Introduction | Projection detection | Installation | Using the tool | Samples | Supported projections | References
Supported projections
Currently, the following map projections are supported:
| # | Shortcut | Name | Family | Aspects | φ_1 | φ_2 | κ |
| 1 | adamh | Adams, hemisphere | Miscellaneous | N | |||
| 2 | adams1 | Adams 1, world in square | Miscellaneous | N,T,O | |||
| 3 | adams1 | Adams2, world in square | Miscellaneous | N,T,O | |||
| 4 | aea | Equal area | Conic | N,T,O | x | x | |
| 5 | aeqd | Equidistant | Azimuthal | N,T,O | |||
| 6 | aitoff | Aitoff | Pseudoazimuthal | N,T,O | |||
| 7 | api | Apian | Miscellaneous | N,T,O | |||
| 8 | apiel | Apian elliptic | Miscellaneous | N,T,O | |||
| 9 | armad | Armadillo | Miscellaneous | N,T,O | |||
| 10 | august | August epicycloidal | Pseudocylindrical | N,T,O | |||
| 11 | bacon | Bacon globular | Miscellaneous | N,T,O | |||
| 12 | behr | Behrmann | Cylindrical | N,T,O | |||
| 13 | boggs | Boggs eumorphic | Pseudocylindrical | N,T,O | |||
| 14 | bonne | Bonne | Pseudoconic | N,T,O | x | ||
| 15 | breus | Breusign | Azimuthal | N,T,O | |||
| 16 | cc | Central | Cylindrical | N,T,O | |||
| 17 | cea | Equal area | Cylindrical | N,T,O | |||
| 18 | clar | Clarke perspective | Azimuthal | N,T,O | |||
| 19 | collg | Collignon | Miscellaneous | N,T,O | |||
| 20 | crast | Craster parabolic | Pseudocylindrical | N,T,O | |||
| 21 | cwe | Conformal world in ellipse | Miscellaneous | N,T,O | |||
| 22 | denoy | Denoyer | Pseudocylindrical | N,T,O | |||
| 23 | eck1 | Eckert I. | Pseudocylindrical | N,T,O | |||
| 24 | eck2 | Eckert II. | Pseudocylindrical | N,T,O | |||
| 25 | eck3 | Eckert III. | Pseudocylindrical | N,T,O | |||
| 26 | eck4 | Eckert IV. | Pseudocylindrical | N,T,O | |||
| 27 | eck5 | Eckert V. | Pseudocylindrical | N,T,O | |||
| 28 | eck6 | Eckert VI. | Pseudocylindrical | N,T,O | |||
| 29 | eisen | Eisenlohr | Miscellaneous | N,T,O | |||
| 30 | eqc | Equidistant | Cylindrical | N,T,O | x | ||
| 31 | eqdc | Equidistant | Conic | N,T,O | x | ||
| 32 | eqdc2 | Equidistant, pole=point | Conic | N,T,O | x | ||
| 33 | eqdc3 | Equidistant | Conic | N,T,O | x | x | |
| 34 | fahey | Fahey | Pseudocylindrical | N,T,O | x | ||
| 35 | fouc | Foucalt | Pseudocylindrical | N,T,O | |||
| 36 | fouc_s | Foucault sinusoidal | Pseudocylindrical | N,T,O | x | ||
| 37 | fourn | Fournier I. globular | Miscellaneous | N,T,O | |||
| 38 | fourn2 | Fournier II. | Miscellaneous | N,T,O | |||
| 39 | gall | Gall | Cylindrical | N,T,O | x | ||
| 40 | gins8 | Ginsburg VIII. | Pseudocylindrical | N,T,O | |||
| 41 | gnom | Gnomonic | Azimuthal | N,T,O | |||
| 42 | goode | Goode homolosine | Pseudocylindrical | N,T,O | |||
| 43 | guyou | Guyou | Miscellaneous | N | |||
| 44 | hammer | Hammer | Pseudoazimuthal | N,T,O | |||
| 45 | hataea | Hatano | Miscellaneous | N,T,O | |||
| 46 | hire | La Hire perspective | Azimuthal | N,T,O | |||
| 47 | jam | James perspective | Azimuthal | N,T,O | |||
| 48 | kav5 | Kavraisky V. | Pseudocylindrical | N,T,O | |||
| 49 | kav7 | Kavraisky VII. | Pseudocylindrical | N,T,O | |||
| 50 | laea | Lambert equal area | Azimuthal | N,T,O | |||
| 51 | lagrng | Lagrange conformal | Miscellaneous | N,T,O | |||
| 52 | larr | Larrivee | Miscellaneous | N,T,O | |||
| 53 | lask | Laskowski | Miscellaneous | N,T,O | |||
| 54 | lcc | Lambert conformal | Conic | N,T,O | x | ||
| 55 | leac | Equal area | Conic | N,T,O | x | ||
| 56 | leac2 | Equal area, pole=point | Conic | N,T,O | x | ||
| 57 | litt | Littrow | Miscellaneous | N,T,O | |||
| 58 | loxim | Loximuthal | Pseudocylindrical | N,T,O | x | ||
| 59 | mbt_s | MacBryde-Thomas sine I | Pseudocylindrical | N,T,O | |||
| 60 | mbt_s3 | MacBryde-Thomas flat-pole sine III. | Pseudocylindrical | N,T,O | |||
| 61 | mbtfpq | MacBryde flat polar parabolic | Pseudocylindrical | N,T,O | |||
| 62 | mbtfps | MacBryde flat polar sinusoidal | Pseudocylindrical | N,T,O | |||
| 63 | merc | Mercator | Cylindrical | N,T,O | x | ||
| 64 | mill | Miller | Cylindrical | N,T,O | |||
| 65 | moll | Mollweid | Pseudocylindrical | N,T,O | |||
| 66 | nell | Nell | Pseudocylindrical | N,T,O | |||
| 67 | nell_h | Nell-Hammer | Pseudocylindrical | N,T,O | |||
| 68 | nicol | Nicolosi | Miscellaneous | N,T,O | |||
| 69 | ortel | Ortelius | Pseudocylindrical | N,T,O | |||
| 70 | ortho | Orthographic | Azimuthal | N,T,O | |||
| 71 | parab | Craster parabolic | Pseudocylindrical | N,T,O | |||
| 72 | peiq | Peirce quincuncial | Miscellaneous | N,T,O | |||
| 73 | pers | General perspective | Azimuthal | N,T,O | x | ||
| 74 | persf | Far-side perspective | Azimuthal | N,T,O | x | ||
| 75 | persn | Near-side perspective | Azimuthal | N,T,O | x | ||
| 76 | poly | Hassler | Polyconic | N,T,O | |||
| 77 | putp1 | Putnins P1 | Pseudocylindrical | N,T,O | |||
| 78 | putp2 | Putnins P2 | Pseudocylindrical | N,T,O | |||
| 79 | putp3 | Putnins P3 | Pseudocylindrical | N,T,O | |||
| 80 | putp3p | Putnins P3' | Pseudocylindrical | N,T,O | |||
| 81 | putp4p | Putnins P4' | Pseudocylindrical | N,T,O | |||
| 82 | putp5 | Putnins P5 | Pseudocylindrical | N,T,O | |||
| 83 | putp5p | Putnins P5' | Pseudocylindrical | N,T,O | |||
| 84 | putp6 | Putnins P6 | Pseudocylindrical | N,T,O | |||
| 85 | putp6p | Putnins P6' | Pseudocylindrical | N,T,O | |||
| 86 | qua_aut | Quartic authalic | Pseudocylindrical | N,T,O | |||
| 87 | rpoly | Rectangular polyconic | Pseudocylindrical | N,T,O | x | ||
| 88 | sinu | Sinusoidal | Pseudocylindrical | N,T,O | |||
| 89 | solo | Solovyov | Azimuthal | N,T,O | |||
| 90 | stereo | Stereographic | Azimuthal | N,T,O | |||
| 91 | twi | Twilight perspective | Azimuthal | N,T,O | |||
| 92 | urm5 | Urmayev 5 | Pseudocylindrical | N,T,O | |||
| 93 | vandg | Van der Grinten I. | Polyconic | N,T,O | |||
| 94 | vandg2 | Van der Grinten II. | Polyconic | N,T,O | |||
| 95 | vandg3 | Van der Grinten III. | Polyconic | N,T,O | |||
| 96 | vandg4 | Van der Grinten IV. | Polyconic | N,T,O | |||
| 97 | wag1 | Wagner I. | Pseudocylindrical | N,T,O | |||
| 98 | wag2 | Wagner II. | Pseudocylindrical | N,T,O | |||
| 99 | wag3 | Wagner III. | Pseudocylindrical | N,T,O | x | ||
| 100 | wag4 | Wagner II. | Pseudocylindrical | N,T,O | |||
| 101 | wag6 | Wagner VI. | Pseudocylindrical | N,T,O | |||
| 102 | wag7 | Wagner VII. | Pseudocylindrical | N,T,O | |||
| 103 | wer | Werner-Staab | Pseudoazimuthal | N,T,O | |||
| 104 | were | Werenskiold | Pseudocylindrical | N,T,O | |||
| 105 | wiech | Wiechel | Pseudoazimuthal | N,T,O | |||
| 106 | wink1 | Winkel | Pseudocylindrical | N,T,O | x | ||
| 107 | wink2 | Winkel | Pseudocylindrical | N,T,O | x | ||
| 108 | wintri | Winkel tripel | Pseudoazimuthal | N,T,O | x |