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MrBayes is a program for the Bayesian inference of phylogeny. This manual explains Bayesian inference
of phylogeny and how to use the program. The program has a command-line interface and should run on
a variety of computer platforms. Note that the computer should be reasonably fast and should have a lot
of memory (depending on the size of the data matrix, the program may require hundreds of megabytes of
memory). The program is optimized for speed and not for minimizing memory requirements. This manual
is divided into two parts. The first section gives an overview of the program with a brief tutorial to help you
get started and the second section introduces Bayesian inference and presents some of the theory behind the
program.

Conventions used in this manual

What you see on the screen and what is in the input file is in a sans serif font. What you type is in
a bold font.

Section I: Using MrBayes

Acquiring and installing MrBayes

MrBayes is distributed without charge by download from http://morphbank.ebc.uu.se/mrbayes/. If
someone has given you a copy of MrBayes, we strongly suggest that you download the current version from
the above site. It is a plain-vanilla program that uses a command line interface and therefore behaves the
same on all platforms—Macintosh, Windows and Unix. The Macintosh and Windows programs are ready
to run immediately after being downloaded. If you decide to run the program on a computer running
UNIX/LINUX, then you need to compile the program first. Simply untar the file mrBayesSrc.tar by typing
tar -xvf BayesSrc.tar. This command extracts all of the files from the tar archive. You then need to
compile the program. We have included a Make file that will automatically compile the program. You
simply type make to compile the program. We assume as the default C compiler gcc. However, if you do
not have gcc installed on your machine, you may need to change the compiler information in the Make file.
The executable is called “mb”. To execute the program type mb or ./mb.

Getting started using MrBayes
Start MrBayes by double-clicking the application icon (or typing mb) and you will see the screen below:
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Getting help

At the MrBayes> prompt type help to see a list of the commands availabe in MrBayes. Most commands
allow you to set values for a set of options. If you type help <command>, where <command> is any of
the listed commands, you will see a description of each option and the choices for that option. A complete
list of commands and options is given at the end of this manual.

The help facility also provides a way to see the current settings of the parameters. For instance, typing
help lset not only lists each of the options and possible choices, at the end of the list it tells you the current
state for each option.

Getting data into MrBayes

The input file is a standard Nexus file of aligned nucleotide or amino acid sequences. A Nexus file is a
simple text (ASCII) file that begins with NEXUS on the first line, followed by the DATA block. The DATA
block begins with “begin data;” followed by the dimensions statement, the format statement, and matrix.
The dimensions statement must contain ntax, the number of taxa, and nchar, the number of characters
in each aligned sequence. The format statement must begin with datatype=<DNA or RNA or Protein or
Standard>. The format statement may also contain gap=- (or whatever symbol is used for a gap in your
alignment), missing=7 (or whatever symbol is used for missing data in your file), interleave=yes when
the data matrix is interleaved sequences, and =. (or whatever symbol is used for matching characters in
the alignment). The format statement is followed by the word “matrix” on a separate line, followed by the
aligned sequences. Each sequence begins with the sequence name separated from the sequence itseslf by at
least one space. The data block is completed by an “end;” statement. Note that the begin data, dimensions,
format, and end statements all end in a semicolon. That semicolon is essential and must not be left out.

The example below is a Nexus file in block (non-interleaved) format. Non-interleaved is the default, but
you can put “interleave=no” in the format statement if you want to be sure.



#NEXUS

begin data;

dimensions ntax=9 nchar=720;

format datatype=rna interleave=no gap=-;

matrix

FR GGCAACGGU---GUG ... GCAGACCCACGCCUC
MS2 GGGAACGGA---GUG ... UCAGAUCCACGCCUC
GA GGCAACGGU---UUG ... UCAGAUCCGCGACUC
SP UCA---AAUAAAGCA ... UGGGAUCCUAGAGCA
NL95 UCG---AAUAAAGCA ... UGGGAUCCUAGGGUA
M11 CCUUUCAAUAAAGCA ... UGGGAUCCUAGGGUA
MX1 CCUUUCAAUAAAGCA ... UGGGAUCCUAGGGUA
QB CCUUUUAAUAAAGCA ... UGGGAUCCUAGGGCC
PP7 GACAGC---CGGUUC ... CGGAUCCCUGACACG

end;

To put the data into MrBayes type execute <filename> at the MrBayes> prompt, where “<filename>"
is the name of the input file. Note!: The input file must be located in the same folder (directory) as the
MrBayes application and the name of the input file should not have blank spaces.

Entering commands into MrBayes

All of the commands can be entered at the command line at the MrBayes> prompt. At a minimum
two commands, “Iset” and “mcmc” are required. “Iset” sets the parameters of the likelihood model, and
“memc” both sets the parameters of the Markov Chain Mone Carlo (MCMC) analysis and initiates the
analysis. Entering commands at the command line provides a way for the user to change parameters on the
fly and is useful for quickly exploring the effects of such changes, but it is not the most convenient way to
use MrBayes. It is much easier to enter commands via a MrBayes block in the input file.

Entering commands via the input file

Any command that can be entered via the command line can also be entered via the input file as a
MrBayes statement. To do so add a MrBayes block after the “end;” statement that terminates the data
block. A MrBayes block begins with “begin mrbayes;”, and ends with “end;”. As is the case for the data
block, all statements end with a semicolon. Consider the example block below:

begin mrbayes;

charset 1stpos = 1-720\3;
charset 2ndpos = 2-720\3;
charset 3rdpos = 3-720\3;

partition bycodon = 3:1stpos,2ndpos,3rdpos;

lset nst=6 rates=sitespec sitepartition=bycodon;

usertree = (((FR,MS2),GA), ((SP,NL95), ((M11,MX1),QB)),PP7);

mcmc ngen=1000 printfreq=100 samplefreq=10 nchains=4 savebrlens=yes;
end;

which was taken from the example file replicase.nex. The first four lines define character sets with the
command charset. The line “charset 1stpos = 1-771\3;” defines a character set named “lstpos” as
consisting of every third site from 1 through 721. The next two lines similarly define the second and third
positions. The format for the charset command is charset <name> = <character numbers>. The next
line defines a partition named “bycodon” consisting of three parts: 1stpos, 2ndpos, and 3rdpos. Note that
the terms 1stpos, 2ndpos, and 3rdpos that were defined in the first three statements are used in the partition
statement. A partition statement has the format partition name = <number of partitions>: <sites
in 1st partition>, sites in 2nd partition> etc;. Together these lines have defined codons and the



sites within codons. The next line sets the parameers of the likelihood model with the command “lset”.
“nst=6" sets the general time reversible model, “rates=sitespecific” sets the model for among sitge
variation to being site specific, and “sitepartition=bycodon” sets the name of the site partition to use for
site specific rate variation as “bycodon”. Note that a partition had to already be defined for this option to
be implemented. The next very long line defines the starting tree using the Newick format. If you define a
tree it must be strictly bifurcating or MrBayes will return an error message. You don’t need to define a tree.
If no tree is defined MrBayes will use a random tree as its starting point. If you have a problem with a user
tree just use the default random tree option. This may actually be preferable in many cases, particularly
when monitoring convergence by comparing several indpendent runs. The final statement mecmc instructs
MrBayes to run for 1000 generations (ngen=1000) print its results to the screen once every 100 generations
(printfreq=100), to save the current tree to a file once every 10 generations (samplefreq=10), to run four
simultaneous MCMC chains, and to save the branch lengths of the trees to the tree file. It also instructs
MrBayes to start running the chains. With this block in place typing execute <filename>, e.g. execute
replicase.nex, will produce the following output:

Running Markov chain
Starting likelihoods

1 -- -6429.147 -6429.147
2 -- -6388.254 -6388.254

3 -- -6678.446 -6678.446

4 -- -6597.156 -6597.156

100 -- -19215.03 -- (-6045.46) [-5929.31] (-6088.02) (-6238.81) 2s

200 -- -18522.17 -- (-5878.95) [-5819.39] (-5833.47) (-5834.11) 4s (472)
300 -- -18292.23 -- [-5732.10] (-5725.53) (-5821.09) (-5810.95) 6s

400 -- -18139.18 -- (-5712.11) (-5703.27) (-5780.78) [-5693.39] 8s

500 -- -18092.13 -- (-5702.02) (-5684.19) (-5762.62) [-5680.81] 9s

600 -- -18036.97 -- (-5696.36) (-5680.07) (-5701.56) [-5671.27] 1is

700 -- -18018.36 -- (-5682.72) (-5679.98) (-5700.30) [-5662.94] 13s (4~1)
800 —- -17981.18 -- (-5679.95) (-5666.39) (-5684.34) [-5649.37] 15s

900 -- -17970.38 -- (-5684.04) (-5663.26) (-5669.62) [-5647.99] 17s

1000 -- -17959.28 -- (-5684.56) [-5657.12] (-5657.73) (-5648.36) 19s (472)

Continue with chain? (yes/no):

MrBayes is asking whether you want to continue the run. If you type yes (the full word is required)
MrBayes will ask for the number of additional generations you want. If you type anything other than yes
the run terminates. Why might you want the run to continue? Primarily to ensure that you consider a
sufficient number of trees after the likelihoods of the trees have converged on a stable value. In the output,
above, the first column shows the generation number. The next column shows the sum of the natural log of
the likelihoods for the trees in each of the four chains weighted according to the tempertures of the chains.
The default temperature of the heated chains is determined by the temp parameter that is set by the mcmc
command. The default setting is temp=0.2. (For an explanation of heated chains see section 2 of this
manual) The next four columns show the likelihoods of the trees in each chain with the cold chain being
indicated by square brackets. The final (rightmost) column shows the elapsed time in seconds. In three of
the generations that were printed to the screen, there was a successful swap between chains, indicated by
“(42)7, “(41)”, and “(42)” in generations 200, 700, and 1000, respectively.

Note that the In likelihood sum (column 2) starts at —19215.03 and increases with each 100 generations
to —17959.28. Eventually that number will converge upon a stable value. Once that stable value is reached
the MrBayes is sampling trees according to their posterior probabilities (one hopes). The trees sampled
after the log likelihoods reach a plateau can be used to make a consensus tree. Below we will discuss how
to decide how many trees to include in that set, but at this point just consider how to answer the question
“Continue with chain?”.

Since the log likelhood sum has not reached a stable value type “yes”. How many additional generations
do you want to see? This is the $64,000 question for MCMC analysis. We suggest the following: (1) run
multiple chains, starting from random trees if possible and (2) run each chain well past the point where



apparent stationarity was reached. For example, if we run the replicase data set again, this time printing
every 500th to the screen, we obtain:

500 -- -17993.91 —- [-5651.94] (-5704.28) (-5686.40) (-5658.09) 9s

1000 -- -17938.56 -- (-5653.61) (-5652.86) (-5671.55) [-5644.75] 18s

1500 -- -17911.89 -- (-5642.16) (-5657.28) (-5642.82) [-5643.71] 27s (4~3)
2000 -- -17900.22 -- [-5641.23] (-5642.17) (-5641.69) (-5643.72) 35s (472)
2500 -- -17905.10 -- (-5651.80) [-5642.50] (-5642.14) (-5640.15) 44s

3000 —-- -17898.56 —- (-5650.13) (-5641.28) [-5635.48] (-5641.77) 53s

3500 -- -17899.50 —- (-5645.09) (-5645.03) [-5637.74] (-5640.57) 62s (174)
4000 -- -17888.31 —- [-5635.58] (-5637.56) (-5638.49) (-5643.47) 71s
4500 -- -17901.53 -- [-5638.01] (-5640.68) (-5647.19) (-5646.79) 80s (1~3)
5000 -- -17889.99 —-- (-5638.23) (-5640.35) [-5636.40] (-5641.58) 89s (372)
5500 -- -17906.17 —-- (-5642.21) (-5646.19) [-5648.80] (-5637.32) 98s (1~4)
6000 -- -17910.50 —- (-5642.70) (-5648.94) (-5656.92) [-5637.01] 106s (3~1)
6500 —— -17906.43 —- (-5643.42) [-5638.26] (-5647.00) (-5650.79) 116s

7000 -- -17895.80 —- (-5639.54) [-5634.80] (-5648.19) (-5641.47) 125s

7500 -- -17890.95 —- (-5642.34) (-5639.56) [-5632.56] (-5645.62) 134s

8000 -- -17897.81 —- (-5645.97) (-5641.58) (-5642.21) [-5637.28] 143s (273)
8500 -- -17903.34 —-- (-5642.63) [-5639.20] (-5644.76) (-5647.57) 152s (172)
9000 -- -17892.54 —- (-5644.11) (-5638.13) (-5644.03) [-5634.35] 161s (173)
9500 -- -17897.95 —-- [-5641.69] (-5637.69) (-5640.14) (-5646.34) 169s (2~1)
10000 -- -17893.30 -- (-5636.77) [-5641.33] (-5647.43) (-5635.27) 178s (4~1)
10500 -- -17891.36 -- (-5642.92) (-5640.35) (-5649.60) [-5629.41] 187s

11000 -- -17896.02 -- (-5648.41) [-5635.74] (-5640.64) (-5641.29) 196s

11500 -- -17907.58 -- (-5642.24) [-5634.30] (-5659.54) (-5646.23) 205s (374)
12000 -- -17879.13 -- (-5641.49) (-5635.24) (-5636.55) [-5630.35] 214s (273)
12500 -- -17902.92 -- (-5656.38) [-5636.68] (-5648.66) (-5633.30) 223s

13000 -- -17898.09 -- (-5645.50) (-5640.01) (-5645.86) [-5636.92] 232s (273)
13500 -- -17889.75 —- (-5647.46) [-5634.11] (-5642.97) (-5634.34) 241s

14000 -- -17889.64 —- (-5641.87) (-5640.95) (-5640.87) [-5633.40] 250s (1~3)
14500 -- -17900.36 —-- (-5646.60) (-5643.01) [-5638.79] (-5642.06) 258s (374)
15000 -- -17909.86 -- (-5641.49) (-5651.88) (-5654.19) [-5637.49] 267s

15500 -- -17905.15 -- (-5654.59) (-5646.07) (-5643.89) [-5634.62] 276s

16000 -- -17894.56 -- (-5661.10) (-5634.41) (-5644.16) [-5629.49] 285s

16500 —-- -17895.79 —- [-5635.66] (-5634.98) (-5647.15) (-5645.50) 294s (3~1)
17000 -- -17887.96 -- (-5635.99) [-5634.48] (-5647.32) (-5636.63) 303s (173)
17500 -- -17889.21 -- (-5637.32) (-5636.37) (-5646.93) [-5636.13] 311s

18000 -- -17898.34 -- (-5646.61) (-5639.04) (-5648.28) [-5635.52] 320s (1~3)
18500 -- -17891.88 -- (-5635.24) [-5638.67] (-5648.28) (-5637.44) 329s

19000 -- -17904.45 —- (-5637.69) [-5637.90] (-5647.41) (-5655.37) 338s (271)
19500 -- -17902.31 —- (-5646.84) (-5649.32) (-5641.51) [-5636.55] 346s
20000 -- -17891.69 -- [-5635.71] (-5648.45) (-5638.32) (-5637.95) 355s

Note that the chain appeared to reach apparent stationarity by about the 3000th generation. Thus, we
discard the states of the chain that were sampled before generation 3000 as the “burn in” of the chain.
Inferences of phylogeny could be based upon those trees sampled after the burn in.

At the start of the run MrBayes opened three files: mbout.t, mbout.p, and mbout.bp. These are the
default names for the output files, but you can set your own name for the output files using the command
filename = <filename> in the mcmc statement The mbout.bp file is used by MrBayes in computing the
summary of parameters after the run (see post-run analysis below). mbout.p is a file of the values of various
parameters in tab delimited text format; this file can be read by a program such as Excel. mbout.t is the
tree file, the file to which MrBayes writes the current tree at the frequency defined in the mcmc statement.
That file is the source of the trees used to build a final consensus tree. The trees that are written before
the In likelhoods sum converges on a stable value are less likely, given he data, than are those written after



convergence; so it makes sense to base the consensus tree on those written after convergence. The question
is: How many trees are necessary to obtain a good consensus tree? Unfortunately there is no good answer
to that question other than “it depends on the data”. In general, more is better, but how many for how
much beter? Are 10000 trees better than 10007 Yes. How much better? One very pragmatic approach is to
set ngen at a value that will allow the run to be completed overnight (or in whatever time interval you can
live with). For the adh.nex example 16 hours would yield about 480,000 generations or 4800 trees, not an
unreasonable number. Since 15000 generations were requried for likelihood convergence it would make sense
to discard the first 150 of the 4800 trees as the “burnin”.

Postrun analysis

sumt.— When the run is complete issuing the sumt command will summarize the results concerning
the topology and branch lengths. The format is sumt <filename> burnin = <number of trees to
ignore> contype = <allcompat or halfcompat>. For the adh.nex example the statement would be
sumt filename=replicase.nex.t contype=allcompat burnin=300. Remember, burn in is the number
of trees to be ignored, not the number of generations. Contype is the consensus type. Halfcompat is the
equivalent of 50% majority rule in PAUP*, while allcompat is the equivalent to the 50% majority rule with
“Show frequencies of all observed bipartitions” ticked. If the consensus tree with branch lengths calculated
by MrBayes is to be the same as that calculated by PAUP* contype must correspond to the setting in
PAUP*.

sumt writes the bipartitions, the frequencies with which they were found, the probabilities of the bipar-
titions, and the mean and variance of the branch length (if branch lengths were recorded) to a file called
<filename>.parts. If branch lengths were recorded it also writes a consensus phylogram based on mean
branch lengths. Finally, a consensus tree with clade probabilities is shown on the screen. The consensus tree
in <filename>>.con can be printed with PAUP*.

You can also construct a consensus tree by importing the tree file into PAUP* and create a consensus
tree in PAUP*, including all but the trees discarded as the burn-in trees in the consensus. The numbers
at the interior branches of a majority-rule consensus tree are the percent of the time that the clade occurs
among the sampled trees; i.e. the (posterior) probability of that clade existing,.

As an aside, one of the great advantages of Bayesian inference of phylogeny is its speed. After completing
the sumt command and obtaining a consensus tree, you have gone a long ways towards not only finding
a good estimate of phylogeny but also finding those parts of the tree that are well supported. Moreover,
you have done this using full models of DNA substitution. This is roughly equivalent to doing a maximum
likelihood search with bootstrapping.

sump.—The sump command summarizes the information in the file named <filename>.bp (default
is mbout.bp). The output is to the screen, and provides the mean, variance, and 95% credible inter-
val for the parameter. The format is sump filename=<filename>.bp burnin=<number of trees to be
ignored>.

Running MrBayes in the batch mode

If you already know how many generations are requried for convergence you can do the entire run in
batch mode by modifying the mrbayes block as shown below. Modifications to the previous example are in
boldface:

begin mrbayes;

set autoclose=yes;

charset 1stpos = 1-720\3;

charset 2ndpos = 2-720\3;

charset 3rdpos = 3-720\3;

partition bycodon = 3:1stpos,2ndpos,3rdpos;

lset nst=6 rates=sitespec sitepartition=bycodon;

usertree = (((FR,MS2),GA), ((SP,NL95), ((M11,MX1),QB)),PP7);

mcmc ngen=20000 printfreq=500 samplefreq=10 nchains=4 savebrlens=yes;
end;



The only unfamiliar command is autoclose=yes. Autoclose prevents MrBayes from asking if you want
to continue the run for more generations after it has completed the assigned 20000 generations. That allows
it to get on with sumt and sump.

The semi-batch mode

Sometimes it is useful to use a MrBayes block to set most of the parameters, but to vary other parameters
from within the program by the command line. You can then use the help command to check out the settings
and see how varying them affects things. You can use an mcmcp statement in the mrbayes block instead
of an mcmc statement to set the meme parameters without starting the run. If you do so, however, all of
the post-run statements (supt and sump) must be deleted from the mrbayes block or you will get an error
message.

In the semi-batch mode you execute the input file to set the parameters, but issue the meme command
at the command line to start running the chain.

Interrupting a run
MrBayes can be interrupted at any time by holding down the Command Key while typing a period
(Macintosh) or by typing Control-C (Unix).

Some suggestions for lset parameters

The above MrBayes block is a good choice for dna data that is an alignment of coding regions. For
non-coding DNA or for RNA everything before the lset statement should be eliminated and Iset nst=6
rates=gamma is a good starting point. For protein sequences Iset aamodel=jones is a good starting point.

Memory requirements

You will quickly discover that MrBayes is a “memory hog”. The reason for this is not simply lazy
programming, but the result of decisions made early on to make the program as fast as possible, memory-be-
damned. It might be useful to know about how much memory will be required before running the program.
The formula is

(# chains) x 2 x (2 x # taxa) x (# site patterns) x (# characters states) x (# rate categories) x 8

This will give you the memory requirements in bytes. The number of site patterns is the number of unique
patterns in the data. This number is reported before the MCMC analysis. The number of states is either
4 (DNA and RNA), 20 (amino acid), or 61 (codon models). The number of rate categories is the number
of rate classes. Usually this is 1 (equal or site specific) and 4 (for the discrete gamma model). The default
number of rate categories for gamma-distributed rate variation is ncat=4. This option can be changed using
Iset ncat=<number>.

Time requirements

The time requried is a function of the processor speed of the computer, the number of taxa, the length of
the sequences, the number of parameters that must be estimated in the model determined by Iset, and the
number of generations for the run. It is therefore almost impossible to predict how long any particular run
will take. In general, for any given model, the required time varies linearly with sequence. For the coding
sequence data in the adh.nex file, using the model as in Iset above, running on a Macintosh G3 processor at
366 MHz, for 100,000 generations, 0.42 hours were required for 10 taxa, 1.05 hours for 20 taxa, 1.7 hours for
30 taxa, 2.4 hours for 40 taxa, and 3.6 hours were required for all 54 taxa. The time required for protein
data or codon data is much greater. If the chain seems to be taking a long time, just remember how long it
took you to collect the sequences in the first place!

Ancestral States

MrBayes can estimate the sequence at one or more internal nodes, i.e. sequences of the taxa that are
ancestral to the extant taxa from which the data were obtained. To estimate an ancestral sequence it is
necessary to add constraints to the MrBayes block of an existing input file. A constraint is an instruction to
always consider a set of taxa as belonging to a clade. The format is “constraint <name> = taxonl taxon2



taxon3 ... taxont;”. In the phylogeny below we are interested in estimating the ancestral sequences at the
nodes labeled conl conT.
The tree phylogeny was estimated using the MrBayes block below:

begin mrbayes;
charset 1st_pos = 1-867\3;
charset 2nd_pos 2-867\3;
charset 3rd_pos 3-867\3;
partition by_codon = 3:1st_pos,2nd_pos,3rd_pos;
lset nst=6 rates=sitespec sitepartition=by_codon;

set autoclose=yes;
mcmc ngen=1000000 printfreq=1000 samplefreq=100 nchains=4 savebrlens=yes
startingtree=random filename=ALLDNA;
sumt filename=ALLDNA.t burnin=500 contype=halfcompat;
end;

To reconstruct the ancestral sequences the block was modified as shown below in boldface:

begin mrbayes;

charset 1st_pos = 1-867\3;
charset 2nd_pos = 2-867\3;
charset 3rd_pos = 3-867\3;

partition by_codon = 3:1st_pos,2nd_pos,3rd_pos;

constraint conl=TEM1 TEM6 TEM17 TEM54 TEM10 TEM28 TEM70 TEM76 TEM77 TEM79 TEM29 TEM43
TEM2 TEM3 TEM8 TEM24 TEM60 TEM21 TEM22 TEM16 TEM59 TEM12 TEM53 TEM78 TEM20 TEM72
TEM47 TEM68 TEMA4S8;

constraint con2= TEM1 TEM6 TEM17 TEM54 TEM10 TEM28 TEM70 TEM76 TEM77 TEM79 TEM29 TEM43;

constraint con3=TEM2 TEM3 TEM8 TEM24 TEM60 TEM21 TEM22 TEM16 TEM59 TEM12 TEM53 TEM78;

constraint con4=TEM2 TEM3 TEM8 TEM24 TEM60 TEM21 TEM22 TEM16 TEM59;

constraint con5= shvl shv2 shvb shv7 shv18 shv9 shv8 shv24 shv26 shv27 shv28 shv2A
shv12 shv15 shvi13 shv25;

constraint con6= shvl shv2 shvb shv7 shv18 shv9 shv8 shv24 shv26 shv27 shv28;

constraint con7= shvl shv2 shvb shv7 shv18 shv9 shv8 shv24;

lset nst=6 rates=sitespec sitepartition=by_codon enforcecon=yes inferanc=yes;

set autoclose=yes;

mcmc ngen=1000000 printfreq=1000 samplefreq=100 nchains=4 savebrlens=yes
startingtree=random filename=ALLDNA;

sumt filename=ALLDNA.t burnin=500 contype=halfcompat;

end;

Each constraint has a name (conl, con2, etc.) and each lists the the taxa that are constrained. Notice
that all of the taxa in con7 are also in con6. Each constraint will result in the estimation of the ancestral
sequence for that node. In addition to the constraints themselves two additional parameters must be set with
Iset: enforcecon=yes and inferanc=yes. inferanc tells Mr. Bayes to infer ancestral states, while enforcecon
makes MrBayes keep members of a constraint together as a clade. In practice, a tree must first be constructed
without constraints, and probabilities of clades must be estimated at this stage. Once that is done the tree
must be reconstructed with the constraints of interest. It is not legitimate to estimate probabilities of clades
when constraints have been imposed because the constraint has forced the probability at the constrainted
node to be 100%. If the fileneame is alldna, then in addition to the alldna.t, alldna.p, alldna.bp, alldna.con
and alldna.parts files MrBayes will write a file for each of the constraints named alldna.sum.1, alldna.sum.11,
etc The files list the sites and the probabilities of, respectively, A, C, G or T at that site, and the most probable
base at that site. For reasons known only to programmers the sites are numbered starting at zero instead
of 1, so you will have to add 1 to each site position to make them correspond to standard numbering of a
sequence. Summary of ancestral states at

constraint "conl"



0 0 -- 0.999942 0.000024 0.000017 0.000017 A
1 1 -- 0.000018 0.000017 0.000019 0.999945 T
2 2 -- 0.000017 0.000017 0.999943 0.000023 G
3 0 -- 0.999942 0.000024 0.000017 0.000017 A
4 3 -- 0.000017 0.000017 0.999948 0.000018 G
5 4 -- 0.000024 0.000019 0.000031 0.999927 T
6 5 -- 0.999944 0.000022 0.000017 0.000017 A

The most probable sequence and the log of the likelihood of that sequence are given at the bottom of
each file.

Problems and citations
MrBayes is provided free and as is. It is not guaranteed to be free of bugs. Moreover, we suggest that
you run multiple chains in all of your analyses to confirm that the program is converging to the posterior
probability of interest. You should know that Markov chain Monte Carlo is a fantastic technology that allows
you to calculate posterior probabilities for really hard problems. However, the method is not foolproof, and
you should take care to confirm your results.
If you experience any problems with the program, please feel free to email JPH at johnh@brahms.biology.rochester.edu
or FR at fredrik.ronquist@ebc.uu.se. If you use the results of the program in a paper, please use the following
citation:

HUELSENBECK, J. P, AND F. R. RoNQUIST. In Press. MRBAYES: Bayesian inference of phylogeny.
Biometrics.

Please send comments or suggestions about the program to mrbayes@ebc.uu.se. Your message will be
forwarded to JPH and FR.

Section II: An Introduction to Bayesian Inference of Phylogeny

A simple example of Bayesian inference

We will illustrate Bayesian inference using a simple example involving dice. Consider a box with 100
dice, 90 of which are fair and 10 of which are biased. The probability of observing some number of pips after
rolling a fair or biased die is given in the following table:

Observation Fair Biased

1 1
L® ] 6 21
° 1 2
L@ 6 21
D) 1 3
| % 6 21
(X3 1 4
[ X 6 21
g9 1 5
o% 6 21
[ 1 6
1 6 21

The probability of a high roll is larger for the biased dice than for the fair dice. Suppose that you draw a
die at random from the box and roll it twice, observing a four on the first roll and a six on the second roll.
What is the probability that the die is biased?

A Bayesian analysis combines one’s prior beliefs about the probability of a hypothesis with the likelihood.
The likelihood is the vehicle that carries the information about the hypothesis contained in the observations.
In this case, the likelihood is simply the probability of observing a four and a six given that the die is biased
or fair. Assuming independence of the tosses, the probability of observing a four and a six is

1 1 1

P Fair] = - x - = —

r[23, 3| Fair] 626" 36
for a fair die and 4 6 24
P B' 3 —_ — _— = —
r[(3, {3 Biased] o1 X 51 — 441



for a biased die. The probability of observing the data is 1.96 times greater under the hypothesis that the
die is biased. In other words, the ratio of the likelihoods under the two hypotheses suggests that the die is
biased.

Bayesian inferences are based upon the posterior probability of a hypothesis. The posterior probability
that the die is biased can be obtained using Bayes (1763) formula:

Pr[z2, 1| Biased] x Pr[Biased]
Pr[z3, £3| Biased] x Pr[Biased] + Pr[z3, §3| Fair] x Pr[Fair]

Pr[Biased | £, {§] =

where Pr[Biased] and Pr[Fair| are the prior probabilities that the die is biased or fair, respectively. As we
set up the problem, a reasonable prior probability that the die is biased would be the proportion of the dice
in the box that were biased. The posterior probability is then

24 1
Pr(Biased | &3, §] = 5 —24—20—— = 0.179

21 X 16+ 36 X 10
This means that our opinion that the die is biased changed from 0.1 to 0.179 after observing the four and
Six.

Depending upon one’s viewpoint, the incorporation of prior beliefs about a parameter is either a strength
or a weakness of Bayesian inference. It is a strength in as much as the method explicitly incorporates prior
information in inferences about a hypothesis. However, it can often be difficult to specify a prior. For the
dice example, it is easy to specify the prior as we provided information on the number of fair and biased dice
in the box and also specify that a die was randomly selected. However, if we were to simply state that the
die is either fair or biased, but did not specify a physical description of how the die was chosen, it would have
been much more difficult to specify a prior specifying the probability that the die is biased. For example,
one could have taken the two hypotheses to have been a priori equally probable or given much more weight
to the hypothesis that had the die is fair as severely biased dice are rarely encountered (or manufactured)
in the real world.

Bayesian inference of phylogeny

Bayesian inference of phylogeny is based upon the posterior probability of a phylogenetic tree, 7. The
posterior probability of the ith phylogenetic tree, 7;, conditioned on the observed matrix of aligned DNA
sequences (X) is obtained using Bayes formula:

f(X|Ti)f(Ti)
S F(Xm) £ ()

[throughout, we denote conditional probabilities as f(-|-)]. Here, f(7;|X) is the posterior probability of the ith
phylogeny and can be interpreted as the probability that 7; is the correct tree given the DNA sequence data.

The likelihood of the ith tree is f(X|7;) and the prior probability of the ith tree is f(7;). The summation in

the denominator is over all B(s) trees that are possible for s species. This number is B(s) = % for

rooted trees, B(s) = % for unrooted trees, and B(s) = S!;‘Zj)!

f(7| X) =

for labelled histories. Typically, an
uninformative prior is used for trees, such that f(r;) = %
DNA sequence data.—The program assumes as input an aligned matrix of s DNA sequences:
Species 1 A A C C T

Species 2 A A C G G
X = {z;;} = Species 3 A C C C T

Species s A C C C T

The data matrix consists of the sequences for s species for ¢ = 5 sites from a gene (c is the length of the
aligned DNA sequences). The observations at the first site are 1 = {4, 4, A,...,A}. In general, the
information at the ith site in the matrix is denoted x;.

10



9

Figure 1.—An example of a phylogenetic tree for s =5 species. The branch lengths are denoted v;.

Phylogenetic models—What is the probability of observing the data at the ith site? To calculate this
probability, we assume a phylogenetic model. A phylogenetic model consists of a tree (7;) with branch
lengths specified on the tree (v;) and a stochastic model of DNA substitution. Figure 1 shows an example
of a phylogenetic tree of s = 5 species. The tips of the tree are labeled 1,2,...,s and the internal nodes
of the tree are labeled s + 1,5+ 2,...,2s — 1; the root of the tree is always labeled 2s — 1. The lengths of
the branches are denoted v; and are in terms of the number of substitutions expected to occur along the ith
branch. In general, the ancestor of node k will be denoted o(k); the ancestor of node 4 is (4) = 8. The
ancestor of the root is o(2s — 1) = 0.

The second part of the phylogenetic model consists of a stochastic model of DNA substitution. Here, the
typical assumption is that DNA substitution follows a time-homogeneous Poisson process. The heart of the
model is a matrix specifying the instantaneous rate of substitution from one nucleotide state to another:

TAC TAG TAT
Q=1{q)= TCA : reg ror
={a}=| | ,
GA Tagc reT
rrA TTCc TTG

where the matrix specifies the rate of change from nucleotide ¢ (row) to nucleotide j (column). The nucleotides
are in the order A, C, G, T. The diagonals of the matrix are specified such that the rows each sum to 0.
This matrix of instantaneous rates specifies the most general of nucleotide substitution, and is referred to
as the general non-reversible model of DNA substitution (Yang, 1994a). Because the rate of substitution
and time are confounded, the @ matrix is rescaled such that — >  m;q;; = 1 for all ¢ (making the average
rate of substitution 1). Over a branch of length v the transition probabilities are calculated as P(v,60) =
{pij(v,0)} = eQV. The parameters of the substitution model are contained in a vector 6. The stationary
frequencies of the nucleotides (denoted @ = {ma, 7c, g, mr}) are obtained by letting the substitution
process run for a very long time (v — c0). The model is non-reversible because m;r;; # m;r;;. Importantly,
for non-reversible models, the probability of observing the data changes depending upon where the root of
the phylogenetic tree is placed.
The most general time-reversible model of DNA substitution has instantaneous rates

TCcTAC TGTAG TTTAT

Q= (g} = | ™7C : TGreG  TrTCT

TV T | rarae morec . TrraT
TATAT TCTCT TGTGT

and is referred to as the GTR model (Tavaré, 1986). Other commonly used models of DNA substitution are
simply restrictions of the GTR model. For example, the model proposed by Kimura (1980) has instantaneous
rates

1 k 1

1 - 1 &

QZ{%‘]‘}Z k 1 - 1
1 k 1

where & is the transition/transversion rate ratio.
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Figure 2.—The 16 possible assignments of nucleotides to the internal nodes of a tree of s = 3 species. The
observations at the site are x; = {C,C, A} and the unobserved nucleotides at the internal nodes of the tree
are denoted y.

The likelihood of a phylogeny.—The phylogenetic model consists of a tree (7;) with branch lengths (v;) and
a stochastic model of DNA substitution that is specified by a matrix of instantaneous rates. The probability
of observing the data at the ith site in the aligned matrix is a sum over all possible assignments of nucleotides
to the internal nodes of the tree:

s 25—2
f(ﬂ?i'Tj, Uy, 9) - Z |jﬁ/%1 (H Pyio(ry ik ('Uka 0)) ( H Pyioxyyik ('Uk, 9))]

y k=1 k=s+1

Here, y;; is the (unobserved) nucleotide at the jth node for the ith site. The summation is over all 451
ways that nucleotides can be assigned to the internal nodes of the tree. Figure 2 illustrates the possible
nucleotide assignments for a simple tree of s = 3 species. Felsenstein (1981) introduced a pruning algorithm
that efficiently calculates the summation. Often, the rate at the site is assumed to be drawn from a gamma
distribution (Yang, 1993). This allows one to relax the assumption that the rate of substitution is equal
across all sites. If gamma-distributed rate variation is assumed, then the probability of observing the data
at the 7th site becomes:

e’} S 25—2
f(wi|7j7 vy, 0, a) = /(; {Z |jﬁ/h1 (H Pyio iy ik (Ukr7 0)) ( H Py k) yix (’UkT, 0))1 } f(r|a) dr
k=1

Yy k=s+1

where f(r|a) is the density of the rate r under the gamma model (Yang, 1993). The parameter « is the shape
parameter of the gamma distribution (here, the shape and the scale parameters of the gamma distribution
are both set to «). Typically, this integral is impossible to evaluate. Hence, an approximation first suggested
by Yang (1994b) is used in which the continuous gamma distribution is broken into K categories, each with
equal weight. The mean rate from each category represents the rate for the entire category. The probability
of observing the data at the ith site then becomes:

K s 25—2
1
f(wilTj>vj’ 0, a) = Z {Z |j@%1 (H Dyioy win (VKT 0)) < H Pyio(ryyin (Ukrnv 9))] } K

n=1 y k=1 k=s+1

Another method for relaxing the assumption of equal rates across sites is to assign different sites to
categories, and then estimate the rate for each category separately. For example, sites can be assigned to
categories according to codon position, and the rate for each codon separately estimated. Although this
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approach assumes that all of the sites within a category have the same rate, it often does a better job of
explaining DNA sequences than the gamma model. The probability of observing the data at the ith site is

s 25—2
f(mi|7-j’ v;,0, ri) = Z [Wy25_1 (H Pyic iy win (vkTi, 0)) ( H Pyiory yir (vkTi, 0))]

y k=1 k=s+1

under the site-specific model or rate variation across sites. The rate for the ith site is r;.
Assuming independence of the substitutions across sites, the probability of observing the aligned matrix
of DNA sequences is

f(XlTj,'Uj,G,O{) = Hf(wi|7—j7,uj70aa)
i=1

Importantly, the likelihood can be calculated under a number of different models of character change.
For example, the codon model describes the substitution process over triplets of sites (a codon) and allows
the estimation of the nonsynonymous/synonymous rate ratio (Goldman and Yang, 1994; Muse and Gaut,
1994). Similarly, models of DNA substitution have been described that allow nonindenpendent substitutions
to occur in stem regions of rRNA genes (Schoniger and von Haeseler, 1994). Finally, one can calculate
likelihoods for amino acid (Adachi and Hasegawa, 1992, 1996a, 1996b), restriction site (Smouse and Li,
1987), and, more recently, morphological data (Lewis, 2001).

Bayesian inference of phylogeny.—As described so far, the likelihood depends upon several unknown
parameters; generally, the phylogeny, branch lengths, and substitution parameters are unknown. The method
of maximum likelihood estimates these parameters by finding the values of the parameters which maximize
the likelihood function. Currently, programs such as PAUP* (Swofford, 1998), PAML (Yang, 1997), and
PHYLIP (Felsenstein, 1993) estimate phylogeny using the method of maximum likelihood.

Bayesian inference is based instead upon the posterior probability of the parameter. As described above,
the posterior probability of the ith tree is

F(X|7) f(r2)
S F(Xm) £(7)

where the likelihood function is integrated over all possible values for the branch lengths and substitution
parameters:

f(rilX) =

f(X|Ti):/Ui/g/af(X|Ti7Ui,970z)f(vi)f(0)f(a)dvidea

Bayesian inference of phylogeny has been described by Rannala and Yang (1996), Mao and colleagues (Mao,
1996; Mao and Newton, 1997; Mao et al., 1999), and Li (1996).

Markov chain Monte Carlo.—Typically, the posterior probability cannot be calculated analytically. How-
ever, the posterior probability of phylogenies can be approximated by sampling trees from the posterior
probability distribution. Markov chain Monte Carlo (MCMC) can be used to sample phylogenies according
to their posterior probabilities. The Metropolis-Hastings-Green (MHG) algorithm (Green, 1995; Hastings,
1970; Metropolis et al., 1953) is an MCMC algorithm that has been used successfully to approximate the
posterior probabilities of trees (Larget and Simon, 1999; Yang and Rannala, 1997).

The MHG algorithm works as follows. Let ¥ = {r,v,0,a} be a specific tree, combination of branch
lengths, substitution parameters, and gamma shape parameter. The MHG algorithm constructs a Markov
chain that has as its stationary frequency the posterior probability of interest (in this case, the joint posterior
probability of 7, v, 8, and «). The current state of the chain is denoted ¥. If this is the first generation of
the chain, then the chain is initialized (perhaps by randomly picking a state from the prior). A new state
is then proposed, ¥'. The probability of proposing the new state given the old state is f(¥’|®) and the
probability of making the reverse move (which is never actually made) is f(¥|®’). The new state is accepted
with probability

= min fP1X)  f(%]®)

ro= i (1 )
— min (1 JX®) () 1(X) f(x];|q;’))
X F(®)/F(X) T f(])
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Figure 8.—The tree with the mazimum posterior probability for the analysis of the c-myc sequences. The
numbers at the internal branches represent the posterior probability that the clade is correct.
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A uniform random variable between 0 and 1 is drawn. If this number is less than R, then the proposed
state is accepted and ¥ = W’. Otherwise, the chain remains in the original state. This process of proposing
a new state, calculating the acceptance probability, and either accepting or rejecting the proposed move is
repeated many thousands of times. The sequence of states visited forms a Markov chain. This chain is
sampled (either every step, or the chain is “thinned” and samples are taken every so often). The samples
from the Markov chain form a valid, albeit dependent, sample from the posterior probability distribution
(Tierney, 1994). As described here, the Markov chain samples from the joint probability density of trees,
branch lengths, and substitution parameters. The marginal probability of trees can be calculated by simply
printing to a file the trees that are visited during the course of the MCMC analysis. The proportion of the
time any single tree is found in this sample is an approximation of the posterior probability of the tree.

A variant of MCMC called “Metropolis-coupled Markov chain Monte Carlo” (or MCMCMC; Geyer, 1991)
runs several chains, some number of which are heated. A heated Markov chain has the posterior probability
of a tree raised to some power (3. For example, if n chains are run, the heat for the ith chain might be
0= m; when i = 1, § = 1 corresponding to the unheated or cold chain. This type of heating scheme
is called incremental heating because 3 becomes smaller as ¢ becomes larger. Heated Markov chains can
more easily cross deep valleys; the effect of heating is to fill in valleys and lower peaks. Hence, a heated
Markov chain better explores the parameter space. The MCMCMC algorithm lets every chain go one step.
Then, a swap of the states between two chains is attempted. If the swap is accepted, then the states for the
two chains are exchanged. If a swap occurs between a heated chain and the cold chain, the cold chain might
cross a large valley that it would normally cross with only a very small probability.

An example of Bayesian inference of phylogeny—Here we will demonstrate Bayesian inference of phy-
logeny for a simple example of five species. The DNA sequences are albumin and c-myc sequences sampled
from a fish, frog, bird, rodent, and human (albumin: Actinoptergyii, Salmo salar, X52397; Amphibia, Xeno-
pus laevis, M18350; Aves, Gallus gallus, X60688; Rodentia, Rattus norvegicus, JO0698; Primates, Homo sapi-
ens, L00132; c-myc: Actinoptergyii, Salmo gairdneri, M13048; Amphibia, Xenopus laevis, M14455; Aves,
Gallus gallus, M20006; Rodentia, Rattus norvegicus, Y00396; Primates, Homo sapiens, V00568). There are
a total of B(5) = 15 unrooted trees possible for the five sequences. The prior probability of any single tree,
then, is 7= = 0.067.

We first analyzed the c-myc DNA sequences using MrBayes. The HKY85+T" model of DNA substitution
was assumed (Hasegawa et al., 1985; Yang, 1994b). This model allows there to be a different rate of
transitions and transversions, different stationary nucleotide frequencies, and among-site rate variation (as
described by a discrete gamma distribution). The Markov chain was run for 100,000 generations and sampled
every 100 generations. The first 10,000 generations of the chain were discarded; the chain was started from
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a random tree and branch lengths and it took some time for the chain to reach apparent stationarity. Hence,
inferences were based upon a sample of 900 trees. Figure 3 summarizes the results of the analysis. The tree
with the largest posterior probability was (Fish,Frog,(Bird,(Rodent,Human))) and the posterior probability
of this tree was 0.964. Figure 3 shows the posterior probability of the clades on the tree with the maximum
posterior probability.

One of the advantages of Bayesian inference of phylogeny is that the results are easy to interpret. For
example, the sum of the posterior probabilities of all trees will sum to 1. Moreover, the posterior probability
of any single clade is simply the sum of the posterior probabilities of all trees that contain that clade. Finally,
a credible set of trees can be formed by ordering all of the trees from largest to smallest posterior probability
and then adding those trees with the highest posterior probability to a set until the cumulative posterior
probability is 0.95. A 95% credible set of trees for the c-myc gene would contain only one tree.

The posterior probability of trees can form the prior for any subsequent analysis of the species. For
example, let us imagine that the albumin sequences were analyzed after the c-myc sequences. The posterior
probabilities of phylogenies from the analysis of the c-myc sequences is the prior for the analysis of the
albumin sequences. The posterior probability of the trees after analysis of the albumin sequences is shown in
the table. The posterior probability of 71 is now 0.996. Our beliefs about the phylogeny of the five species
have changed throughout the analysis. For example, our initial belief about the the phylogeny 7 was 0.067.
After observing the c-myc sequences, our belief that this is the true phylogeny increased from 0.067 to 0.964.
The albumin sequences strengthened our beliefs about this phylogeny. The final posterior probability of this
phylogeny was 0.996. This probability could form the prior probability for tree 1 for any subsequent analysis.

i Ti f(ri)  f(rilemye)  f(r]albumin)
1 (Fish,Frog,(Bird,(Rodent,Human))) 0.067 0.964 0.996
2 (Fish,Frog,(Rodent,(Bird,Human))) 0.067 0.000 0.000
3 (Fish,Frog,(Human,(Rodent,Bird))) 0.067 0.000 0.000
4 (Fish,Bird,(Frog,(Rodent,Human))) 0.067 0.012 0.003
5  (Fish,Bird,(Rodent,(Frog,Human))) 0.067 0.000 0.000
6  (Fish,Bird,(Human,(Rodent,Frog))) 0.067 0.000 0.000
7  (Fish,Rodent,(Bird,(Frog,Human))) 0.067 0.000 0.000
8  (Fish,Rodent,(Frog,(Bird,Human))) 0.067 0.000 0.000
9  (Fish,Rodent,(Human,(Bird,Frog))) 0.067 0.000 0.000
10  (Fish,Human,(Bird,(Rodent,Frog))) 0.067 0.000 0.000
11 (Fish,Human,(Frog,(Rodent,Bird))) 0.067 0.000 0.000
12 (Fish,Human,(Rodent,(Frog,Bird))) 0.067  0.000 0.000
13 (Frog,Bird,(Fish,(Rodent,Human))) 0.067 0.023 0.001
14 (Frog,Human,(Fish,(Rodent,Bird))) 0.067 0.000 0.000
15  (Frog,Rodent,(Fish,(Bird,Human))) 0.067 0.000 0.000

One modification of the analysis of the vertebrate sequences would be to modify the prior probabilities
of trees. There is overwhelming morphological and paleontological evidence that the correct phylogeny for
fish, frogs, birds, rodents, and humans is tree 71. Hence, a systematist might reflect this prior information
as a different prior probability on the trees. For example, he or she may decide to put almost all of the prior
probability on 7y and very little prior probability on the other trees.
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