SCIENTIFIC PAPERS

1.The Use of the Rotating Disk Electrode for Measuring the Rate of the Fe(II) Reaction with tert-Butylhydroperoxide and Hydrogen Peroxide in Hydrochloric Acid and Acrylonitrile Medium. Opekar F.,Beran P.: J.Electroanal.Chem. 32 (1971) 49-56.

2.Preparation of the Rotating Disk Electrode (in Czech). Beran P.,Opekar F.: Chem.Listy 65 (1971) 855-857.

3.Preparation of the Rotating Ring-Disk Electrode (in Czech). Beran P.,Opekar F.: Chem.Listy 68 (1974) 305-309.

4.Electrochemical Oxidation of K4Os(CN)6 on a Platinum Electrode. Opekar F.,Beran P.: J.Electroanal.Chem. 71 (1976) 120-124.

5.Voltammetric Study of the Cyanide Complex of Osmium. I - The Reduction of the Cyanide Complex of Os(VI) on a Platinum RDE. Opekar F.,Beran P.,Samec Z.: Electrochim.Acta 22 (1977) 243-248.

6.Voltammetric Study of the Cyanide Complex of Osmium. II - The Behaviour of Lower Oxidation State Cyanide Complexes of Osmium on a Platinum Electrode. Opekar F.,Beran P.: Electrochim.Acta 22 (1977) 249-254.

7.Application of the Kalousek Commutator in Stripping Analysis. Opekar F.,Štulík K.: J.Electroanal.Chem. 85 (1977) 207-212.

8.Programable Device for Electrochemical Stripping Analysis (in Czech). Opekar F.,Herout M.: Chem.Listy 71 (1977) 867-870.

9.Electrochemical Stripping Determination of Traces of Copper, Lead, Cadmium and Zinc in Zirconium Metal and Zirconium Dioxide. Štulík K.,Beran P.,Doležal J.,Opekar F.: Talanta 25 (1978) 363-369.

10.Galvanostatic Dissolution of Mercury from the Surface of Glassy Carbon into Thiocyanate Solution. Opekar F.,Holub K.: Collect.Czech.Chem.Commun. 45 (1980) 169-178.

11.A Kalousek's Switch as an Accesory of Potentiostatic Polarograph (in Czech). Opekar F.: Chem.Listy 74 (1980) 284-288.

12.Digital Kit for Chemical Instrumentation (in Czech). Opekar F.: Chem.Listy 74 (1980) 415-418.

3.Automatic Measurement of Transition Times in Galvanostatic Stripping Analysis (in Czech). Opekar F.,Herout M.,Kalvoda R.:Chem.Listy 74 (1980) 542-549.

14.A Device for Analysis Tin-plated Sheets by the Constant Current Coulometry (in Czech). Opekar F.,Nekvasil J.: Hutnické Listy 35 (1980) 212-215.

15.Automatic Galvanostatic Stripping Analyser. Opekar F.,Herout M.: Proc.J.Heyrovsky Memorial Congres on Polarography II, Prague 1980, p.132.

16.Extension of Working Capacity of Device for Measurement of Thickness of Galvanic Layers (in Czech). Herout M.,Opekar F.: Sděl.Technika 28 (1980) 230-231.

17.Flow-through Coulometric Stripping Analysis and the Determination of Manganese by Cathodic Stripping Voltammetry. Trojánek A.,Opekar F.: Anal.Chim.Acta 126 (1981) 15-21.

18.Synchronization of Signal Sampling with Liquid Pulses in Systems with Peristaltic Pumps. Opekar F.,Trojánek A.: Anal.Chim.Acta 127 (1981) 239-243.

19.A Device for Automatic Conversion of Transient Time to Concentration in Galvanostatic Stripping Analysis (in Czech). Herout M.,Opekar F.: Chem.Listy 76 (1982) 645-649.

20.Pneumatoamperometric Determination of Various Oxidants and Total Dissolved Chlorine. Beran P.,Opekar F.,Bruckenstein S.: Anal.Chim.Acta 136 (1982) 389-393.

21.The Stripping Voltammetric Determination of Copper with a Rotating Ring-disk Electrode. Vedral Z.,Beran P.,Opekar F.,Štulík K.: Collect. Czech. Chem. Commun. 47 (1982) 1315-1320.

22.A Simple Laboratory Source of Low Concentration of Hydrogen Cyanide (in Czech). Opekar F.: Chem.Listy 77 (1983) 884-888.

23.Electronic Gas Flowmeter (in Czech). Opekar.F.: Chem.Listy 78 (1984) 855-858.

24.Determination of Gaseous Hydrogen Sulfide by Cathodic Stripping Voltammetry after Preconcentration on a Silver Metallized Porous Membrane Electrode. Opekar F.,Bruckenstein S.: Anal.Chem. 56 (1984) 1206-1209.

25.A Simple Laboratory Generator for Low Concentration of Sulphur Dioxide. Langmaier J.,Opekar F.: Anal.Chim.Acta 166 (1984) 305-310.

26.Pneumatoamperometric Determination of Cyanide, Sulfide and Cyanide and Sulfide Mixtures. Opekar F.,Bruckenstein S.: Anal.Chim.Acta 169 (1985) 407-412.

27.Pneumatopotentiometric Determination of Nanogram Amounts of Cyanide. Opekar F.: Anal.Chim.Acta 183 (1986) 293-299.

28.Determination of Subnanogram Amounts of Sulfur Dioxide and Sulfites by Pneumatopotentiometry. Langmaier J.,Opekar F.: Collect.Czech.Chem.Commun. 51 (1986) 2077-2082.

29.The Electrochemical Generation of Small Amounts of Hydrogen Cyanide. Tocksteinova Z.,Opekar F.: Talanta 33 (1986) 688-690.

30.Amperometric Detection of Nitrates Using a Flow-through Membrane Detector. Trojánek A.,Opekar F.: J.Electroanal.Chem. 214 (1986) 125-134.

31.Pneumatoamperometric Determination of Sulfur Dioxide in Air on ppb Level. Opekar F.,Večeřa Z.,Janák J.: Intern.J.Environ.Anal.Chem. 27 (1986) 123-135.

32.Cyanide Determination in Stone Destillates (in Czech). Procházka L.,Polakovičová J.,Polakovič J.,Opekar F.: Kvasný Průmysl 32 (1986) 312-316.

33.Spectrophotometric Determination of Sulphur Dioxide in Air After its Preconcentration into Formaldehyde Solution in Aerodisperse Unit (in Czech). Opekar F.,Trojánek A.: Chem.Listy 81 (1987) 649-653.

34.Application of a Metallized Membrane Electrode for the Determination of Gaseous Sulphur Compounds After Reductive Pyrolysis. Langmaier J.,Opekar F.,Pacáková V.: Talanta 34 (1987) 453-459.

35.A Wall-jet Conductometric Detector for Determination of Sulphur Dioxide in Air After Preconcentration in Water in Aerodispersion Unit. Opekar F.,Trojánek A.: Anal.Chim.Acta 203 (1987) 1-10.

36.An Electronically Controlled Three-way Valve for Gases (in Czech). Opekar F.,Křesťan L.: Chem.Listy 82 (1988) 189-190.

37.Determination of Total Sulphur and Nitrogen in Crude Oil Products by Oxidative Pyrolysis with Detection Using Metal-plated Membrane Electrode. Langmaier J.,Polák J.,Opekar F.: Analyst 113 (1988) 501-503.

38.A Flow-through Polarographic Detector for Species Forming Products Soluble in Mercury During Electrochemical Reduction. Trojánek A.,Opekar F.,Holub K.: J.Electroanal.Chem. 251 (1988) 41-54.

39.Detection of Hydrogen in Air with a Detector Containing a Nafion Membrane Metallized on Both Sides. Opekar F.: J.Electroanal.Chem. 260 (1989) 451-455.

40.Amperometric Determination of Nitrite and Nitrate in Waters and Vegetables (in Czech). Langmaier J.,Opekar F.: Chem.Listy 84 (1990) 80-87.

41.Continuous Analyzer of Sulfur Dioxide (in Czech). Večera Z.,Mikuška P.,Janák J.,Opekar F.,Trojánek A.: Chem.Listy 84 (1990) 316-320.

42.A Portable Device for Removal of Oxygen from Electrochemically Analysed Solutions (in Czech). Langmaier J.,Opekar F.,Šestáková I.: Chem.Listy 85 (1991) 102-104.

43.Thermostat for Permeation Devices (in Czech). Opekar F.: Chem.Listy 85 (1991) 203-206.

44.Electrochemically Controlled Generation of Small Amounts of Carbon Monoxide. Opekar F.,Langmaier J.: Talanta 39 (1992) 367-369.

45.An Amperometric Solid-state Sensor for Nitrogen Dioxide Based on a Solid Polymer Electrolyte. Opekar F.: Electroanalysis 4 (1992) 133-137.

46.A Solid Polymer Electrolyte Amperometric Detection Cell for FIA and HPLC with Mobile Phases of Low Conductivity. Loub L.,Opekar F.,Pacáková V.,Štulík K.: Electroanalysis 4 (1992) 447-451.

47.Measurement of Electrode Potentials in Electrochemical Systems with Solid Polymer Electrolytes Against Common Reference Electrodes. Opekar F.: Sensors and Actuators B21 (1994) 131-134.

48.Electrochemically Controlled Generation of Hydrogen for Preparation of Gaseous Mixtures for Testing of Hydrogen Sensors (in Czech). Opekar F.: Chem.Listy 88 (1994) 258-261.

49.Indicator and Reference Platinum/Solid Polymer Electrolyte Electrodes for a Simple Solid-State Amperometric Hydrogen Sensor. Opekar F.,Langmaier J.,Samec Z.: J.Electroanal.Chem. 379 (1994) 301-306.

50. Solid-state Hydrogen Sensor Based on a Solid-polymer Electrolyte. Samec Z.,Opekar F.,Crijns G.J.E.F.: Electroanalysis 7 (1995) 1054-1058.

51. Electric Resistance in a Nafion Membrane Exposed to Air after a Step Change in the Relative Humidity. Opekar F.,Svozil D.: J.Electroanal Chem. 385 (1995) 269-271.

52. Virtual Apparatus in Electroanalytical Instrumentation (in Czech). Opekar F.: Chem.Listy 89 (1995) 590-593.

53. A Conductometric Detector for Capillary Separations. Müller D., Jelínek I., Opekar F., Štulík K.: Electroanalysis 8 (1996) 722-725.

54. Amperometric Solid-state NO2 Sensor Based on Plasticized PVC Matrix Containing a Hydrophobic Electrolyte. Langmaier J., Opekar F., Samec Z.: Sensors and Actuators B41 (1997) 1-4.

55. Simple Amperometric Solid-state NO2 Sensor Based on Plasticized PVC Matrix. Langmaier J., Samec Z., Opekar F.: Meeting Abstracts, vol. 97-2, The 1997 Joint Int. Meeting, the Electrochem. Soc. and the Int.Soc. of Electrochemistry, Paris 1997, p.801, (ISSN 1091-8213)

56. Simple Amperometric Solid-state NO2 Sensor Based on Plasticized PVC Matrix. Langmaier J., Samec Z., Opekar F.: Electrochemical Society Proceedings, Paris 1997, vol. 97-19, p. 94-102, (ISBN 1-56677-147-1).

57. A Simple Technique for Joining of Capillaries in Capillary Separation Methods. Jelínek I., Opekar F.: J.Chromatogr. A, 802 (1998) 381-384.

58. An Amperometric Detector with a Tubular Electrode Deposited on the Capillary for Capillary Liquid Chromatogtraphy. Tao Li, Coufal P., Opekar F., Štulík K., Wang E.: Anal. Chim.Acta 360 (1998) 53-59.

59. Effect of ac voltage frequency on the sensitivity of conductometric detection in microseparation techniques. Opekar F., Jelínek I., Trojánek A.:Anal.Chim.Acta 390 (1999) 101-106.

60. Conductometric Detector for Capillary Electrophoresis Based on Hydrophylic Strip (in Czech). Tůma P., Opekar F., Jelínek I.: Chem.Listy 93 (1999) 533-535.

61. A Capillary Electrophoresis Conductometric Detector Based on Measurement of the Conductivity of a Plastic Hydrophilic Strip. Tůma P., Opekar F., Jelínek I., Štulík K.: Electroanalysis 11 (1999) 1022-1026.

62. An Amperometric Detector with a Platinum Tubular Electrode for High Performance Liquid Chromatography. Cvačka J., Opekar F., Barek J., Zima J.: Electroanalysis 12 (2000) 39-43.

63. Split-flow injector for capillary zone electrophoresis. Tůma P., Opekar F., Jelínek I.: J. Chromatogr. A, 883 (2000) 223-230.

64. An amperometric solid-state NO2 sensor with a solid polymer electrolyte and a reticulated vitreous carbon indicator electrode. Hrnčířová P., Opekar F., Štulík K.: Sens. Actuators B 69 (2000) 199-204.

65. Solid-state NO2 sensor with solid polymer electrolyte and reticulated vitreous carbon indicator electrode. Hrnčířová P., Opekar F.: in Bulletin of VI. int. symposium Chemistry Forum 2000, Warsaw, May 8-10, 2000, p. 122 (ISBN 83-904741-8-2)

66. A dual photometric-contactless conductivity detector for capillary electrophoresis. Chvojka T., Jelínek I., Opekar F., Štulík K.: Anal.Chim.Acta 433 (2001) 13-21.

67. A contactless conductometric detector with easily exchangeable capillary for capillary electrophoresis. Tůma P., Opekar F., Jelínek I.: Electroanalysis 13 (2001) 989-992.

68. Contactless Conductometric Detection in Separation Methods. Tůma P., Quaiserová V., Opekar F., Barek J., Zima J.: in Book of Abstracts US-CZ Workshop on Electrochemical Sensors Prague 2001, June 19-22, 2001, p. 39-40, (ISBN 80-86238-15-6)

69. Electrochemical generation of nitrogen dioxide for testing of gas sensors (in Czech). Novotný M., Opekar F. : Chem. Listy 95 (2001) 563-565.

70. Effect of gas humidity on the potential of pseudoreference Pt/air electrode in amperometric solid-state gas sensors. Hrnčířová P., Opekar F.: Sens. Actuators B 81 (2002) 329-333.

71. Contactless Conductivity Detector for Microchip Capillary Electrophoresis. Pumera M., Wang J., Opekar F., Jelínek I., Feldman J., Löwe H., Hardt S.: Anal. Chem. 74 (2002) 168-197.

72. A chip-based capillary electrophoresis-contactless conductivity microsystem for fast measurements of low-explosive ionic components. Wang J., Pumera M., Collins G., Opekar F., Jelínek I.: Analyst 127 (2002) 719-723.

73. A contactless conductivity detector for capillary electrophoresis: Effect of the detection cell geometry on the detector performance. Tůma P., Opekar F., Štulík K.: Electrophoresis 23 (2002) 3718-3724.

74. Dvojdimensionální detektor pro kapilární elektroforézu nové konstrukce (abstrakt k posteru na 55. sjezdu chemických společností, Košice 2003). Novotný M., Opekar F., Jelínek I.: Chem. Listy 97 (2003) 619.

75. Potenciometrický sensor pro fluorovodík s využitím PMMA polymerních gelových elektrolytů (abstrakt k přednášce na 55. sjezdu chemických společností, Košice 2003). Reiter J., Vondrák J., Opekar F., Sedlaříková M., Velická J., Klápště B.: Chem. Listy 97 (2003) 612.

76. Au/PVC composite - a new material for solid-state gas sensors. Detection of nitrogen dioxide in the air. Hoherčáková Z., Opekar F.: Sens. Actuators B97 (2004) 379-386.

77. Determination of urinary 8-hydroxy-2-deoxyguanosine in obese patients by HPLC with electrochemical detection. Samcová E., Marhol P., Opekar F., Langmaier J.: Anal. Chim. Acta 516 (2004)107-110.

78. Solid-state referentní elektroda na bázi PMMA (abstrakt k posteru na 56. sjezdu chemických společností, Ostrava 2004).Reiter J., Vondrák J., Opekar F., Velická J.: Chem. Listy 98 (2004) 614-615.

79. Nový bezkontaktní vodivostní detektor pro průtokové metody (abstrakt k posteru na 56. sjezdu chemických společností, Ostrava 2004). Hoherčáková Z., Opekar F.: Chem. Listy 98 (2004) 612.

80. Kontinuální stanovení stopových koncentrací amoniaku ve vzduchu (abstrakt k přednášce na 56. sjezdu chemických společností, Ostrava 2004). Hrdlička J., Večeřa Z., Mikuška P., Opekar F.: Chem. Listy 98 (2004) 495-496.

81. Improved dual photometric-contactless conductometric detector for capillary electrophoresis. Novotný M., Opekar F., Jelínek I., Štulík K.: Anal. Chim. Acta 525 (2004) 17-21.

82. Determination of Selected Cations in mineral waters and infusion solutions of procaine by capillary electrophoresis with contactless conductivity detection (in Czech). Šolínová V., Jelínek I., Opekar F., Kašička V.: Chem. Listy 98 (2004) 191-196.

83. Combined detector for capillary electrophoresis (in Czech). Novotný M., Opekar F., Jelínek I.: Chem. Listy 99 (2005) 132-136.

84. The Effects of Electrode System Geometry on the Properties of Contactless Conductivity Detectors for Capillary Electrophoresis., Novotný M., Opekar F., Štulík K.: Electroanalysis 17 (2005) 1181-1186.

85. A contactless conductivity detection cell for flow injection analysis: Determination of total inorganic carbon. Hoherčáková Z., Opekar F.: Anal. Chim. Acta 551 (2005) 132-136.

86. Mikrofluidní analytický systém pro monitorování aminokyselin v biologických tekutinách: příprava předlohy pro odlévání plastových mikročipů (abstrakt k posteru na 57. sjezdu chemických společností, Tatranske Matliare 2005). Hoherčáková Z., Jurka V., Tůma P., Opekar F.: Chemzi 1 (2005) 131-132.

87. Thinly Insulated Wire Cells - A New Device for Sensitive Contactless Conductivity Detection in Flow Analyses. Hoherčáková Z., Opekar F., Štulík K.: Electroanalysis 17 (2005) 1924-1930.

88. Miniaturized Amperometric Detectors for HPLC and Capillary Zone Electrophoresis (in Czech). Pecková K., Mocko V., Opekar F., Swain G.M., Zima J., Barek J.: Chem. Listy 100 (2006) 124-132.

89. Renaissance of HF Impedimetry in Application to CE Detection. Opekar F., Štulík K.: Electroanalysis 18 (2006) 1282-1288.

90. Determination of 1-methylhistidine and 3-methylhistidine by capillary and chip electrophoresis with contactless conductivity detection. Tůma P., Samcová E., Opekar F., Jurka V., Štulík K.: Electrophoresis 28 (2007) 2174-2180.

91. Properties of the Contactless Impedance Detector with Insulated Wire Electrodes Placed Inside the Flowing Liquid Stream. Nádherná M., Opekar F., Štulík K.: Electroanalysis 19 (2007) 2413-2418.

92. A dual spectrophotometric/contactless conductometric detector for CE determination of incompletely separated amino acids. Zikmundová J., Tůma P., Opekar F.: J. Sep. Sci. 31 (2008) 353-355.

93. Determination of intact heparin by capillary electrophoresis with contactless conductivity detection in background electrolytes containing hydrophylic polymers. Tůma P., Samcová E., Opekar F., Štulík K.: Collect. Czech. Chem. Commun. 73 (2008) 187-200.

94. A Comparison of the Properties of Contactless Conductivity and Diode-Array Photometric Detectors in Analyses of Low-Molecular,Biologically Active Substances by Capillary Electrophoresis in Acetic Acid Solutions. Tůma P., Opekar F., Samcová E., Štulík K.: Electroanalysis 20 (2008) 477-484.

95. Polymer-Ionic Liquid Electrolytes for Electrochemical Gas sensors (abstrakt k posteru na 12. International Conference on Electroanalysis, Prague 2008). Nádherná M., Opekar F., Reiter J.: Chem. Listy 102(S) (2008) s118-s119.

96. HPLC Separation of Cyclen Polycarboxylates Using Contactless Conductivity Detection (in Czech). Hamplová A., Coufal P., Bosáková Z., Opekar F., Kubíček V.: Chem. Listy 102 (2008) 194-199.

97. A Contactless Impedance Probe for Simple and Rapid Determination of the Ratio of Liquids with Different Permittivities in Binary Mixtures. Opekar F., Štulík K., Fišarová M.: Electroanalysis 21 (2009) 96-100.

98. Neutral and ionic reaction mechanisms for the allylation of aldehydes by bipyridine N,N-dioxides. Hrdina R., Opekar F., Roithová J., Kotora M.: Chem. Commun., 2009, 2314-2316.

99. A thin-layer contactless conductivity cell for detection in flowing liquids. Míka J., Opekar F., Coufal P., Štulík K.: Anal. Chim. Acta 650 (2009) 189-194.

100. Some Miniaturized Impedance Sensors, Their Application to Flow Measurements and Hyphenation with High-Performance Separations. Opekar F., Tůma P., Štulík K.: ECS Transactions 19 (2009) 19-34.

101. Utilization of Integrated AM Receiver Circuit in Contactless Conductivity Detector for Detection in Solution (in Czech). Opekar F.: Chem. Listy 103 (2009) 839-842.

102. A Simple Contactless Conductivity Detector Employing a Medium Wave Radio Integrated Circuit for the Signal Treatment. Opekar F., Štulík K., Fenclová K.: Electroanalysis 22 (2010) 161-167.

103. Some Possibilities and Limitations of Contactless Impedimetric Determinations of Organic Liquids in Aqueous Solutions. The Interference from Ionic Compounds. Opekar F., Štulík K., Fišarová M.: Electroanalysis 22 (2010) 2353-2358.

104. A simple contactless impedance probe for determination of ethanol in gasoline. Opekar F., Čabala R., Kadlecová T.: Anal. Chim. Acta 694 (2011) 57-60.

105. Ionic liquid–polymer electrolyte for amperometric solid-state NO2 sensor. Nádherná M., Opekar F., Reiter J.: Electrochim. Acta 56 (2011) 5650-5655.

106. Application of Contactless Impedance Detection to Determination of Substances in Gaseous Phase. Pavlíček V., Opekar F., Štulík K.: Electroanalysis 23 (2011) 1325-1328.

107. Comparison of the performance characteristics of two tubular contactless conductivity detectors with different dimensions and application in conjunction with HPLC. Mark J.J.P., Coufal P., Opekar F., Matysik F.M.: Anal. Bioanal. Chem. 401 (2011) 1669-1676.

108. Apparatus for Electrophoretic Separations in Short Capillary (in Czech). Opekar F.: Chem. Listy 106 (2012) 289-295.

109. A planar, solid-state amperometric sensor for nitrogen dioxide, employing an ionic liquid electrolyte contained in a polymeric matrix. Nádherná M., Opekar F., Reiter J., Štulík K.: Sens. Actuators B161 (2012) 811-817.

110. Rapid determinations of saccharides in high-energy drinks by short-capillary electrophoresis with contactless conductivity detection. Vochyánová B., Opekar F., Tůma P., Štulík K.: Anal. Bioanal. Chem. 404 (2012) 1549-1554.

111. Very fast electrophoretic separation on commercial instrument using a combination of two capillaries with different internal diameters. Tůma P., Opekar F., Samcová E.: Electrophoresis 34 (2013) 552-556.

112. Facilitated Hydrodynamic Sample Introduction into Separation Capillary in Laboratory Electrophoretic Devices (in Czech). Kadlecová T., Opekar F., Tůma P.: Chem. Listy 107 (2013) 486-490.

113. The use of a multichannel capillary for electrophoretic separations of mixtures of clinically important substances with contactless conductivity and UV photometric detection. Tůma P., Opekar F., Samcová E, Štulík K.: Electrophoresis 34 (2013) 2058-2064.

 

114. Large-volume sample stacking for in vivo monitoring of trace levels of gamma-aminobutyric acid, glycine and glutamate in microdialysates of periaqueductal gray matter by capillary electrophoresis with contactless conductivity detection. Tůma P., Šustková-Fišerová M., Opekar F., Pavlíček V., Málková K.: J. Chromatogr. A 1303 (2013) 94-99.

115. Simultaneous and rapid determination of caffeine and taurine in energy drinks by MEKC in a short capillary with dual contactless conductivity/photometry detection. Vochyánová B., Opekar F., Tůma P.: Electrophoresis 35 (2014) 1660–1665.

116. A simple impedance tester for determining the water content in organic solvents. F. Opekar, P. Tůma: Sens. Actuators B 220 (2015) 485-490.

117. Pressure-assisted introduction of urine samples into a short capillary for electrophoretic separation with contactless conductivity and UV spectrometry detection. A. Makrlíková, F. Opekar, P. Tůma: Electrophoresis 36 (2015) 1962-1968.

118. Contactless conductometric determination of methanol and ethanol in samples containing water after electrophoretic desalination. P. Tůma, F. Opekar: Electrophoresis 36 (2015) 1976-1981.

119. Electrokinetic injection of samples into a short electrophoretic capillary controlled by piezoelectric micropumps. F. Opekar, K. Nesměrák, P. Tůma: Electrophoresis 37 (2016) 595-600.

120. Dual-channel capillary electrophoresis for simultaneous determination of cations and anions. F. Opekar, P. Tůma: J. Chromatogr. A 1446 (2016) 158–163.

121. Hydrodynamic sample injection into short electrophoretic capillary in systems with a flow-gating interface. F. Opekar, P. Tůma: J. Chromatogr. A 1480 (2017) 93–98.

122. Coaxial flow-gating interface for capillary electrophoresis. F. Opekar, P. Tůma: J. Sep.Sci. 40 (2017) 3138-3143.

 

123. Direct sample injection from a syringe needle into a separation capillary. F. Opekar,  P. Tůma: Anal. Chim. Acta 1042 (2018) 133-140.

 

124. An air-assisted flow-gating interface for capillary electrophoresis. F. Opekar, P. Tůma: Electrophoresis 40 (2019) 587-590.

 

125. Rapid determination of majority cations in yoghurts using on-line connection of capillary electrophoresis with mini-dialysis. F. Opekar, J. Hraníček, P. Tůma: Food. Chem. 308 (2020) 125647.