Selected publications
The cryo-EM structure of ASK1 reveals an asymmetric architecture allosterically modulated by TRX1.Elife . 2024 Mar 27:13:RP95199. doi: 10.7554/eLife.95199.
IF = 7.7
14-3-3 protein inhibits CaMKK1 by blocking the kinase active site with its last two C-terminal helices.
Protein Sci. 2023 Oct 10:e4805. doi: 10.1002/pro.4805
IF = 8
Structural insights into the functional roles of 14-3-3 proteins
Front. Mol. Biosci., 16 September 2022 Sec. Structural Biology https://doi.org/10.3389/fmolb.2022.1016071
IF = 6.113
FOXO4 interacts with p53 TAD and CRD and inhibits its binding to DNA.
Protein Sci. 2022 May;31(5):e4287. doi: 10.1002/pro.4287.
IF = 6.725
Publications by year
2024
The minimal membrane requirements for BAX-induced pore opening upon exposure to oxidative stress
Biophys J . 2024 Aug 26:S0006-3495(24)00564-2. doi: 10.1016/j.bpj.2024.08.017.
IF = 3.2
The cryo-EM structure of ASK1 reveals an asymmetric architecture allosterically modulated by TRX1.
Elife . 2024 Mar 27:13:RP95199. doi: 10.7554/eLife.95199.
IF = 7.7
The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways
Front. Mol. Biosci. 11 | https://doi.org/10.3389/fmolb.2024.1327014
IF = 5
2023
14-3-3 protein inhibits CaMKK1 by blocking the kinase active site with its last two C-terminal helices.
Protein Sci. 2023 Oct 10:e4805. doi: 10.1002/pro.4805
IF = 8
Molecular basis and dual ligand regulation of tetrameric estrogen receptor alpha/14-3-3z protein complex
J Biol Chem. 2023 Jul; 299(7): 104855.
IF = 4.8
2022
Structural insights into the functional roles of 14-3-3 proteins
Front. Mol. Biosci., 16 September 2022 Sec. Structural Biology https://doi.org/10.3389/fmolb.2022.1016071
IF = 6.113
Lengthening the Guanidine–Aryl Linker of Phenylpyrimidinylguanidines Increases Their Potency as Inhibitors of FOXO3-Induced Gene Transcription
ACS Omega 2022, 7, 38, 34632–34646
IF = 4.132
FOXO4 interacts with p53 TAD and CRD and inhibits its binding to DNA.
Protein Sci. 2022 May;31(5):e4287. doi: 10.1002/pro.4287.
IF = 6.725
Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains.
Biophys J . 2022 Apr 5;121(7):1299-1311. doi: 10.1016/j.bpj.2022.02.025
IF = 4.033
2021
A Structural Study of the Cytoplasmic Chaperone Effect of 14-3-3 Proteins on Ataxin-1.
J Mol Biol . 2021 Jul 21;433(19):167174. doi: 10.1016/j.jmb.2021.167174
IF = 5.469
14-3-3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites.
Commun Biol . 2021 Aug 19;4(1):986. doi: 10.1038/s42003-021-02518-y
IF = 6.268
14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains.
Commun. Biol. (2021) 4:899, DOI : 10.1038/s42003-021-02419-0
IF = 6.268
Phosphorylated full-length Tau interacts with 14-3-3 proteins via two short phosphorylated sequences, each occupying a binding groove of 14-3-3 dimer.
FEBS J . 2021 Mar;288(6):1918-1934.
IF = 5.542
2020
The 14-3-3 Proteins as Important Allosteric Regulators of Protein Kinases.
Int J Mol Sci.
IF = 4.556
Stabilization of Protein-Protein Interactions between CaMKK2 and 14-3-3 by Fusicoccins
ACS Chem. Biol. 2020 Nov 4. doi: 10.1021/acschembio.0c00821.
IF = 4.434
Interaction of an IκBα Peptide with 14-3-3
ACS Omega
IF = 2.584
14-3-3 protein binding blocks the dimerization interface of caspase-2
FEBS J. 2020 Jan 21. doi: 10.1111/febs.15215.
IF = 4.739
The redox active site of thioredoxin is directly involved in apoptosis signal‐regulating kinase 1 binding that is modulated by oxidative stress
FEBS J. 2020 Apr;287(8):1626-1644.
IF = 4.739
2019
Modulating FOXO3 transcriptional activity by small, DBD-binding molecules
eLife 2019;8:e48876 DOI: 10.7554/eLife.48876
IF = 7.55
Set-up and screening of a fragment library targeting the 14-3-3 protein interface
Med. Chem. Commun., 2019, doi: 10.1039/c9md00215d
IF = 2.394
Forkhead Domains of FOXO Transcription Factors Differ in both Overall Conformation and Dynamics
Cells 2019, 8(9), 966; https://doi.org/10.3390/cells8090966
IF = 5.656
Allosteric activation of yeast enzyme neutral trehalase by calcium and 14-3-3 protein
Physiol Res. 2019 Apr 30;68(2):147-160.
IF = 1.324
The activity of Saccharomyces cerevisiae Na+, K+/H+ antiporter Nha1 is negatively regulated by 14-3-3 protein binding at serine 481
Biochim Biophys Acta Mol Cell Res. 2019 Aug 22;1866(12):118534. doi: 10.1016/j.bbamcr.2019.118534.
IF = 4.739
2018
14-3-3 protein masks the nuclear localization sequence of caspase-2
FEBS J. 2018 Nov;285(22):4196-4213.
IF = 4.53
CaMKK2 kinase domain interacts with the autoinhibitory region through the N-terminal lobe including the RP insert.
Biochim Biophys Acta-General Subjects 2018 Jul 24;1862(10):2304-2313.
IF = 3.679
14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2).
Biochim Biophys Acta-General Subjects. 2018, 1862(7):1612-1625
IF = 3.679
2017
Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1.
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E9811-E9820.
IF = 9.66
Structural aspects of protein kinase ASK1 regulation.
Adv Biol Regul. 2017 Oct 16. pii: S2212-4926(17)30163-X.
IF = 0
Modulators of 14-3-3 Protein-Protein Interactions.
J Med Chem. 2017 Oct 19. doi: 10.1021/acs.jmedchem.7b00574.
IF = 6.259
Human procaspase-2 phosphorylation at both S139 and S164 is required for 14-3-3 binding.
Biochem Biophys Res Commun. 2017 Nov 18;493(2):940-945.
IF = 2.466
Structural Basis for the 14-3-3 Protein-Dependent Inhibition of Phosducin Function.
Biophys J. 2017 Apr 11;112(7):1339-1349
IF = 3.632
2016
Cysteine residues mediate high-affinity binding of thioredoxin to ASK1.
FEBS J. 2016 Oct;283(20):3821-3838
IF = 4.237
Structural Insight into the 14-3-3 Protein-Dependent Inhibition of Protein Kinase ASK1
J Biol Chem 2016 Sep 23;291(39):20753-65
IF = 4.258
2015
A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.
PLoS One. 2015 May 21;10(5):e0126420
IF = 3.057
Structural Characterization of Phosducin and its Complex with the 14-3-3 Protein
J Biol Chem 2015 Jun 26;290(26):16246-60.
IF = 4.573
2014
Biophysical and Structural Characterization of the Thioredoxin-Binding Domain of Protein Kinase ASK1 and its Interaction with Reduced Thioredoxin
J Biol Chem 2014 Aug 29; 289(35):24463-24474
IF = 4.6
Role of the EF-hand like motif in the 14-3-3 protein-mediated activation of yeast neutral trehalase Nth1
J Biol Chem 2014 May 16; 289(20):13948-13961
IF = 4.6
Mechanisms of the 14-3-3 protein function: regulation of protein function through conformational modulation.
Physiol Res. 2014 Feb 24;63 Suppl 1:S155-64.
IF = 1.531
2013
Detailed kinetic analysis of the interaction between the FOXO4–DNA-binding domain and DNA.
Biophysical Chemistry 2013 Sep 15;184:68-78.
IF = 2.283
Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1
Biochimica Et Biophysica Acta-General Subjects 2013 May;1830(10):4491-4499.
IF = 3.848
2012
Structural modulation of phosducin by the phosphorylation and the 14-3-3 protein binding
Biophysical Journal 2012 Nov;103(9):1960–1969.
IF = 3.668
The combination of hydrogen/deuterium exchange or chemical cross-linking techniques with mass spectrometry: mapping of human 14-3-3ζ homodimer interface.
J Struct Biol. 2012 Jul;179(1):10-7
IF = 3.361
Role of individual phosphorylation sites for the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1.
Biochem J. 2012 May 1;443(3):663-70.
IF = 4.654
2011
Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G-Protein signaling 3 (RGS3) function.
J Biol Chem. 2011 Dec 16;286(50):43527-36.
IF = 5.328
Structural basis of 14-3-3 protein functions.
Semin Cell Dev Biol. 2011 Sep;22(7):663-72.
IF = 6.342
Structural basis for DNA recognition by FOXO proteins.
Biochim Biophys Acta. 2011 Nov;1813(11):1946-53.
IF = 4.374
Activation and regulation of purinergic P2X receptor channels.
Pharmacol Rev. 2011 Sep;63(3):641-83.
IF = 18.861
Hippo/Mst1 stimulates transcription of the proapoptotic mediator NOXA in a FoxO1-dependent manner.
Cancer Res. 2011 Feb 1;71(3):946-54.
IF = 7.543
2010
Structural insights into the function of P2X4: an ATP-gated cation channel of neuroendocrine cells.
Cell Mol Neurobiol. 2010 Nov;30(8):1251-8.
IF = 3.226
C-terminal segment of yeast BMH proteins exhibits different structure compared to other 14-3-3 protein isoforms.
Biochemistry 49(18), 3853-3861, 2010
IF = 3.226
14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G-protein signaling 3 (RGS3).
J. Struct. Biol. 170(3), 451-461, 2010
IF = 3.673
Crystal structure of human FOXO4-DBD/DNA complex at 1.9 A resolution reveals new details on FOXO binding to the DNA
Acta Crystallogr D Biol Crystallogr. 2010 Dec;66(Pt 12):1351-7.
IF = 14.103
The interactions of the C-terminal region of the TRPC6 channel with calmodulin.
Neurochem Int. 2010 Jan;56(2):363-6.
IF = 3.541
2009
14-3-3 protein masks the DNA binding interface of forkhead transcription factor FOXO4.
Journal of Biological Chemistry, 284(29), 19349-19360, 2009
IF = 5.52
Functional relevance of aromatic residues in the first transmembrane domain of P2X receptors.
Journal of Neurochemistry, 109(3), 923-934, 2009
IF = 4.5
2008
Ionic interactions are essential for TRPV1 C-terminus binding to calmodulin.
Biochemical and Biophysical Research Communications, 375(4), 680-683, 2008
IF = 2.648
The 14-3-3 protein affects the conformation of the regulatory domain of human tyrosine hydroxylase.
Biochemistry, 47(6), 1768-1777, 2008
IF = 3.379
The role of proline residues in the structure and function of human MT2 melatonin receptor
Journal of Pineal Research, 45(4), 361-372, 2008
IF = 5.056
Structure/function relationships underlying regulation of FOXO transcription factors.
Oncogene, 27(16), 2263-2275, 2008
IF = 7.216
Identification of P2X(4) receptor transmembrane residues contributing to channel gating and interaction with ivermectin.
Pflügers Archiv, 465(5), 939-950, 2008
IF = 3.526
14-3-3 proteins: a family of versatile molecular regulators.
Physiol Res. 57 Suppl 3:S11-21, 2008. Review.
IF = 1.653
2007
ATP binding site on the C-terminus of the vanilloid receptor.
Archives of Biochemistry and Biophysics, 465(2), 389-398, 2007
IF = 2.578
Both the N-terminal loop and wing W2 of the forkhead domain of transcription factor Foxo4 are important for DNA binding.
Journal of Biological Chemistry, 282(11), 8265-8275, 2007
IF = 5.581
2005
Ligand binding to the human MT2 melatonin receptor: the role of residues in transmembrane domains 3, 6, and 7.
Biochemical and Biophysical Research Communications, 332(3), 726-734, 2005
IF = 3
14-3-3 Protein interacts with nuclear localization sequence of forkhead transcription factor FoxO4.
Biochemistry, 44(34), 11608-11617, 2005
IF = 3.848
2004
14-3-3zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232.
Journal of Biological Chemistry, 279(6), 4531-4540, 2004
IF = 6.355
14-3-3 protein C-terminal stretch occupies ligand binding groove and is displaced by phosphopeptide binding.
Journal of Biological Chemistry, 279(47), 49113-49119, 2004
IF = 6.355
Molecular modeling of human MT2 melatonin receptor: the role of Val204, Leu272 and Tyr298 in ligand binding.
Journal of Neurochemistry, 91(4), 836-842, 2004
IF = 4.824
Protein modeling combined with spectroscopic techniques: an attractive quick alternative to obtain structural information.
Physiological Research, 53(Suppl. 1), S187-S197, 2004
IF = 1.14