Introduction | Projection detection | Installation | Using the tool | Samples | Supported projections | References
Supported projections
Currently, the following map projections are supported:
# | Shortcut | Name | Family | Aspects | φ_1 | φ_2 | κ |
---|---|---|---|---|---|---|---|
1 | adamh | Adams, hemisphere | Miscellaneous | N | |||
2 | adams1 | Adams 1, world in square | Miscellaneous | N,T,O | |||
3 | adams1 | Adams2, world in square | Miscellaneous | N,T,O | |||
4 | aea | Equal area | Conic | N,T,O | x | x | |
5 | aeqd | Equidistant | Azimuthal | N,T,O | |||
6 | aitoff | Aitoff | Pseudoazimuthal | N,T,O | |||
7 | api | Apian | Miscellaneous | N,T,O | |||
8 | apiel | Apian elliptic | Miscellaneous | N,T,O | |||
9 | armad | Armadillo | Miscellaneous | N,T,O | |||
10 | august | August epicycloidal | Pseudocylindrical | N,T,O | |||
11 | bacon | Bacon globular | Miscellaneous | N,T,O | |||
12 | behr | Behrmann | Cylindrical | N,T,O | |||
13 | boggs | Boggs eumorphic | Pseudocylindrical | N,T,O | |||
14 | bonne | Bonne | Pseudoconic | N,T,O | x | ||
15 | breus | Breusign | Azimuthal | N,T,O | |||
16 | cc | Central | Cylindrical | N,T,O | |||
17 | cea | Equal area | Cylindrical | N,T,O | |||
18 | clar | Clarke perspective | Azimuthal | N,T,O | |||
19 | collg | Collignon | Miscellaneous | N,T,O | |||
20 | crast | Craster parabolic | Pseudocylindrical | N,T,O | |||
21 | cwe | Conformal world in ellipse | Miscellaneous | N,T,O | |||
22 | denoy | Denoyer | Pseudocylindrical | N,T,O | |||
23 | eck1 | Eckert I. | Pseudocylindrical | N,T,O | |||
24 | eck2 | Eckert II. | Pseudocylindrical | N,T,O | |||
25 | eck3 | Eckert III. | Pseudocylindrical | N,T,O | |||
26 | eck4 | Eckert IV. | Pseudocylindrical | N,T,O | |||
27 | eck5 | Eckert V. | Pseudocylindrical | N,T,O | |||
28 | eck6 | Eckert VI. | Pseudocylindrical | N,T,O | |||
29 | eisen | Eisenlohr | Miscellaneous | N,T,O | |||
30 | eqc | Equidistant | Cylindrical | N,T,O | x | ||
31 | eqdc | Equidistant | Conic | N,T,O | x | ||
32 | eqdc2 | Equidistant, pole=point | Conic | N,T,O | x | ||
33 | eqdc3 | Equidistant | Conic | N,T,O | x | x | |
34 | fahey | Fahey | Pseudocylindrical | N,T,O | x | ||
35 | fouc | Foucalt | Pseudocylindrical | N,T,O | |||
36 | fouc_s | Foucault sinusoidal | Pseudocylindrical | N,T,O | x | ||
37 | fourn | Fournier I. globular | Miscellaneous | N,T,O | |||
38 | fourn2 | Fournier II. | Miscellaneous | N,T,O | |||
39 | gall | Gall | Cylindrical | N,T,O | x | ||
40 | gins8 | Ginsburg VIII. | Pseudocylindrical | N,T,O | |||
41 | gnom | Gnomonic | Azimuthal | N,T,O | |||
42 | goode | Goode homolosine | Pseudocylindrical | N,T,O | |||
43 | guyou | Guyou | Miscellaneous | N | |||
44 | hammer | Hammer | Pseudoazimuthal | N,T,O | |||
45 | hataea | Hatano | Miscellaneous | N,T,O | |||
46 | hire | La Hire perspective | Azimuthal | N,T,O | |||
47 | jam | James perspective | Azimuthal | N,T,O | |||
48 | kav5 | Kavraisky V. | Pseudocylindrical | N,T,O | |||
49 | kav7 | Kavraisky VII. | Pseudocylindrical | N,T,O | |||
50 | laea | Lambert equal area | Azimuthal | N,T,O | |||
51 | lagrng | Lagrange conformal | Miscellaneous | N,T,O | |||
52 | larr | Larrivee | Miscellaneous | N,T,O | |||
53 | lask | Laskowski | Miscellaneous | N,T,O | |||
54 | lcc | Lambert conformal | Conic | N,T,O | x | ||
55 | leac | Equal area | Conic | N,T,O | x | ||
56 | leac2 | Equal area, pole=point | Conic | N,T,O | x | ||
57 | litt | Littrow | Miscellaneous | N,T,O | |||
58 | loxim | Loximuthal | Pseudocylindrical | N,T,O | x | ||
59 | mbt_s | MacBryde-Thomas sine I | Pseudocylindrical | N,T,O | |||
60 | mbt_s3 | MacBryde-Thomas flat-pole sine III. | Pseudocylindrical | N,T,O | |||
61 | mbtfpq | MacBryde flat polar parabolic | Pseudocylindrical | N,T,O | |||
62 | mbtfps | MacBryde flat polar sinusoidal | Pseudocylindrical | N,T,O | |||
63 | merc | Mercator | Cylindrical | N,T,O | x | ||
64 | mill | Miller | Cylindrical | N,T,O | |||
65 | moll | Mollweid | Pseudocylindrical | N,T,O | |||
66 | nell | Nell | Pseudocylindrical | N,T,O | |||
67 | nell_h | Nell-Hammer | Pseudocylindrical | N,T,O | |||
68 | nicol | Nicolosi | Miscellaneous | N,T,O | |||
69 | ortel | Ortelius | Pseudocylindrical | N,T,O | |||
70 | ortho | Orthographic | Azimuthal | N,T,O | |||
71 | parab | Craster parabolic | Pseudocylindrical | N,T,O | |||
72 | peiq | Peirce quincuncial | Miscellaneous | N,T,O | |||
73 | pers | General perspective | Azimuthal | N,T,O | x | ||
74 | persf | Far-side perspective | Azimuthal | N,T,O | x | ||
75 | persn | Near-side perspective | Azimuthal | N,T,O | x | ||
76 | poly | Hassler | Polyconic | N,T,O | |||
77 | putp1 | Putnins P1 | Pseudocylindrical | N,T,O | |||
78 | putp2 | Putnins P2 | Pseudocylindrical | N,T,O | |||
79 | putp3 | Putnins P3 | Pseudocylindrical | N,T,O | |||
80 | putp3p | Putnins P3' | Pseudocylindrical | N,T,O | |||
81 | putp4p | Putnins P4' | Pseudocylindrical | N,T,O | |||
82 | putp5 | Putnins P5 | Pseudocylindrical | N,T,O | |||
83 | putp5p | Putnins P5' | Pseudocylindrical | N,T,O | |||
84 | putp6 | Putnins P6 | Pseudocylindrical | N,T,O | |||
85 | putp6p | Putnins P6' | Pseudocylindrical | N,T,O | |||
86 | qua_aut | Quartic authalic | Pseudocylindrical | N,T,O | |||
87 | rpoly | Rectangular polyconic | Pseudocylindrical | N,T,O | x | ||
88 | sinu | Sinusoidal | Pseudocylindrical | N,T,O | |||
89 | solo | Solovyov | Azimuthal | N,T,O | |||
90 | stereo | Stereographic | Azimuthal | N,T,O | |||
91 | twi | Twilight perspective | Azimuthal | N,T,O | |||
92 | urm5 | Urmayev 5 | Pseudocylindrical | N,T,O | |||
93 | vandg | Van der Grinten I. | Polyconic | N,T,O | |||
94 | vandg2 | Van der Grinten II. | Polyconic | N,T,O | |||
95 | vandg3 | Van der Grinten III. | Polyconic | N,T,O | |||
96 | vandg4 | Van der Grinten IV. | Polyconic | N,T,O | |||
97 | wag1 | Wagner I. | Pseudocylindrical | N,T,O | |||
98 | wag2 | Wagner II. | Pseudocylindrical | N,T,O | |||
99 | wag3 | Wagner III. | Pseudocylindrical | N,T,O | x | ||
100 | wag4 | Wagner II. | Pseudocylindrical | N,T,O | |||
101 | wag6 | Wagner VI. | Pseudocylindrical | N,T,O | |||
102 | wag7 | Wagner VII. | Pseudocylindrical | N,T,O | |||
103 | wer | Werner-Staab | Pseudoazimuthal | N,T,O | |||
104 | were | Werenskiold | Pseudocylindrical | N,T,O | |||
105 | wiech | Wiechel | Pseudoazimuthal | N,T,O | |||
106 | wink1 | Winkel | Pseudocylindrical | N,T,O | x | ||
107 | wink2 | Winkel | Pseudocylindrical | N,T,O | x | ||
108 | wintri | Winkel tripel | Pseudoazimuthal | N,T,O | x |