al. 2006). Individual-level analyses

can resolve family relationships in a wide range of taxa

where this information has proven difficult to obtain

from direct observations.

Recent technical advances in both the isolation of

molecular markers, notably microsatellites or SNPs, and

the high-throughput screening of multilocus genotypes

are likely to make parentage studies more widely

accessible to ecologists studying wild populations

(Selkoe & Toonen 2006; Gardner et al. 2011; Guichoux

et al. 2011). However, despite a proliferation of statistical

approaches to infer pedigree structure or kinship rela-

tionships amongst pairs of individuals in natural popu-

lations (reviewed in Blouin 2003; Jones & Ardren 2003;

Jones et al. 2010), parentage analysis remains a relatively

new procedure. A number of different approaches are

currently being used, but the factors affecting the rela-

tive accuracy of the different approaches have received

little attention.

The methods used to identify parent–offspring rela-

tionships can be broadly divided into four categories:

strict exclusion, categorical assignment, fractional

assignment and pedigree reconstruction (Jones et al.

2010). Amongst these, the most commonly used meth-

ods are strict exclusion and categorical assignment,

whereby the genotype of each offspring is compared to

the genotype of all candidate parents. For strict exclu-

sion methods, any parent failing to share at least one

allele at a given locus is excluded. If more than one par-

ent cannot be excluded, categorical assignments mea-

sure the likelihood of each putative parent–offspring

pair of being true given their respective multilocus

genotype and the observed allelic frequencies in the

population (Marshall et al. 1998; Nielsen et al. 2001; Ger-

ber et al. 2003; Kalinowski et al. 2007). Categorical

assignment approaches offer several advantages over

strict exclusion methods (Danzmann 1997; Goodnight &

Queller 1999) as they can more easily accommodate

scoring errors, missing data or null alleles that

commonly occur in microsatellite data sets (Pemberton

et al. 1995; Dakin & Avise 2004; Pompanon et al. 2005;

Wang 2010). However, in the right circumstances, strict

exclusion can be a powerful approach and could prove

useful to detect parent–offspring pairs in large open

populations (Christie 2010a). Recently, full-probability

approaches for parental or sibship reconstructions have

also become more accessible and widely applied. Rather

than simply evaluating pairwise relationships, individu-

als are clustered into family groups and the likelihood

of different clusters is evaluated to identify the most

parsimonious configuration (Almudevar & Field 1999;

Thomas & Hill 2002; Wang 2004; Hadfield et al. 2006;

Wang & Santure 2009; Jones & Wang 2010a; Almudevar

& Anderson 2011). In turn, accounting for the presence

of family groups provides valuable information that sig-

nificantly enhances the accuracy of assignments (Wang

2007; Walling et al. 2010).

All the above methods are subject to incorrect assign-

ments that may be affected by the number and allelic

diversity of loci examined (Bernatchez & Duchesne

2000; Nielsen et al. 2001), the proportion of the popula-

tion sampled (Oddou-Muratorio et al. 2003; Koch et al.

2008), genotyping errors, mutations, allelic dropouts

and miscalling (Bernatchez & Duchesne 2000; Hoffman

& Amos 2005). However, having only a limited number

of genetic markers and incomplete sampling of all can-

didate parents is thought to have the largest effects on

the accuracy of assignments (Marshall et al. 1998;

Nielsen et al. 2001; Wilson & Ferguson 2002; Oddou-

Muratorio et al. 2003; Jones et al. 2010). Some likelihood-

based approaches such as CERVUS (Marshall et al. 1998;

Kalinowski et al. 2007) and full-likelihood methods such

as COLONY (Wang 2004; Jones & Wang 2010a) account

for incomplete sampling by defining a priori the proba-

bility that the true parent is present in the sample. This

probability can be estimated from the proportion of

putative parents sampled from the entire parental pop-

ulation, which requires prior knowledge, or approxima-

tion, of the size of the population. Whilst COLONY is

robust to uncertainty in this sampling rate (Wang &

Santure 2009; Jones & Wang 2010b), misspecification of

this parameter in CERVUS can have significant impact on

assignments made (Nielsen et al. 2001; Hadfield et al.

2006; Koch et al. 2008).

Other approaches have been developed to infer par-

entage without prior knowledge of population size or

the proportion of candidate parents in the sample. Such

methods have been favoured to assess population con-

nectivity in large populations (mostly plants and marine

fish) where accurate estimates of the breeding popula-

tion size are often difficult to obtain. For instance, the

pairwise-likelihood method implemented in FAMOZ

(Gerber et al. 2003) estimates the likelihood ratios [log

of the odds ratio (LOD) scores] of putative parent–

offspring pairs being true and determines critical
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thresholds to accept or reject assignments by simulating

true and false parent–offspring pairs. The calculation of

LOD scores is based on the same approach as CERVUS

(Meagher & Thompson 1986; Marshall et al. 1998;

Gerber et al. 2000); however, FAMOZ does not require a

priori information of the proportion of candidate par-

ents in the sample in order to determine critical LOD

thresholds. The exclusion-Bayes’ theorem approach by

Christie (2010a) is another method that follows in this

category. It consists of calculating the probability of

false parent–offspring pairs in a data set to determine

whether all putative parent–offspring pairs can be

accepted with strict exclusion. In situations where the

data set lacks sufficient power, Bayes’ theorem is used

to determine the probability of putative parent–off-

spring pairs being false given the frequencies of shared

alleles. This approach was designed for situations

where only a small fraction of all candidate parents can

be sampled and does not require a priori information of

the proportion of candidate parents in the sampled

population or other demographic parameters (Christie

2010a). Whilst the effects of the misspecification of the

proportion of sampled candidate parents in CERVUS have

been evaluated and discussed elsewhere (Nielsen et al.

2001; Hadfield et al. 2006; Koch et al. 2008), it is unclear

how the absence of this parameter may affect the per-

formance of exclusion and categorical assignment

approaches, such as those implemented in FAMOZ and

exclusion-based approaches, especially under different

sampling rates.

The aim of this study was to assess the accuracy of

three popular methods of parentage analysis and inves-

tigate their susceptibility to error under 60 different sce-

narios that incrementally simulate the number of loci,

allelic diversity, adult sample size and genotyping

error. Simulated offspring were assigned to single par-

ents using the exclusion-Bayes’ theorem approach

developed by Christie (2010a) (hereafter referred to as

‘the Christie method’), the pairwise-likelihood method

implemented in FAMOZ (Gerber et al. 2003) and the full-

probability approach implemented in version 2.0 of COL-

ONY (Wang 2004). Putative parent–offspring pairs were

validated against known true parents, and assignment

errors were classified as described in Box 1. We then

examined how the number of assignment errors was

correlated with the number of loci, allelic diversity and

proportion of adults sampled from the population.

Materials and methods

Simulated data sets

Two parental data sets, of different population sizes,

were generated in EASYPOP (Balloux 2001) to achieve

different levels of allelic diversity whilst maintaining all

remaining simulation parameters constant. Whilst the

difference in population size between both data sets has

little relevance to the accuracy of assignments, this pro-

cedure allowed us to explore the effects of allelic diver-

sity on assignments. The two parental data sets were

based on a finite island model with five subpopulations,

each of constant size and equal sex ratio. The first data

set consisted of 500 reproductive individuals with 100

individuals per subpopulation. The second data set con-

sisted of 1000 reproductive individuals with 200 indi-

viduals per subpopulation. These will subsequently be

referred to as the N500 (low-diversity) and N1000

(high-diversity) populations, respectively. For both data

sets, random mating was simulated to produce diploid

genotypes at 20 independent loci for 5000 generations

to approximate mutation–drift equilibrium (Waples &

Gaggiotti 2006). Migration between subpopulations

occurred with a probability of 0.15 to simulate high

gene flow and demographic connectivity amongst sub-

populations. This is equivalent to 15 and 30 migrants

per generation for the N500 and N1000 populations,

respectively. All loci had the same mutation dynamics,

which occurred according to the K-allele model (each

mutation equally likely to occur at any of K possible

sites). Mutation rate (l = 1 9 10�4) and number of

allelic states (20 possible allelic states) were considered

to represent highly polymorphic markers, such as

microsatellites, within the ranges published in eukary-

otic genomes (Buschiazzo & Gemmell 2006). Our simu-

lated data sets represented an assorted array of loci

akin to most microsatellite data sets. Individual locus

characteristics for each simulated data set were calcu-

lated in GENALEX v6.4 (Peakall & Smouse 2006). The

N1000 population represented a more diverse and

therefore informative data set with an average of 14.9

(11–18) alleles per locus and average observed heterozy-

gosity of 0.769 � 0.070 SD (0.650–0.877) per locus

(Table S1, Supporting information). In comparison, the

N500 populations had lower allelic diversity with an

average of 10.7 alleles per loci (7–14) and an observed

heterozygosity of 0.655 � 0.144 SD (0.396–0.874; Table

S2, Supporting information). The probability of

exclusion of each locus and the cumulative probability

of exclusion of each data set were calculated according

to Jamieson & Taylor (1997) as the probability of

excluding a single parent (Tables S1 and S2, Supporting

information).

For each of the two parental data sets, 1000 offspring

genotypes were generated using the software package

P-LOCI (Matson et al. 2008). Adults were paired ran-

domly within each subpopulation, and four offspring

were generated for each adult pair under a monoga-

mous mating system. This resulted in 250 adult pairs,
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which was necessary to keep offspring sample size

equal between data sets and reduce computation time

of parentage analyses. Offspring were generated follow-

ing Mendelian inheritance with 0.1% and 1% genotyp-

ing error, which are typical of microsatellite loci

(Pompanon et al. 2005). Each parental population was

randomly sampled into samples representing 20, 40, 60,

80 and 100 percentage of the parental population, and

the resulting data sets were further subset taking the

first 10, 15 and 20 loci, totaling 60 independent data

sets. All data sets were deposited in the Dryad Digital

Repository (Harrison et al. 2012b). Each of these data sets

was then analysed using the following three freely avail-

able software packages to identify parent–offspring pairs.

Box 1 Measuring the accuracy of assignments and error types

Whilst the means to identify parent–offspring, half- and full-sib relationship vary widely, the objective of all par-

entage studies is to accurately identify these relationships. Incomplete sampling of all potential parents and insuffi-

cient number of loci are the most common cause of incorrect assignments. Here, we synthesize the decision

process and errors that lead to correct or incorrect assignments and how these affect the accuracy of assignment.

False positive
Type Ib

False positive
Type Ia

False assignmentTrue assignment

OFFSPRING

True exclusion

EXCLUDEDASSIGNED

False negative
Type II

Was the true parent in the sample?

Was it assigned to its true parent? Was the true parent in the sample?

Was it assigned?

ye
s no ye

s no

ye
s no

yes no

Decisions and error types

There are only two correct decisions with regard to single parent assignments, assigning the true parent when it is

present in the sample (true assignment) and assigning no parent when the true parent is not in the sample (true

exclusion). Assignment errors can be either false positive (falsely assigning an individual to a parent that is not its

true parent) or false negative (falsely excluding a true parent). These are commonly referred to as type I (false-posi-

tive) and type II (false-negative) errors, respectively, and can be estimated from simulations (e.g. FAMOZ). False posi-

tives fall into two categories, falsely assigning to a parent when the true parent is in the sample or when the true

parent is not in the sample. To distinguish these from error estimates, we refer to these here as type Ia and type Ib

errors, respectively. We refer to false negatives, falsely excluding a parent when it was in the sample, as a type II

error. These errors cannot be calculated in real data sets unless the full pedigree is available.

Measuring the accuracy of assignments

In simulated data sets, we can identify each error type (type Ia, type Ib and type II) and measure the accuracy of

each method to identify true parents (accuracy of assignments), exclude the false parents (accuracy of exclusion) or

calculate the overall accuracy of assignments. We considered type Ia and type II errors to be false assignments and

type Ib errors to be false exclusions. The accuracy is calculated as the sum of these errors over all possible assign-

ments or exclusions. The overall accuracy is the sum of all errors over the total number of possible assignments.
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Exclusion-Bayes’ Theorem—Christie method

The method described by Christie (2010a) is an unbi-

ased exclusion probability designed to identify true par-

ent–offspring pairs in large populations where the

proportion of sampled parents is low. For each data set,

we calculated the probability of observing shared alleles

between unrelated individuals using 1000 simulations,

then calculated the probability of each putative parent–

offspring pair being false given the frequency of shared

alleles. This method does not explicitly account for

genotyping error or marker-specific error rates, but

allows for mismatches between parent–offspring pairs.

Assignments are made to single parents only, and par-

ent pairs in the sample are not considered. When

assigned, each parent–offspring pair is given a probabil-

ity and several adults may be assigned to the same off-

spring. When two or more putative parents were

assigned to the same offspring, only the parent with the

highest probability of assignment was kept for further

analyses. This method was implemented in R v2.14.0 (R

Development Core Team 2011).

Pairwise-Likelihood—FAMOZ

The software program FAMOZ (Gerber et al. 2003) allows

for the categorical allocation of parent–offspring pairs

based on a maximum-likelihood approach. The pro-

gram computes LOD scores for assigning individuals to

candidate parents based on the observed allelic frequen-

cies at each locus. We allowed for genotyping errors by

introducing an error rate of 0.01% in the LOD score cal-

culation, which produces the lowest type I and II error

rates (Gerber et al. 2000; Morissey and Wilson 2005; Sae-

nz-Agudelo et al. 2011; Harrison et al. 2012a). For each

data set, 10 000 parent–offspring pairs were simulated

based on the observed allelic frequencies at each locus

and 10 000 parent–offspring pairs were generated from

the putative parental genotypes. The frequency distribu-

tions of the two simulations were compared, and the

intersection was defined as the minimum threshold to

accept a given parent–offspring pair or parent-pair trio.

When two or more putative parents were assigned to

the same offspring, only the parent with the highest

LOD score was retained. When two parents were

assigned as a parent pair, both were retained for further

analyses.

Full-Likelihood—COLONY

The software program COLONY (Wang 2004; Jones &

Wang 2010a) implements a full-likelihood approach to

parentage analysis. In our analyses, we considered both

parent–offspring relationships and sibship amongst

offspring samples. Adult samples were separated by

sex, and we assumed a polygamous mating system for

diploid organisms. The prior probability that the true

parent was present in the sample was considered in the

assignment of parent–offspring pairs in accordance with

the proportion of candidate parents included in the

simulated data sets. Allelic frequencies were deter-

mined from the sample data set, but did not take into

account the relationship between individuals or

inbreeding. All results were based on a single short run

with high precision to maximize the accuracy of assign-

ment whilst reducing the length of individual runs.

This approach accounts for genotyping error at each

locus of each sampled individual when estimating the

likelihood of a particular family cluster, and simulated

error rates were taken into account in each analysis.

Only the parent or parent pair with the highest like-

lihood is assigned, and all assigned parents were

retained for further analysis.

Assignment errors

For each offspring, the assigned parent or parent pairs

were compared to the known true parents. When an

offspring was assigned to a parent that was not its true

parent or not assigned (excluded), we determined

whether the true parent was in the sample and identi-

fied it as either false-positive (type Ia or type Ib) or

false-negative (type II) errors (Box 1). We then used a

generalized linear model (GLM) framework to quantify

the effect of allelic diversity, number of loci, percentage

of sampled parents, genotyping error and their possible

interaction on the proportion of correct assignments of

each method. Because the response variable was a pro-

portion, GLMs were fitted using a logit link function

(as fitted values are bound between 0 and 1) and quasi-

binomial errors (to account for non-normally

distributed errors, nonconstant variance and overdisper-

sion; Crawley 2007). For each method, we first fitted a

maximal model (four parameters and their interactions)

and then removed nonsignificant terms until a minimal

adequate model was reached (Crawley 2007). Process-

ing of all software outputs and all model fitting was

performed in R with scripts deposited in the Dryad

Digital Repository (Harrison et al. 2012b).

Results

Relative accuracy of the three methods

Given high diversity (N1000) and sufficient number of

loci, all methods tested identified parent–offspring pairs

with over 90% accuracy, regardless of the proportion of

the population sampled or the presence of genotyping
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error (Fig. 1 and Table S3, Supporting information).

However, the performance of each method varied, with

accuracy affected by the number and allelic diversity of

loci and the proportion of sampled parents. Overall, the

full-likelihood method implemented in COLONY (Wang

2004; Jones & Wang 2010a) outperformed the other two

methods with a mean (�SD) accuracy across all scenar-

ios of 98.4 � 4.0% compared to 89.0 � 11.3% for the

pairwise-likelihood method (Gerber et al. 2003) and

65.3 � 28.3% for the Christie method (Christie 2010a).

For each method, the number of loci and differences in

allelic diversity between the low- and high-diversity

populations had the largest effect on the overall accu-

racy of assignments. For most scenarios we analysed,

COLONY performed best, FAMOZ was intermediate and the

Christie method was least accurate, with the disparity

between methods increasing with increasing proportions

of the population sampled (Fig. 1).

The number of loci was always the most important

single factor in determining the accuracy of assignments

for all three methods investigated (Fig. 1 and Tables S3

–S5, Supporting information). Across all scenarios, the

Christie method was the most affected with an overall

reduction of 47% in overall accuracy when reducing

the number of loci from 20 to 10. However, this only

determined ~45% of the variance in overall accuracy

(GLM: F1,57 = 531.7, P < 0.001), suggesting other factors

are influencing the discrimination of true parent–off-

spring pairs. In contrast, the accuracy of the pairwise-

likelihood method was reduced by only 21% overall

and represented~66% of the variance in overall accuracy

(F1,57 = 548.5, P < 0.001). For the full-likelihood method,

overall accuracy was only reduced by 4% between 20

and 10 loci, which represented ~52% of variance

(F1,57 = 286.1, P < 0.001).

Differences in allelic diversity between the two simu-

lated populations further accentuated the effect of the

number of loci on the overall accuracy of assignment,

with a significant interaction between these two factors

(Table S5, Supporting information). The performance of

both the Christie method and the pairwise-likelihood

methods was most severely affected by their combined

effect (as the sum of variances explained by each vari-

able and their interaction), explaining a total of 90%

and ~87% of variance in overall accuracy, respectively.

For both methods, this included a low but significant

interaction between the number of loci and allelic diver-

sity (1.8%: F1,53 = 21.9, P < 0.01 and 0.8%: F1,54 = 6.3,

P < 0.05, respectively). In contrast, these two factors

explained~75% of the overall variance in accuracy of the

full-likelihood method, and there was no significant

interaction between the two on the overall accuracy of

assignment. Although the accuracy of the full-likelihood

method was high overall, it is likely that the presence

of full-sibs in our simulated data increased the accuracy

of assignment for this method.

The proportion of sampled parents had a small but sig-

nificant effect on the accuracy of all methods, which were

only exacerbated by variation in the number and allelic

diversity of loci. Variation in the proportion of sampled

parents explained only~6% of variance in overall accuracy

of both the Christie method and the pairwise-likelihood
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Fig. 1 Proportion of accurate assignments

of three approaches to parentage analyses.

Each method was tested on high- and

low-diversity simulated microsatellite

data sets with high (1%) and low (0.1%)

levels of genotyping error for varying

levels of number loci and proportion of

candidate parents sampled. Continuous

lines correspond to the results from the

full-likelihood method implemented in

COLONY v2.0 (Wang 2004), dashed lines are

the results from the pairwise-likelihood

implemented in FAMOZ (Gerber et al. 2003)

and dotted lines from the Christie method

(Christie 2010a).
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methods (Table S5, Supporting information). This

included a small but significant interaction with allelic

diversity (2.6%: F1,54 = 30.6, P < 0.001) for the Christie

method and a small but significant interaction with the

number of loci (1.2%: F1,55 = 9.8, P < 0.01) for the pair-

wise-likelihood method. In contrast, proportion of sam-

pled parents explained ~17.6% of the overall variance in

accuracy of the full-likelihood method and showed no

significant interaction with other variables.

Overall, the presence of genotyping error had negligi-

ble impact on the accuracy of assignments (Fig. 1 and

Tables S3–S5, Supporting information). For each

method, we compared the average accuracy in the high-

and low-diversity data sets with either 0.1% or 1%

genotyping error. Overall, a 10-fold increase in genotyp-

ing error resulted in a 2–3% reduction in accuracy for

the Christie methods and <1% reduction for the pair-

wise- and full-likelihood methods.

Trends in error types

The relative accuracy of each method was reflected in

their susceptibility to type Ia, type Ib and type II errors

(Box 1), and although incomplete sampling of candidate

parents was not highly descriptive of the variance in

overall accuracy (<10% for all methods), it was highly

significant (P < 0.001) and defined clear trends in error

rates, irrespective of the number of loci and allelic

diversity.

For both the Christie method and pairwise-likelihood

methods, the number of type Ia errors (falsely assigning

to a parent when the true parent is in the sample)

increased as the proportion of candidate parents in the

sample increased (Fig. 2). In most scenarios investi-

gated, the Christie method was the most susceptible to

type Ia errors, which represented 45% of all false

assignments. The susceptibility of the pairwise-likeli-

hood approach to type Ia errors, though not as sensitive

as the Christie method with fewer errors representing

38% of all errors overall, also increased with increasing

proportion of the adult sample. Whilst the number of

type Ia errors appears to asymptote when the propor-

tion of adults reached 60% and 80% for the pairwise-

likelihood approach and Christie method, respectively,

it did not necessarily decrease beyond that point.

Furthermore, both the Christie methods and the pair-

wise-likelihood method were also susceptible to type Ib

errors (falsely assigning to a parent when the true

parent is not in the sample), with the number of errors

decreasing as the proportion of sampled parents

increased (Fig. 3). These were the most common forms

of error for the pairwise-likelihood method (39%) and,

whilst the overall trend and susceptibility were similar

between the two approaches, these were the least likely

error for the Christie method (15% of errors overall).

Given the accuracy of the full-likelihood method, clear

trends were not easily identified. Low number and

diversity of loci did appear to increase the susceptibility

of this approach to both type Ia and type Ib errors,

representing 20% and 57% of all errors, respectively.

Both error types decreased with over 40% of the adult

population sampled.
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Fig. 2 Susceptibility of three popular

methods of parentage analysis to type Ia

errors under 60 independent scenarios.

Number of false parent–offspring pairs

where an offspring was assigned to a

parent that was not its true parent when

the true parent was in the sample varied

with the number of loci (y-axis), allelic

diversity in two simulated populations

(N1000 and N500) level of genotyping

error (0.1% and 1.0%). Continuous lines

correspond to the results from the full-

likelihood method implemented in COL-

ONY v2.0 (Wang 2004), dashed lines are

the results from the pairwise-likelihood

implemented in FAMOZ (Gerber et al.

2003) and dotted lines from the Christie

method (Christie 2010a).
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The occurrence of type II errors (falsely excluding a

parent when it was in the sample) remained low for both

the pairwise-likelihood and full-likelihood methods, rep-

resenting 22% and 23% of false assignments overall

(Fig. 4). However, these increased sharply with sample

size for the Christie method under scenarios with low

allelic diversity, representing 40% of false assignments

overall. Furthermore, high genotyping error resulted in

an increase in type II errors for this method.

Discussion

This study evaluates the performance of three popular

approaches to parentage analysis using microsatellite

loci in open populations. In these simulated scenarios,

we were able to capture a wide diversity of conditions

that are commonly encountered in parentage studies

and identified key factors for the identification of true

parent–offspring pairs in natural populations. We also
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Fig. 3 Susceptibility of three popular

methods of parentage analysis to type Ib

errors under 60 independent scenarios.

Number of false parent–offspring pairs

where an offspring was assigned to a

parent that was not its true parent when

the true parent was not in the sample

varied with the number of loci (y-axis),

allelic diversity in two simulated popula-

tions (N1000 and N500) level of genotyp-

ing error (0.1% and 1.0%). Continuous

lines correspond to the results from the

full-likelihood method implemented in

COLONY v2.0 (Wang 2004), dashed lines

are the results from the pairwise-likeli-

hood implemented in FAMOZ (Gerber et al.

2003) and dotted lines from the Christie

method (Christie 2010a).
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Fig. 4 Susceptibility of three popular

methods of parentage analysis to type II

errors under 60 independent scenarios.

Number of false parent–offspring pairs

where an offspring was not assigned

when the true parent was in the sample

varied with the number of loci (y-axis),

allelic diversity in two simulated popula-

tions (high and low diversity) level of

genotyping error (0.1% and 1.0%). Con-

tinuous lines correspond to the results

from the full-likelihood method imple-

mented in COLONY v2.0 (Wang 2004),

dashed lines are the results from the

pairwise-likelihood implemented in FA-

MOZ (Gerber et al. 2003) and dotted lines

from the Christie method (Christie

2010a).

© 2012 Blackwell Publishing Ltd

PARENTAGE ANALYSES IN NATURAL POPULATIONS 1165



identify the three main error types that lead to false

assignments. Our results show that with many highly

diverse loci, all three methods investigated identified

true parent–offspring pairs with high levels of accuracy.

However, as we reduced the number and allelic diver-

sity of loci and the proportion of parents sampled, the

performance of each method responded differently. In

general, accuracy declined with reduced number of loci

and allelic diversity, whilst the response to the propor-

tion of population sampled and effects of genotyping

error varied with each method. In these simulated set-

tings, the full-likelihood approach implemented in COL-

ONY (Wang 2004; Jones & Wang 2010a), consistently

outperformed both the pairwise-likelihood method

implemented in FAMOZ (Gerber et al. 2003) and the

Christie method (Christie 2010a), which was subject to

the most erroneous assignments.

Accounting simultaneously for parent–offspring pairs

and full- and half-sibs clearly increases the accuracy of

assignments for the full-likelihood approach imple-

mented in COLONY (Wang 2007; Walling et al. 2010).

Whilst the inclusion of full-sibs in our simulated data

sets was necessary to reduce the computational

demands of this method, these may not be present at

such frequencies in natural populations. Furthermore,

low allelic diversity or the absence of many candidate

parents makes the identification of family clusters much

more difficult. Whilst the most informative data sets (20

loci with 100% sampled parents and high allele diver-

sity) took several hours to complete, the least informa-

tive data sets (10 loci with 20% sampled parents and

low allele diversity) took up to 4 months to complete

(single run with high precision on a single CPU). For

larger natural populations with mixed generations and

complex genealogical relationships, it would take

considerably longer. Consequently, the performance of

COLONY may be reduced if the presence of large family

groups is infrequent, a common characteristic of both

terrestrial and marine systems (Selkoe et al. 2006;

Buston et al. 2009). How the presence of full-sibs in the

sample, as candidate parents or as offspring, affects

performance remains unclear and requires further

investigation. The computation time remains the major

drawback of this method, and thus, its application may

be restricted to studies with small sample sizes.

However, during the development of this study, a new

likelihood method was released (Wang 2012) that is less

computationally demanding than the full-likelihood

method and may overcome this limitation.

Although the pairwise-likelihood method imple-

mented in FAMOZ (Gerber et al. 2003) was sensitive to

the number and allelic diversity of loci used in the anal-

ysis, it is a good compromise to the full-likelihood

approach. Whilst it did not perform as well, it is well

suited for parentage studies in large natural popula-

tions where knowledge of biological or demographic

parameters is limited or unavailable, where sample

sizes are large or where the number and diversity of

loci are limited. Furthermore, prior knowledge of the

proportion of candidate parents sampled did not

appear to be an important factor in determining true

parent–offspring pairs. The pairwise-likelihood method

is also far less computationally intensive, with each run

taking only minutes to complete on a standard laptop

computer. The flexibility of FAMOZ allows for a broad

range of applications and has made it an attractive

approach to investigate mating patterns and dispersal

in a variety of taxa where demographic parameters are

often difficult to obtain.

The performance of the Christie method (Christie

2010a) was clearly affected by the number and allelic

diversity of molecular markers chosen in these simu-

lated scenarios. However, provided that enough highly

diverse markers are available, the accuracy of this

method increases substantially. Low allelic diversity

combined with large sample sizes increases the proba-

bility of false parent–offspring pairs in the sample and

would explain the susceptibility of this method to type

II errors in low-diversity data sets (Christie 2010a). Set-

ting a threshold whereby putative assignments are only

accepted if the probability of false assignments is <0.10
or 0.05 was attempted to reduce the number of false

positives; however, the increase in false negatives out-

weighed the benefits and did not increase the overall

accuracy of assignments. Overall, we found the

approach computationally intensive, especially in sce-

narios where the number and diversity of loci were

low, perhaps due to the standardized number of

simulations we chose. One potential constraint of this

approach is the inability to identify parent pairs,

limiting its application for ecological studies if no

demographic or mating information is available. Never-

theless, this method is well suited for situations where

only small proportions of large populations can be

sampled (e.g. Christie et al. 2010b) and has been suc-

cessfully applied to infer reproductive success in a

captive-breeding programme (Christie et al. 2011, 2012).

In natural populations where exhaustive sampling is

prohibitive, variation in the proportion of sampled

parents can have a significant impact on the accuracy of

parentage reconstructions (Nielsen et al. 2001; Hadfield

et al. 2006; Koch et al. 2008). Our results show that sam-

pling higher proportions of the population decreases

the likelihood of falsely assigning to a parent when the

true parent was not in the sample (type Ib). This is sim-

ply because more true parents are present in the sam-

ple. On the other hand, sampling higher proportions of

the population increases the likelihood falsely assigning
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to a parent (type Ia) or falsely excluding a parent (type

II) when the true parent was in fact in the sample. Sam-

pling larger proportions of adults leads to exponential

increases in the number of possible pairwise compari-

sons and limited genetic information leads to erroneous

assignments. Nevertheless, our results showed that for

all methods, increasing the number and allelic diversity

of loci reduced the effects of incomplete sampling to

the point where they became negligible.

Depending on the objectives of the study, different

types of errors will have different consequences on the

interpretation of the results. For example, if the objec-

tive is simply to assign offspring to a population or a

group of individuals (e.g. to estimate self-recruitment

rates at the population level), type Ia errors will have

little bearing on the conclusions of a study because they

will not affect the proportion of assignments. On the

other hand, if one was to measure individual reproduc-

tive success (e.g. Rodriguez-Munoz et al. 2010; Beldade

et al. 2012), any error type can have adverse conse-

quences and assignments may not necessarily reflect

true ecological processes. Regardless of the method

used, performing simulations to estimate different error

rates could help to identify the number of markers

required to address specific questions. Striking a bal-

ance will be necessary to achieve the best performance

or satisfy the objectives of a given parentage study.

Conclusions

This study highlights how the number and diversity of

loci, the proportion of candidate parents sampled and

the level of genotyping error can affect the accuracy of

parentage assignments in three common methods of

parentage analysis. Within the range of values simu-

lated, COLONY outperformed FAMOZ, which outperformed

the Christie method. However, with 20 or more highly

polymorphic loci, all methods could be applied with

confidence, though which method is most suitable is

likely to depend on the size of the data set and the size

of the population investigated. When using fewer loci

or less diverse loci, it is vital to be aware of the poten-

tial for assignments errors and the nature of these

errors when choosing which method to apply. Parent-

age studies in natural populations are a challenging

endeavour, and obtaining accurate assignments is cru-

cial to obtaining accurate representations of ecological

processes. Whilst most studies will seek to minimize

false assignments, a compromise between the cost of

developing and processing a large number of loci and

sampling effort is often necessary. Obtaining larger

sample sizes of potential adults obviously increases the

number of possible assignments. However, we found

that increasing the number of loci or selecting loci with

greater allelic diversity can compensate for incomplete

sampling of the parental population and still achieve

high levels of accuracy.
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