
Research team of M. Martíková. Photo by Petr Jeřábek.
Top-class researchers and scientists are often asked by their colleagues how to reach the excellent scientific results. Assoc. Prof. Markéta Martínková, working at Department of Biochemistry, Faculty of Science, Charles University in Prague has reached the top level in her scientific work. She has been successful to publish the results of her team that they achieved during solving the numerous projects in a variety of excellent scientific papers. This is particularly true of her latest publication that offers the outcome of research of her team and a critical review of results reported by other top laboratories worldwide. This paper has been published in one of the most prestigious chemistry journals.
Mrs. Martínková’s paper was recently published in Chemical Reviews, a journal issued by the American Chemical Society. One of the most relevant indicators of the journal’s prestige is its “sky-high” impact factor – IF2013 = 45.661. In our interview, Mrs. Martínková, Vice-dean for Student Affairs, speaks about the nature of the subject covered by her successful publication, as well as about other research projects pursued by her team in this particular field of expertise.

Picture from a conference presentation – hemoproteins are divided into four main classes.
Author: Markéta Martínková.
Yes, they are. A good example is a protein that we have investigated in detail, the eukaryotic heme-regulated inhibitor of proteosynthesis (HRI). This sensor hemoprotein detects changes in the heme concentration. Like all sensor hemoproteins, also this protein consists of two domains. One of them, the sensor domain, is able to detect heme molecules in its surroundings. Changes in this domain structure caused by the sensoring process alter the functional domain, which makes it possible to control a number of intracellular processes of high importance. For example, it has been shown that the heme-regulated inhibitor is associated with lung tumours – this sensor protein often bears a specific mutation in lung cancer patients.
Is this the subject of your recently published paper?
The paper deals with a sensor protein-related phenomenon that is even more specific – it is a situation when the heme is already firmly bound to a sensor domain and just reversibly interacts with a gas molecule, e.g. a molecule of oxygen (O2), nitric oxide (NO) or carbon monoxide (CO). The binding of such molecule alters the protein structure of the sensor protein and modulates its function. In contrast, hemoglobin just binds and then releases the oxygen molecule.
What exactly is the nature that attracts you and your colleagues who work or intend to work in similar areas?

Picture from a conference presentation – heme-containing gas sensor proteins: mechanism and functions. Author: Markéta Martínková.
We would like to know how exactly the structure of sensor domain is changed after the signal is set up (gas molecule) and how such change is transduced to the functional domain (“signal transduction“). This area is yet to be explored. Moreover, a large number of these proteins exhibit also enzyme activity, and this feature is highly important, too.
Can the identification of these mechanisms be utilized for practical applications?
It certainly can. The heme-containing gas sensor proteins are important inter alia for bacteria. You can imagine that bacteria need to “know” whether or not they are in an environment rich in O2. Using this information, they are able to adapt their metabolism. Sensor proteins therefore have an impact on bacterial virulence, sporulation, etc. Proper identification of these processes might trigger off discovery of new, long-expected antibiotics. Then the signal to which the sensor hemoproteins respond could be induced artificially to “confuse” the bacteria and then destroy them. On the contrary, such knowledge would make it possible to optimise the metabolism of beneficial bacteria such as lactobacilli.
This alone is no doubt the reason why scientists consider this area of research so important.
Indeed, and it is also the reason why editors of the Chemical Reviews have requested us to share our experience of heme-containing sensor proteins. Our paper describes our expertise in the area of heme sensor proteins and highlights the benefits of this knowledge in exploring heme-containing gas sensor proteins. The position of our research group is apparently quite unique, because most of the other laboratories working in this area tend to explore just the microbiological aspects of these systems. In contrast, I am an enzymologist from the bottom of my heart, so I utilize my experience in exploring the enzyme activities of functional domains of these proteins.
What are the directions of your other research projects?
Currently we focuses on the heme-containing gas sensor proteins form several selected bacteria and we are interested in their detail characterization. We have identified three different bacterial systems that have some common properties and also some properties that are slightly different from each other. Special selection of various systems is necessary for their subsequent comparison. For example, we would like to know how exactly bacteria identify the signal. Chemists can agree that the C-O, N-O and O-O bonds and the biatomic molecules in which they occur are very similar in terms of their charges, lengths, sizes, etc. Our results show that the proteins we explore can often identify and differentiate among these highly similar molecules. Our ambition is to describe what exactly the interactions between the proteins and these gases are like, i.e. the interaction areas, amino acids responsible for gas identification as a signal, how this signal is transduced to the functional domain, how it influences the enzyme parameters of the reaction, etc.

Structure of a heme-containing sensor protein (a detail of its sensor domain). The design of this model is based on the results of the H-D exchange experiments, and the model serves as an example of the sensor domain structure. Authors: Václav Martínek and Martin Stráňava.
What other publications concerning heme-containing sensor proteins are now prepared in your laboratory?
We have just submitted a paper regarding the histidine kinase activity in the functional domain of one of the explored sensor proteins to Biochemistry. We are also completing a paper whose ambition is to describe the protein structure dynamics of the explored protein using the H-D exchange experiments. This process, observation of hydrogens (H) in the molecule that can be exchanged by deuterium (D), is used to describe molecules that are difficult to be crystallized and therefore reach the limits of crystallography, a traditional and exact method for exploring the structure of protein molecules.
That is definitely a job for a whole research team!
Yes, of course, I believe that our research work is fun for the students that already work in our lab and that it will also attract a new generation of explorers!