
Scrimer: designing primers from transcriptome data

LIBOR MO �RKOVSK �Y,*† JAN PA �CES,‡ JAKUB R�IDL‡ and RADKA REIFOV �A†

*Institute of Vertebrate Zoology, Academy of Sciences of the Czech Repulic, Kv�etn�a 8, 603 65 Brno, Czech Republic,

†Department of Zoology, Faculty of Science, Charles University in Prague, Vini�cn�a 7, 128 43 Prague 2, Czech Republic,

‡Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, V�ıde�nsk�a

1083, 142 20 Prague 4, Czech Republic

Abstract

With the rise of next-generation sequencing methods, it has become increasingly possible to obtain genomewide

sequence data even for nonmodel species. Such data are often used for the development of single nucleotide poly-

morphism (SNP) markers, which can subsequently be screened in a larger population sample using a variety of

genotyping techniques. Many of these techniques require appropriate locus-specific PCR and genotyping primers.

Currently, there is no publicly available software for the automated design of suitable PCR and genotyping primers

from next-generation sequence data. Here we present a pipeline called Scrimer that automates multiple steps, includ-

ing adaptor removal, read mapping, selection of SNPs and multiple primer design from transcriptome data. The

designed primers can be used in conjunction with several widely used genotyping methods such as SNaPshot or

MALDI-TOF genotyping. Scrimer is composed of several reusable modules and an interactive bash workflow that

connects these modules. Even the basic steps are presented, so the workflow can be executed in a step-by-step man-

ner. The use of standard formats throughout the pipeline allows data from various sources to be plugged in, as well

as easy inspection of intermediate results with visualization tools of the user’s choice.
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Introduction

Next-generation sequencing methods have revolution-

ized population genetics by making it relatively easy to

obtain genomewide sequence data for multiple individu-

als of almost any species (Metzker 2010). Depending on

the questions being asked, one can sequence the whole

genome, transcriptome, exome, or a random but repro-

ducible fraction of the genome (Davey et al. 2011; Bi et al.

2012; Peterson et al. 2012). Such data are often used for

the development of informative SNP markers that can be

screened in a much larger population sample using vari-

ous genotyping techniques.

There are several SNP genotyping methods available.

The highest throughput can be achieved with SNP

arrays. These are based on the hybridization of DNA to

allele-specific oligonucleotide probes and are usually

used for the detection of thousands or more individual

SNPs in one experiment (Gunderson et al. 2005). For a

smaller set of SNP markers, other methods such as SNaP-

shot (Applied Biosystems) or MALDI-TOF mass spec-

trometry genotyping (Haff & Smirnov 1997) are more

appropriate. These methods are based on PCR amplifica-

tion of a genomic region harbouring the SNP, followed

by single base extension of a genotyping primer and

detection of the incorporated nucleotide. Such methods

require the design of appropriate PCR and genotyping

primers, ideally in regions of the genome that contain no

or only a few polymorphisms. Currently, there is no

available software to design such primers for a large

number of SNPs from next-generation sequence data.

Here we present a pipeline called Scrimer that auto-

mates the multiple steps necessary for the design of PCR

and genotyping primers from transcriptome data. Tran-

scriptome sequences are often the first genomewide

sequence data generated in nonmodel organisms. Scrimer

uses transcriptome sequences from multiple individuals

generated by 454 or Illumina as input data. In contrast to

other available primer designing tools such as free Pri-

mer3 Plus (Untergasser et al. 2007), or commercially avail-

able DNASTAR SeqBuilder (http://www.dnastar.com)

and Primer Premier (http://www.premierbiosoft.com),

Scrimer offers automated processing of next-generation

sequence data, identification of variation in sequences and

designing both PCR and genotyping primers in suitable
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regions. Although the pipeline is primarily designed to

454 or Illumina data, sequences from other next-genera-

tion sequencing methods can be used as well, provided

that users perform the assembly and read mapping with

other appropriate tools and connect to the pipeline in later

steps where the single nucleotide polymorphisms (SNPs)

are filtered and primers are designed. These later steps of

the pipeline can also be used for designing primers from

other genomewide sequence data obtained, for example,

by restriction site-associated DNA sequencing (RAD-Seq;

Baird et al. 2008), double digest RAD-Seq (Peterson et al.

2012) or genotyping-by-sequencing (GBS; Elshire et al.

2011).

We tested the pipeline using 454 transcriptome data

from two closely related songbird species, the common

nightingale (Luscinia megarhynchos) and the thrush night-

ingale (L. luscinia), a recently developed model system

for studying the genetics of bird speciation (Storchov�a

et al. 2010; Reifov�a et al. 2011a). The primers designed

using Scrimer worked well with SNaPshot method and

were successfully used to screen species-specific SNP

markers in a large population sample (Vokurkov�a et al.

2013).

Pipeline description

Scrimer consists of a PYTHON package that provides the

core functionality, and extensive documentation featur-

ing a well-commented bash code to run all the steps that

precede the primer design itself. The manual is available

online at http://scrimer.rtfd.org. The bash code for each

step is divided into two parts: (i) setting the parameters,

where the user can input customized values and (ii) the

execution step, where the user copies and pastes the code

verbatim into the console. An overview of the data

dependencies in the pipeline is shown in Fig. 1.

Data directories in the pipeline are organized in a

‘waterfall’ system. Intermediate results of each step are

stored in a separate directory. Directory names are pre-

fixed with a two-digit number, which increase along

with steps further down the pipeline. The first digit rep-

resents a major step in the pipeline, while the second

digit represents a substep or different settings for the

same step. Looking at the project subdirectories sorted

by name, it is easy to follow the flow of the data

(Table 1). The two-digit numbers can also be used with

the bash autocomplete feature when entering commands

interactively (typing only the two numbers and pressing

the TAB key). Some CPU intensive parts of the pipeline

are parallelized over many cores of a single machine. To

control the number of cores used, one can use the ‘CPUS’

environment variable.

The most resource demanding parts of the pipeline

are genome indexing, contig assembly, read mapping

and variant calling. For small data sets, those steps can

be performed on a moderate personal computer. For lar-

ger data sets, the limiting steps are the read assembly

and genome indexing, which can demand a large

amount of RAM (at least 10 GB). Read mapping and var-

iant calling require only raw CPU power, so they will

just take more time to finish on slower computers.

The pipeline extensively uses pybedtools (Dale et al.

2011), PyVCF (http://pyvcf.rtfd.org), Samtools (Li et al.

2009) and pysam (http://pysam.rtfd.org). IGV (Robin-

son et al. 2011) can be used for visual inspection of the

data produced in most steps. As to input data require-

ments – Scrimer does not use the information on the

expression levels from the transcriptome data – it only

needs to assemble the reads reliably. Thus, data set size

on the lower end of the requirement for RNA-Seq in the

selected platform should be sufficient. For Illumina, this

fastq

fastq

fastq fasta fasta fasta

fasta

fasta

Fig. 1 Overview of the pipeline data dependencies for the case

when the genome of the studied species is not available. Arrows

connecting steps are labelled with file formats used to transfer

data to subsequent steps. Pipeline inputs are in green, data gen-

erating steps in yellow (with rounded corners) and final outputs

in red.
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is around 5–10 millions of high-quality reads, yielding a

minimal coverage of 109 (Haas et al. 2013). Below, we

describe the details of the individual pipeline steps.

Preparing a reference genome

The pipeline requires a local copy of an annotated ref-

erence genome of the studied or closely related species

to obtain information about the genomic position of

particular transcripts and exon–intron boundaries. Gen-

erally, genomes with more than 85% sequence similar-

ity to the studied species can be utilized for mapping

the transcripts and finding splice sites in the transcripts

(Wu & Watanabe 2005). Reference sequences can be

downloaded, for example, from the UCSC Genome

Browser (Karolchik et al. 2004) or Ensembl FTP Down-

load page (Flicek et al. 2012). Most of the tools used in

our pipeline require the reference genome to be in a

single file. Some genomes are provided as a set of FAS-

TA files, one for each chromosome. Such files have to

be concatenated. Annotations can be obtained from the

UCSC Table browser (http://genome.ucsc.edu/cgi-bin/

hgTables), selecting ‘Genes and Gene Predictions’ in the

‘group’ drop-down list, then choosing the appropriate

track (e.g. ‘Ensembl Genes’ and ‘RefSeq Genes’) in the

‘track’ drop-down list and ‘BED’ in the ‘output format’

drop-down list. To download the data to a file, the

‘output file’ edit box must be filled in with a file name

of your choice.

Removing cDNA synthesis primers

It is helpful to remove adapter and primer sequences

prior to assembly. When the input is 454 reads, indels

are quite prevalent in the data. It is necessary to use a

tool that handles indels while searching for the primer

sequences. This pipeline uses cutadapt (Martin 2011) to

remove the primers and agrep (Wu & Manber 1994) with

tre-agrep (https://github.com/laurikari/tre/) for a

quick visual inspection. Cutadapt can remove more pri-

mer sequences at once, preferring the longest match. This

is useful, for example, in the case of SMART (Zhu et al.

2001) primers used for mRNA reverse transcription,

where several primers share a significant part of their

sequence but differ in length. Cutadapt also performs

well with Illumina data.

Assembling the reads

If the reference genome of the studied species is not

available, it is necessary to perform a de novo assembly of

the reads into contigs that correspond to individual tran-

scripts. The pipeline uses Newbler (Margulies et al. 2005)

for the de novo assembly of 454 transcriptome data and

Trinity (Haas et al. 2013) for the de novo assembly of Illu-

mina data. Transcriptome assembly usually contains

splice variants of the same gene. To reduce computa-

tional complexity while keeping as much data as possi-

ble, we decided to keep only the longest of the splice

variants. We identified splice variants by all-to-all contig

comparison with LASTZ (http://www.bx.psu.edu/

~rsharris/lastz/). This works quite well in our experi-

ence, but it is possible that a chimeric contig resulting

from errors in cDNA amplification or library preparation

steps might be picked. These chimeras will not map to

the reference genome in the next step so no downstream

errors will be introduced. On the other hand, variants

found in such contigs will be lost, which means fewer

variants for designing primers. Chimeras can be filtered

out using reciprocal best BLAST hits (Hirsh & Fraser 2001)

to protein sequences of the reference organism, as imple-

mented, for example, in a toolset by Singhal (2013).

Mapping the contigs to the reference genome

The next step of the pipeline is mapping the contigs to

the reference genome. This provides information about

the boundaries between different exons in each contig.

Scrimer uses gmap (Wu & Watanabe 2005) or sim4db

(Walenz & Florea 2011) for this step. Results from one

tool are usually sufficient. Results from multiple tools

Table 1 Directory names used in the Scrimer demo data set

project, with brief descriptions of the directory contents

Directory name Directory contents

00-reads Raw input data in FASTQ format

01-reference Reference genome (Taeniopygia guttata)

with annotations and indexes

02-qc1 Quality check of raw data

10-cutadapt Input data after adaptor trimming

11-qc2 Quality check of adaptor trimmed data

20-newbler Contigs assembled by the Newbler

assembler

30-tg-gmap Results of mapping of the contigs to the

reference genome (T. guttata)

32-liftover Annotations transferred from the

reference genome to the contigs

33-scaffold Contig scaffold with annotations and

indexes

40-map-smalt Results of read mapping to the contig

scaffold

50-variants Variants produced by the

‘Samtools mpileup’ command

51-var-freebayes Variants produced by the FREEBAYES

software

60-gff-primers Primers designed using the variants

from 50-variants

61-primers-freebayes Primers designed using the variants

from 51-var-freebayes
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can be merged in the primer filtering step, where only

primers in regions with the number of mapped features

greater than some threshold are retained. For further

custom filtering of the primer loci, additional annotations

from the reference genome can be transferred to the

assembled contigs in this step.

Using positions of their respective hits in the refer-

ence genome, the contigs are concatenated into a ‘contig

scaffold’, which enables more convenient visualization

in genome browsers like IGV. The contigs are concate-

nated in the order in which their hits appear on each of

the reference chromosomes, and a series of N letters is

used to separate each contig. Contigs with ambiguous

mapping in the reference genome are assigned to a

pseudo-chromosome named chrAmb, and contigs with

no mapping are assigned to another pseudo-chromo-

some named chrUnknown. If a well-annotated reference

genome of the studied species is available, this step can

be skipped and the reference genome should be used

directly in place of the contig scaffold.

Mapping reads to the contig scaffold and detecting
variants

To discover variants present in individual samples, it is

necessary to map the original reads to the contig scaffold.

With 454 data, where indels are common, it is necessary

to use a mapper capable of gapped alignment. The pipe-

line uses Smalt (http://www.sanger.ac.uk/resou

rces/software/smalt), which is a good choice for such

data. With Illumina data, BWA (Li & Durbin 2010) is

used. When a complete genome of the studied species is

available, the reads should be mapped directly to it using

a spliced read aligner. We suggest TopHat (Trapnell et al.

2009) for Illumina data and GSNAP (Wu & Nacu 2010)

for 454 data.

The pipeline utilizes Samtools (Li et al. 2009) to detect

variants. The pipeline also provides a code snippet for

using FREEBAYES (Garrison & Marth 2012). The CPU inten-

sive variant calling operations are parallelized using

GNU parallel (Tange 2011) over many cores of a single

computer.

Filtering variants

The pipeline carries out three tiers of variant filtering. In

the first tier, only the ‘technical noise’ from the process-

ing is filtered out, leaving as comprehensive a set of vari-

ants as possible. Information about these potential

variants is used when designing PCR and genotyping

primers. It is important that the primer binding region is

free of variability in the population otherwise the prim-

ers would work only in some individuals. The pipeline

uses the default filtering parameters of Samtools’

varFilter in this step. In the second tier, all variants that

are called with enough confidence are selected. For this

purpose, we incorporate filtering on average read depth

of 5 and site quality >30 in the pipeline. In the last filter-

ing tier, only variants that are of biological interest to the

user, for example SNP variants that differ between popu-

lations or species, are selected from the variants picked

in the second tier. To be really sure with the variant call,

minimal read depth per sample at given site can be

enforced here. Both average and minimal read depth per

sample are user adjustable.

Designing primers

Genomic DNA is usually used as the starting genetic

material for genotyping. Unlike the already spliced

mRNA, which is used for transcriptome sequencing,

genomic DNA contains both exons and introns. Thus, it

is important to guarantee that the PCR primers designed

from transcriptome data are confined within a single

exon. If any of the two PCR primers crossed two exons,

there would be no sequence matching the primer in the

genomic DNA and primers would fail to amplify the

PCR product. If each of the PCR primer pair was located

in a different exon, the whole intron between the two ex-

ons would be amplified apart from exonic sequences.

Provided that the intron is too long, PCR amplification

would also fail. This is why the reference genome is used

to find the exon–intron boundaries in the transcripts.

For each variant selected in the last tier of the filtering,

the primer design tool fetches the exon that contains the

variant. Then it uses Primer3 (Rozen & Skaletsky 1999)

to find the best PCR primers within the exon sequence

that amplify a region 70–300 base pairs long containing

the selected variant. The selected region including the

flanking primers should not cross any exon–intron
boundary. Genotyping primers have to be adjacent to the

variant and between the PCR primers. As different SNP

genotyping methods require genotyping primers of dif-

ferent length, the user is allowed to set the preferred

length of the genotyping primer. The optimal length is

22 nucleotides for SNaPshot (ABI PRISM SNaPshot Mul-

tiplex Kit protocol) and 15 nucleotides for MALDI-TOF

(Haff et al. 2001). Primer3 is used to choose the best pri-

mer length that is close to the preferred length and to

check the thermodynamic properties of the resulting

genotyping primer. Resulting primers with all the ther-

modynamic properties calculated by Primer3 are stored

as gff3 features of the contig scaffold, so they can be

inspected together with all the supporting data (mapped

reads, detected variants, exon predictions).

Selected PCR primers are further in silico verified

using Blat and isPcr (Kent 2002) against the reference

genome and the contig scaffold. In the output from isPcr,

© 2015 John Wiley & Sons Ltd

1418 L . MO �RKOVSK �Y ET AL .

http://www.sanger.ac.uk/resources/software/smalt
http://www.sanger.ac.uk/resources/software/smalt


the user can check whether the PCR primers amplify a

unique region, and in the output from Blat, one can see

the number of possible nonunique hits of each single

PCR primer.

Pipeline testing

The pipeline was used to design primers for genotyping

SNP markers that differ between two songbird species,

the common nightingale and the thrush nightingale.

These species diverged approximately 1.8 Mya (Storc-

hov�a et al. 2010) and currently hybridize in a secondary

contact zone stretching across Europe (Reifov�a et al.

2011a,b). Input data were generated by sequencing the

liver transcriptome of eight common nightingale individ-

uals and seven thrush nightingale individuals. The

cDNA was normalized by the Evrogen protocol (http://

www.evrogen.com/technologies/normalization.shtml)

and sequenced on a Roche 454 FLX using Titanium chem-

istry. The genome of the zebra finch (Taeniopygia guttata),

which diverged from nightingales about 45 Mya (Jetz

et al. 2012), was used as a reference.

We used a machine with one Intel Xeon E5620 proces-

sor (4 cores, 8 threads) and 24 GB of RAM on which the

whole primer designing process took one working day.

De novo assembly yielded 43 thousand sequences longer

than 500 base pairs. Reads were mapped with mean cov-

erage of 25.3 and median coverage of 8. The pipeline

yielded 391 variants that differed between the species,

and the primer design process resulted in 248 selected

markers. It was not possible to design a reliable set of

primers for the rest of the variants for one of the follow-

ing reasons: (i) the variant was too close to an exon–intron
boundary, (ii) there were other variable sites around the

variant that would interfere with the genotyping primer,

(iii) both possible genotyping primers were judged as

bad by Primer3, and (iv) no suitable PCR primer pair was

found within the exon. In a pilot experiment, we tested

PCR and genotyping primers for five unlinked SNPs.

PCR as well as SNaPshot genotyping worked perfectly in

four of the five loci, and the primers could be used for

genotyping of a larger population sample (Vokurkov�a

et al. 2013). Very weak PCR amplification was observed

in the remaining fifth locus. The high success rate of the

designed primers confirms the utility of our pipeline.

We were further interested how different levels of

divergence to the reference genome can affect the primer

designing process. We thus compared the results

obtained with the zebra finch reference genome with the

results obtained with the chicken reference genome

(divergence from nightingales approximately 100 Mya,

Jetz et al. 2012). Of the 42 799 contigs longer than 500 bp,

gmap mapped 41 804 contigs to the zebra finch genome

and 25 589 contigs to the chicken genome. Broken down

to exons, it is 145 910 and 108 380 unique exons using

zebra finch and chicken genomes, respectively. Between

the two predicted exon sets, 57 411 exons shared exactly

the same boundaries in our contigs. The pipeline run

produced 108 primer sets using the chicken genome. It is

less than the 248 primer sets resulting from the use of

zebra finch genome, but still could serve as a starting

point for a population analysis. The most frequent reason

for not designing a primer set was that there was no

matching exon found in the chicken genome at the locus

of the SNP.
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L.M. developed and packaged the Scrimer software and

wrote the documentation. L.M. and R.R. wrote the manu-

script. J.R. did the library preparations and sequencing

of the testing data set. J.P. contributed initial data pro-

cessing and consultations on the pipeline design. R.R.

designed the study and coordinated the project goals.

Data Accessibility

Scrimer is available as the ‘scrimer’ package from the

Python Package Index (https://pypi.python.org/pypi/

scrimer) and should be installed with the Python pip

tool. Scrimer documentation is available at http://scri-

mer.rtfd.org. The source of the package and a bug tracker

is available at https://www.github.com/libor-m/scri-

mer. A VirtualBox image of a machine with a fully

installed Scrimer package, with dependencies and a sam-

ple data set, can be downloaded at http://goo.gl/

Xf2cVU. This is the easiest way to test the pipeline. Addi-

tional information on the use of the virtual machine

image files can be found in the documentation. A sample

data package can be found at http://goo.gl/YDc5f9. The

same data are already included in the VirtualBox image.

The nightingale data used in ‘Pipeline testing’ are depos-

ited in the Dryad Digital Repository, doi:10.5061/

dryad.2p4t3.
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